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Abstract: Risky driving is a major factor in traffic incidents, necessitating constant monitoring
and prevention through Intelligent Transportation Systems (ITS). Despite recent progress, a lack
of suitable data for detecting risky driving in traffic surveillance settings remains a significant
challenge. To address this issue, Bayonet-Drivers, a pioneering benchmark for risky driving detection,
is proposed. The unique challenge posed by Bayonet-Drivers arises from the nature of the original
data obtained from intelligent monitoring and recording systems, rather than in-vehicle cameras.
Bayonet-Drivers encompasses a broad spectrum of challenging scenarios, thereby enhancing the
resilience and generalizability of algorithms for detecting risky driving. Further, to address the
scarcity of labeled data without compromising detection accuracy, a novel semi-supervised network
architecture, named DGMB-Net, is proposed. Within DGMB-Net, an enhanced semi-supervised
method founded on a teacher–student model is introduced, aiming at bypassing the time-consuming
and labor-intensive tasks associated with data labeling. Additionally, DGMB-Net has engineered an
Adaptive Perceptual Learning (APL) Module and a Hierarchical Feature Pyramid Network (HFPN)
to amplify spatial perception capabilities and amalgamate features at varying scales and levels,
thus boosting detection precision. Extensive experiments on widely utilized datasets, including
the State Farm dataset and Bayonet-Drivers, demonstrated the remarkable performance of the
proposed DGMB-Net.

Keywords: risky driving detection; urban traffic safety; semi-supervised learning; AI and deep
learning; intelligent transportation system

1. Introduction

The transportation industry has experienced significant advancements, resulting in
a substantial increase in vehicle proliferation. While these advancements have certainly
made life more convenient, they have also resulted in more crashes. As per the latest report
from the World Health Organization (WHO) [1], crashes yield an estimated 20 to 50 million
minor to moderate injuries and approximately 1.3 million fatalities each year. Additionally,
several countries dedicate around 3% of their Gross Domestic Product to addressing the
economic impact of crashes. Risky driving behaviors, including but not limited to cellphone
use while driving, non-compliance with seat belt usage, speeding, drunk driving, distracted
driving, and drowsy driving, have been identified as primary catalysts for these traffic
incidents. The effective identification and penalization of such risky driving practices can
contribute significantly to a reduction in the occurrence of crashes.

Risky driving behavior detection in traffic surveillance scenarios refers to the capture
of drivers by electronic police devices on the roadway, followed by identifying danger-
ous and violating behaviors in the captured images. The significance of automatically
detecting risky driving has garnered attention from several researchers in computer vision
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and artificial intelligence. Most existing studies utilize in-vehicle or dashboard cameras,
capturing participants while they engage in specific distracted behaviors. These studies
can be divided into image classification-based methods [2–6] and object detection-based
methods [7,8]. Image classification-based techniques map input images into predefined cat-
egories of risky driving behavior [2–6]. In contrast, object detection-based techniques offer
locational information about risky driving behavior through bounding boxes associated
with specific body parts within the images [7,8]. Compared with the simulation scenario in
the car, detecting risky driving in traffic surveillance scenarios is more challenging. This is
due to varying data acquisition conditions in traffic surveillance scenes, such as complex
illumination, extreme weather conditions, and diverse camera positions and angles. At
present, various methods [9–18] have been developed to address specific challenges such
as occlusion [9–11], adverse weather [15–18], or insufficient illumination [12–14] in traffic
scenes. However, most of these methods are used for vehicle detection or autonomous driv-
ing, and only a few studies [12,13] have attempted to identify driver behavior. Moreover,
both classification-based and detection-based methodologies heavily rely on abundant
labeled data, with only a small fraction of research focusing on unsupervised learning
for risky driving behavior classification tasks [19,20]. Notably, there is a lack of publicly
reported semi-supervised or unsupervised learning approaches for object detection-based
identification of risky driving behavior. Hence, it becomes imperative to explore and
implement semi-supervised or unsupervised learning techniques in the domain of risky
driving behavior detection.

Benchmark datasets serve a crucial role in advancing empirical progress within the
realm of deep learning. Noteworthy benchmarks for risky driving detection include
the State Farm dataset [21], AUC Distracted Driver dataset [22], FDUDrivers [23], and
Drive&Act [24]. These existing datasets typically capture data related to the driver’s face,
head, hands, or postures using in-vehicle cameras located at the front, back, side, or top of
the vehicle. However, they significantly differ from data in traffic surveillance scenes in two
key ways. Firstly, most of this data is simulated, requiring participants to perform specific
actions. Secondly, images captured inside the vehicle generally have higher quality due to
the closer shooting distance, fixed angles, and minimal impact from adverse weather and
lighting conditions. Consequently, models trained on in-vehicle data may face challenges
in effectively generalizing to road surveillance scenarios. Nonetheless, the development of
such benchmarks remains limited, primarily due to considerations related to acquisition
costs and privacy.

To rectify the scarcity of data associated with risky driving behaviors in traffic surveil-
lance scenarios, this study proposes a novel benchmark known as Bayonet-Drivers. The
foundational data for constructing Bayonet-Drivers is procured through an intelligent mon-
itoring and recording system installed at road intersections. Data collection for Bayonet-
Drivers covers various challenging conditions, including complex illumination, severe
weather, and potential interference from car background information. Furthermore, due to
the high prevalence of severe crashes attributed to disregarding seat belts and using phones
while driving, the primary focus lies in detecting these specific types of risky driving
behaviors. To our knowledge, this benchmark stands as the inaugural publicly available
standard for the detection of risky driving behaviors within traffic surveillance settings.
Therefore, Bayonet-Drivers can serve as a valuable tool for evaluating approaches geared
towards the detection of risky driving behaviors within traffic surveillance contexts.

Additionally, to counter the issues resulting from an insufficient quantity of labeled
data, DGMB-Net, a novel network architecture for the semi-supervised detection of risky
driving behaviors, is proposed. The primary advantages of DGMB-Net can be broadly
summarized into three aspects: (1) DGMB-Net incorporates an enhanced end-to-end
teacher–student semi-supervised learning method, thereby reducing the burden associated
with laborious and time-consuming data labeling. (2) The inclusion of an Adaptive Percep-
tual Learning(APL) Module enhances spatial perception and feature expression capabilities.
This strategic integration ensures adequate capture of both local and global contexts within
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the network. (3) A Hierarchical Feature Pyramid Network(HFPN) is implemented, effec-
tively amalgamating low-level and high-level features to generate comprehensive feature
maps, thereby bolstering detection accuracy.

In conclusion, in order to address the limitations mentioned above, this study aims
to provide the industry with a novel driver behavior benchmark and a high-precision,
low-cost risky-driving-behavior detection method suitable for traffic monitoring scenarios.
Due to the limited availability of traffic monitoring data in existing research, the adoption
of fully supervised learning requires a large amount of cost. Hence, one of the innovations
of this study is to provide a novel benchmark. This provides developers with data for
monitoring scenarios, covering different challenging scenarios such as complex lighting,
bad weather, etc., which helps them to conduct more in-depth research. The second
innovation of this study is to provide a high-precision semi-supervised approach for risky-
driving-behavior detection in traffic-monitoring scenarios. This approach not only reduces
the cost of manual annotation during model training but also effectively addresses various
challenging scenarios.

The structure of the remaining sections of this paper is organized as follows. Section 2
presents related work. Section 3 details the Bayonet-Drivers. Section 4 introduces the
proposed semi-supervised DGMB-Net for driver risky-driving detection. Section 5 presents
the analytical results, followed by the discussion in Section 6. Section 7 presents the
conclusions and prospects.

2. Related Work

This section provides a concise summary of current risky driving behavior datasets
and a discussion of representative vision-based risky driving behavior detection approaches
in this field.

2.1. Datasets

Datasets serve as an indispensable resource for deep learning applications in the
domain of computer vision. For the detection of risky driving behavior, this study catego-
rizes publicly accessible datasets into four classifications based on the primary detection
focus: the driver’s face, head, hands, and postures. Notably, the driver posture datasets,
providing additional body cues, can be further segmented into various subcategories based
on viewpoint and modality. Table 1 presents a comprehensive summary of these represen-
tative datasets for risky driving behavior detection, highlighting different aspects such as
viewpoints, number of cameras used, focus, publication year, dataset scale, and image size.
Below, an in-depth overview of several notable datasets is provided.

(1) State Farm Distracted Driver Dataset [21]: In 2016, the State Farm insurance company
initiated a competition on Kaggle to detect distracted driver behavior, offering 102,150
images with a resolution of 640 × 480. The data were collected from a single viewpoint
and modality, with the camera positioned to the side of the vehicle’s cockpit.

(2) AUC Distracted Driver Dataset [22]: This dataset was compiled using the rear camera
of an ASUS ZenPhone (Model Z00UD), from which 17,308 frames were extracted and
classified into ten categories. Similar to the State Farm dataset, the AUC dataset also
employs a single viewpoint and modality.

(3) Driver Anomaly Identification Dataset (DAD) [25]: The DAD dataset consists of 783
min of video data, providing a multi-modal resource, alongside depth and infrared
modalities, all with a resolution of 224 × 171. Furthermore, the DAD dataset offers
multiple perspectives, including frontal and top views.

(4) Drive&Act [24]: Drive&Act is a comprehensive multi-view, multi-modal dataset that
includes approximately 9.6 million frames. It captures infrared, color, 3D body pose
data, and depth from six different views. Videos are meticulously labeled using a
hierarchical annotation scheme, resulting in a total of 83 categories.

It is important to note that the majority of publicly available datasets focused on
risky driving behaviors are gathered from in-vehicle cameras. However, there remains a
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significant gap in the availability of datasets related to risky driving behaviors observed
within traffic surveillance scenarios.

Table 1. Publicly accessible datasets for driver distracted detection.

Dataset Camera Viewpoints Num of Cameras Target Year Size Resolution

DrivFace [26] front 1 Driver face 2016 606 images 640 × 480
VIVA-Face [27] front 1 Driver face 2016 39 video clips 544 (height)

Pandora [28] simulated 1 Driver head 2017 110 video clips 640 × 480
DriveAHead [29] front 1 Driver head 2017 21 video clips 512 × 424

DD-Pose [30] front, back 2 Driver head 2019 660 k images —
VIVA-Hands [31] front, back, side, top 1 Driver hands 2015 11 k images —

Turms [32] front, bottom 1 Driver hands 2018 14 k frames 640 × 240
State Farm [21] side 1 Driver postures 2016 22,424 images 640 × 480

AUC [22] side 1 Driver postures 2019 14,478 frames 1080 × 1920
EEE BUET [33] front 1 Driver postures 2018 2 × 312 video clips 854 × 480

DAD [25] top, front 3 Driver postures 2021 783 min videos 224 × 171
FDU Drivers [23] front 1 Driver postures 2020 20,000 images 224 × 224
Drive&Act [24] top, front, back 6 top, front, back 2019 9.6 M frames —

2.2. Sensor-Modal Data-Based and Multimodal Data-Based Method

The performance of a vehicle is directly influenced by the driver’s behavior, and this
impact can be assessed through the analysis of single-modal data from vehicle motion sen-
sors. Espino-Salinas et al. [34] addressed the identification of drivers through motor activity
generated by the main elements of the vehicle through genetic algorithms. With the ad-
vancement of sustainable multi-sensor collection techniques, numerous studies have been
undertaken to integrate and fuse data from multiple sensors. Du et al. [35] verified that an
improved predictive performance for distraction detection could be achieved by integrating
facial expression, speech, and vehicle signals. Streiffer et al. [36] devised a comprehensive
data collection and analysis framework called DarNet. This system utilized convolutional
neural networks (CNNs) for analyzing driving image data and recurrent neural networks
for processing inertial measurement units sensor data. Ultimately, the integration of the
two outputs was accomplished through Bayesian networks. Rashwan et al. [37] intro-
duced a two-stage model, which firstly involved three independent modules for feature
extraction from audio, image, video, and other signals. Subsequently, an estimation of
the driver’s risky state, based on the hidden Markov model, was generated. Ultimately,
the outputs and contextual information from each module were fused using a Bayesian
network. Zhang et al. [38] proposed a deep unsupervised multi-modal fusion network
composed of three main modules: multi-modal representation learning, multi-scale fea-
ture fusion, and unsupervised driver-distraction detection for driver-distracted detection.
Gao et al. [39] introduced the M2-Conformer, a hybrid framework integrating Transformer
and CNN architectures in parallel branches, for extracting driving scene and vehicle dy-
namics features. Co-occurrence features are subsequently input into a customized Feature
Aggregation Module to generate higher-quality aggregated features.

2.3. Vision-Based Risky Driving Detection

Early methodologies [40,41] commonly utilized artificial feature extraction techniques
such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) for the
identification of risky driving behaviors. These extracted features were subsequently
processed using classifiers like Support Vector Machines (SVMs) for classification tasks.
However, in recent decades, there has been a significant shift in focus towards deep learning-
based approaches, attributed largely to their superior feature representation capabilities.
The field of vision-based recognition of risky driving behaviors can be broadly bifurcated
into two principal methodologies: image classification-based [2–6] and object detection-
based [7,8].
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Image classification-based method: Image classification-based methodologies strive to
classify input images into predefined categories that correspond to risky driving behaviors.
Yan et al. [42] focused on locating the driver’s hand by extracting prominent information,
with the goal of predicting driving posture via trainable filters and local neighborhood
pooling operations. Meanwhile, Li et al. [43] designed a lightweight network, termed
OLCMNet, to detect driver distractions. They accomplished this by extending feature
maps into two separate branches via point-wise convolution, effectively reducing network
size and enhancing real-time performance. In a separate work, Abouelnaga et al. [44]
integrated ensemble learning, specifically a genetic algorithm, to improve the accuracy
and generalization ability of detection methods. They performed a precisely weighted
summation of outputs from a diverse ensemble of networks, with each network in the
ensemble trained on different input modalities, such as raw images, hand images, face
images, and the fusion of face and hand images. Subsequently, Eraqi et al. [22] extended
the dataset and simultaneously augmented the capacity of the neural network to enhance
the generalization and robustness of their algorithms across diverse scenarios.

Object detection-based method: Methods utilizing object detection strive to pinpoint
and accurately identify instances of hazardous driving behaviors within designated input
images. Numerous researchers have concentrated their efforts on enhancing the robustness
of detection networks. As an illustration, Sajid et al. [8] proposed an innovative detection
framework that incorporates a weighted bidirectional feature fusion network and a hybrid
augmentation technique. This approach identifies objects associated with risky driving
activities and determines the regions of interest corresponding to specific body parts.
Certain research endeavors have specifically targeted the detection of particular behaviors,
such as seat belt violation [45–47] and cell phone use [48,49]. These behaviors are given
emphasis due to their strong correlation with severe crashes. Hoang et al. [48], for instance,
detected mobile phone usage by identifying the position of the driver’s hands on the
steering wheel and determining any hands-off-wheel instances. In identifying seat belt
violations, most research studies have adopted a two-step process: initial segmentation
of the windshield region, followed by detection of seat belt presence. Elihos et al. [50]
utilized single-shot multi-box object detection techniques to identify the windshield and
passenger area and then proceeded to verify the presence of seat belt violations. However,
the researchers acknowledged the restricted real-time performance of their methodology. To
address this limitation, Yang et al. [45] executed pruning and quantization of SSD MobileNet
V2 to detect the driver’s seat belt. Similarly, Chun et al. [46] utilized a feature pyramid
network (FPN) with multiple detection heads to estimate body posture and identify seat
belts. Additionally, Feng et al. [47] exploited the spatial relationship of the front windshield
to locate it, before applying the Hough transform to establish the windshield boundary.
This led to a successful differentiation of the positions of the driver and passenger, thus
facilitating seat belt recognition. Despite these substantial strides in seat-belt-violation
detection, it is important to note that these studies have been conducted on external vehicle
data, and these datasets have not been made publicly available to date.

Current methodologies, whether predicated on image classification or object detection,
significantly depend on voluminous amounts of labeled data. This requirement often leads
to substantial labor costs. Aiming to circumvent this limitation, several researchers have
directed their efforts towards unsupervised recognition of risky driving behaviors [19,20].
Li et al. [19], for instance, introduced an unsupervised deep learning algorithm, referred
to as UDL. This algorithm is designed for fine-grained classification of driver distraction
behaviors. Concurrently, Roy [20] developed an unsupervised low-rank non-negative
dictionary and applied a threshold-based reconstruction error criterion. This approach
enables the detection of drivers using mobile phones, based on their proposed driving
dataset. Both studies focus on classification-based detection of risky driving behaviors.
Despite these developments, it is important to note that as of now, there is no publicly
available research that addresses semi-supervised or unsupervised learning for object
detection-based recognition of risky driving behaviors.
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3. Bayonet-Drivers Dataset

The entirety of the original data for Bayonet-Drivers was procured utilizing high-
definition intelligent integrated cameras, integrated within an intelligent monitoring and
recording system situated at a road intersection. The cameras are positioned along a main
road with three or four lanes, situated at a height of approximately 4.5 m above typical
vehicles and roughly 6 m above ground level.

The site of data collection is situated within the Jinyuan District of Taiyuan City, Shanxi
Province, China, an area that spans 289 square kilometers and encompasses a total of 537 km
of roads (as depicted in Figure 1). This endeavor resulted in a compilation of 100 h of video
clips. To ensure a diverse dataset, video capture was executed at various times, specifically
between 9:00 and 15:00 and from 19:00 to 20:30 during July 2020. Due to the long time,
wide geographical range, and strong randomness of the data collection, Bayonet-Drivers
encompasses individuals of varying ages (including the young, middle-aged, and some
elderly) with diverse driving habits. According to the most recent report from the WHO as
of December 2023 [1], drivers who use mobile phones are about four times more likely to
be involved in a crash than those who do not. Using a cell phone while driving slows down
reaction times (especially braking reaction time, but also reaction time to traffic signals)
and makes it difficult to stay in the right lane and maintain the right following distance.
Wearing seat belts reduces the risk of death for vehicle passengers by 50%. Consequently,
Bayonet-Drivers comprises scenarios of safe driving and risky driving, where risky driving
includes using a cell phone and not wearing a seat belt. Details of Bayonet-Drivers are
shown in Table 2.

Figure 1. The details of high-definition intelligent integrated camera and study region.

Table 2. Detailed information about Bayonet-Drivers.

Using Mobile Phones Seat Belt Violation Safe/Unsafe Number of Images

No Yes Unsafe 2500
Yes No Unsafe 2500
Yes Yes Unsafe 2500
No No Safe 2500

As the data were gathered in a real-world setting, Bayonet-Drivers encapsulates a
broad spectrum of challenging scenarios, including a variety of weather conditions such
as sunny, cloudy, and foggy days, as well as complex illumination conditions like low
light, dazzling light, and uneven illumination, along with interference from the car interior.
Moreover, different forms of partial occlusions obscure the driver’s posture. For instance,
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sun visors may entirely or partially obstruct the driver’s face, hindering the detection of
cell phone usage.

The images within the Bayonet-Drivers dataset possess dimensions of 224 × 224 pixels.
During the construction process, an image was extracted every 30 frames for regular
scenarios, while for challenging scenarios, an image was extracted every 10 frames. This
resulted in a final dataset comprising 10,000 images, with 3000 of them annotated in the
MS COCO format. Figure 2 displays some of the challenging example images from the
Bayonet-Driver dataset. For comparison, examples from several representative publicly
available in-vehicle datasets, including State Farm [21], AUC [22], and EEE BUET [33], are
illustrated in Figure 3.

Figure 2. Some challenging example images in Bayonet-Drivers.

Figure 3. Some typical examples of three popular in-vehicle datasets.

4. Methodology

As shown in Figure 4, an end-to-end semi-supervised network for risky driving
detection termed by DGMB-Net based on the classical teacher–student framework [51] is
proposed. Within DGMB-Net, the teacher and student models employ the same structure,
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specifically RDB-Net, which is composed of the Adaptive Perceptual Learning (APL)
module, the Hierarchical Feature Pyramid Network (HFPN), and the cascade detection
head. While the APL module and HFPN are designed to improve detection accuracy
through advancing spatial perception and fusing features at different levels and scales, the
cascade detection head is introduced to realize high-precision bounding box regression and
object classification.

Figure 4. Overall architecture of DGMB-Net.

4.1. Semi-Supervised Learning

The teacher model and student model have the same structure as mentioned previously.
The teacher model produces pseudo-labels for unlabeled images, while the student model is
simultaneously trained on labeled images with ground-truth labels and unlabeled images.

Both the teacher model and the student model are randomly initialized throughout the
training phase. During each training iteration, a training data batch is formed by randomly
sampling labeled and unlabeled images based on a certain data sampling ratio. Unlabeled
data are processed by weak augmentation and strong augmentation, aiming to increase
the diversity and variation of the unlabeled data, thereby improving the performance and
generalization of the model. Weak augmentation, such as random cropping and color
jittering, is applied for pseudo-labeling of the teacher model and training of the student
model. Strong augmentation such as rotation, scaling, shearing, and flipping is utilized
for the detection training of student models. Throughout the training phase, the student
model is trained using gradient descent, while the teacher model is continually updated
based on the student model using the commonly employed exponential moving average
strategy. Afterwards, Non-Maximum Suppression (NMS) is usually utilized to remove the
large number of pseudo boxes that are generated by the teacher model and have lower
confidence than a fixed threshold.

Although the process of NMS can eliminate the majority of non-foreground boxes,
there may still be some redundant boxes remaining due to the overlap between the actual
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targets and the generated pseudo-labels in terms of their spatial location, dimensions,
or visual characteristics. In this case, simply applying one threshold to filter out these
redundant candidate boxes might result in inaccurate boundary delineation or even missing
detection. To address this problem, a Nonlinear Weighted Pseudo Boxes Generation
(NWPG) algorithm is proposed to align the generated pseudo boxes with the ground truth
for the accuracy of pseudo-labels. The following is the generation process:

X =
∑n

i=1 xi · sqrt(wi)

∑n
i=1 sqrt(wi)

(1)

Y =
∑n

i=1 yi · sqrt(wi)

∑n
i=1 sqrt(wi)

(2)

where X, Y are the final coordinate values, respectively. NWPG only calculates the co-
ordinates of the upper left and the lower right corners of each candidate box. xi and yi
respectively represent the initial coordinate value, and wi represents the confidence score
of the corresponding candidate box.

The loss function L is the weighted sum of the supervised loss function Lsup and the
unsupervised loss function Lun sup:

L = Lsup + αLun sup (3)

where α controls the proportion of unlabeled image loss, and both Lsup and Lun sup are
normalized by the number of images in their respective training data:

Lsup =
1

Ns
∑Ns

i=1 (Lcls(Ii
s) + Lreg(Ii

s)) (4)

Lun sup =
1

Nu
∑Nu

i=1 (Lcls(Ii
u) + Lreg(Ii

u)) (5)

where Lcls represents the classification loss, Lreg represents the bounding box regression loss,
Ii
s represents the i-th labeled image, Ii

u represents the i-th unlabeled image, Ns represents the
total number of labeled images, and Nu represents the total number of unlabeled images.

4.2. RDB-Net

RDB-Net is composed of three modules: the Adaptive Perceptual Learning Module
for feature extraction, the Hierarchical Feature Pyramid Network for feature fusion, and
the cascade detection head for high-precision detection.

4.2.1. Adaptive Perceptual Learning Module

Risky-driving-behavior detection in traffic monitoring scenarios is a challenging task
due to the presence of complex lighting conditions, adverse weather conditions, and
interference from the background inside the vehicle. To enhance the adaptability of fea-
ture extraction network in different scenarios, a plug-and-play module, termed Adaptive
Perceptual Learning (APL) Module, is proposed.

For the accuracy and versatility of the model, the classical ResNet50 is applied as
the base backbone. The APL module is incorporated into the final three stages of the
ResNet50 network. Within the APL module, deformable convolution (DCN) [52] effectively
captures fine details and effectively models spatial variations in complex lighting and noisy
conditions by adaptively adjusting the receptive field. Simultaneously, the APL module
leverages global context (GC) modeling [53] to address the challenges of complex lighting
and noisy images by integrating overall information and capturing remote dependencies,
thus compensating for the loss of detail and low contrast. Figure 5 shows the structure of
the APL module. Firstly, deformable convolution processes the feature map of the previous
stage. Then, the feature map is passed through a 1 × 1 convolution block and softmax
function in the context modeling part and is then added to the original input to acquire
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the global context feature, which expands the input receptive field. In the transformation
process, two convolutional layers are employed to decrease the channel dimension and
minimize the parameter count. Finally, the result and input of the feature transformation
are added element-wise. The process can be expressed with the subsequent formula:

yi = xi + W2ReLU(LN(W1

Np

∑
j=1

eWkxj

Np

∑
m=1

eWkxm

xj)) (6)

where x is the feature map input, y is the output, i is the index of positions, j represents
traversing all positions, Np is the total number of positions in the feature maps, Wk rep-
resents the weight through the first 1 × 1 convolution, W1 represents the weight through
the first 1 × 1 convolution after the softmax function, W2 represents the weight through

the last 1 × 1 convolution, αj = ewk xj

∑
Np
m=1 ewk xm

is the global attention pooling weight, and

δ(·) = W2ReLu(LN(W1(·))) is the transformation process.

Figure 5. The structure of the APL module.

4.2.2. Hierarchical Feature Pyramid Network

Regarding the FPN module, it strengthens the features extracted by the backbone,
enabling the model to detect targets of different scales efficiently. However, traditional
FPN’s sole reliance on a top-down path hampers the balanced distribution of feature
information across levels, limiting the impact of low-level features on high-level features. To
effectively capture multi-scale feature information and perform hierarchical feature fusion,
this study proposes a Hierarchical Feature Pyramid Network (HFPN) inspired by [54,55].
Figure 6 illustrates the workflow of HFPN. Firstly, semantic information is propagated
through a top-down pathway. Subsequently, location information is propagated through a
bottom-up pathway to facilitate feature fusion. Additionally, an Efficient Channel Attention
(ECA) block [56] is incorporated into the input part of HFPN to adjust the weight of features
adaptively. Finally, a balanced integration of features from layers N2, N3, N4, and N5
is performed.

Figure 6. The structure of HFPN.
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The following are the processes to balance the features at each level: The first step is to
generate balanced semantic features. Assuming that the resolution of the features has four
levels {N2, N3, N4, N5}, with N2 having the highest resolution. Then, {N2, N3, N4, N5}
are adjusted to have the same size as N4 using interpolation, and the maximum pooling
and balanced semantic features are achieved using the formula:

C =
1
L ∑lmax

l=lmin
Nl (7)

where L is the number of feature levels, and lmax and lmin represent the index of the highest
and lowest feature level, respectively. The refined feature is then used to enrich the feature
details using non-local operation. To obtain both low-level and high-level features, the
extracted features are rescaled using the same procedure but in reverse to output P2, P3,
P4, and P5.

4.2.3. Cascade Detection Head

A cascade detection head was suggested to address the limitation of traditional net-
works in improving accuracy, arising from the use of a single threshold setting. The cascade
detection head converts the traditional bounding box regression task into a cascaded re-
gression task, and multiple detectors are cascaded after the Region Proposal Network
(RPN). This work adopts the cascade detection head as the detection head of RDBNet. The
structure is shown in Figure 7.

Figure 7. Structure of cascade detection head.

5. Experiment and Analysis

In this section, ablation experiments are executed to analyze the contributions of the
APL module. Then, the proposed HFPN is compared with the baseline FPNs. Afterwards,
this study verified the effectiveness of the proposed semi-supervised method by comparing
it with the fully supervised method and other semi-supervised methods. Then, DGMB-Net
is compared with several baseline networks. Finally, this study visualized the performance
of DGMB-Net.

5.1. Dataset and Experiment Settings

All experimental evaluations were carried out using the State Farm dataset and the
Bayonet-Drivers dataset. Given that the State Farm dataset is primarily tailored for clas-
sification tasks, this work carried out the annotation of images depicting risky driving
behaviors. Specifically, these behaviors included right-handed and left-handed cellphone
use, both in texting and phone use scenarios, annotated in the COCO format. Ultimately,
the State Farm dataset used in this study contained 9256 images, with 2776 of them labeled.
The Bayonet-Drivers dataset comprised 10,000 images, with 3000 labeled images.

The experimental setup included the use of an Nvidia Geforce 1080Ti 11GB graphics
processing unit. The operating system and deep learning frameworks employed were
Ubuntu18.04 and PyTorch 1.7.0, respectively. The parameters for the experiments were set
as follows: the first 500 iterations adopted a linear learning rate strategy, where the initial
learning rate was set at 0.001. Following this, the learning rate was adjusted to 0.01 and was
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subsequently reduced by a factor of 0.1 every 40,000 iterations. In the context of supervised
learning, the batch size was fixed at 4. For semi-supervised learning, the batch size was
increased to 5, maintaining a ratio of labeled to unlabeled images of 1:4. The total number
of iterations performed was 180,000.

5.2. Metrics

This study used the COCO metrics [57] as evaluation metrics, which is a common
evaluation standard for object detection. Among COCO metrics, this study employed mAP,
mAP@0.5, mAP@0.75, APM, and APL to evaluate the performance of the model, and their
calculation formulas are detailed as follow:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =
∫ 1

0
P(r)dr (10)

mAP =
1
N ∑N

i=1 APi (11)

TP represents true positives, signifying actual positives correctly classified by the
classifier. FP stands for false positives, denoting actual negatives incorrectly classified as
positives. FN represents false negatives, indicating actual positives incorrectly classified as
negatives. TN denotes true negatives, representing actual negatives correctly classified as
negatives by the classifier. AP, calculated as the area enclosed by the curve when precision
is plotted against recall, serves as a pivotal metric in object detection. A higher AP signifies
superior performance. mAP represents the mean average precision, calculated as the
average of the AP values for all classes. It serves as a common metric for measuring the
overall performance of an algorithm. In the mAP calculation formula, APi represents the
AP value for the class with index i, and N denotes the number of classes. mAP@0.5 denotes
the average precision when the Intersection over Union (IoU) is set to 0.5. mAP@0.75
denotes the average precision when the Intersection over Union (IoU) is set to 0.75. APM
and APL are selected as the evaluation indices for medium and large targets, respectively.

5.3. Results and Analysis
5.3.1. Ablation Experiments of Adaptive Perceptual Learning (APL) Module

We conducted ablation experiments on the proposed Adaptive Perceptual Learning
(APL) Module. The ablation experiments adopt the semi-supervised learning method
mentioned in Section 4.1. The results of ablation experiments on two datasets are shown in
Tables 3 and 4. The ablation experimental results show that the newly added GC (Global
Context) module significantly improves the AP metric. This is attributed to the potent
global modeling capabilities of the GC module, which optimizes feature representation.
Additionally, the inclusion of deformable convolution contributes to the enhancement of
the AP value. This is attributed to the deformable convolution’s ability to flexibly adjust
the receptive field, allowing for better adaptation to changes in the target, such as seat belts.
This study conducted experiments on different CNNs to select the most appropriate CNN.
The experimental results show that the mAP of ResNet50 and ResNeXt101 are very close,
while the network parameters of ResNeXt exceed ResNet50. So this work chose ResNet50
as the backbone.

5.3.2. Effects of Hierarchical Feature Pyramid Network (HFPN)

This section compared the effect of HFPN and several FPN baselines with excellent
performance, specifically, FPN [58], BiFPN [59], PAFPN [54], and BFP [55]. FPN is the
most primitive architecture, BiFPN, PAFPN, and BFP are all developed on it. Among them,
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BiFPN is a weighted bidirectional feature pyramid network. Compared with ordinary FPN,
PAFPN adds a bottom-up path to enhance the positioning ability on multiple scales. The
main innovation of BFP is to use the same deeply integrated balanced semantic features
to enhance multi-level features. The semi-supervised learning method mentioned in
Section 4.1 is applied in this section.

Tables 5 and 6 tabulate the experimental results on Bayonet-Drivers and State Farm
datasets, respectively. It shows that HFPN outperforms BFP by 3.3 AP points on Bayonet-
Drivers with only a 3.54 M parameter increase. Moreover, there is a notable improvement
in both APL and APM values, with an increase of 0.9 and 2.5, respectively. This improve-
ment is attributed to HFPN’s capacity to not only focus on crucial feature channels but
also effectively integrate multi-scale features from different levels, thereby enhancing the
model’s ability in object detection.

Table 3. Ablation experiment results of APL module on Bayonet-Drivers dataset. The best result are
highlighted in bold.

Dataset Backbone +DCN +GC mAP mAP@0.5 mAP@0.75 APM APL

Bayonet-Drivers

ResNet18

49.4 84.9 53.4 48.1 47.8
✓ 50.1 85.6 54.4 48.7 50.1

✓ 50.3 85.7 55.6 48.9 53.6
✓ ✓ 51.5 (+1.1) 86.2 (+1.3) 56.3 (+2.9) 49.3 (+1.2) 56.3 (+8.5)

ResNet50

50.1 84.3 55.4 48.3 55.5
✓ 50.4 86.5 56.1 48.8 55.7

✓ 51.5 86.9 57.6 49.1 61.3
✓ ✓ 53.5 (+3.4) 87.1 (+2.8) 57.8 (+2.4) 50.1 (+1.8) 62.4 (+6.8)

ResNet101

49.8 84.7 55.3 49.1 55.3
✓ 50.1 85.6 54.4 48.7 50.1

✓ 51.3 87.1 57.4 50.1 60.3
✓ ✓ 52.9 (+3.1) 87.5 (+2.8) 57.5 (+2.1) 50.5 (+1.4) 61.4 (+6.1)

ResNeXt101

50.1 84.8 55.3 49.3 55.4
✓ 50.5 87.0 56.0 49.5 55.8

✓ 51.3 87.2 57.5 49.9 60.4
✓ ✓ 53.5 (+3.4) 87.6 (+2.8) 57.7 (+2.4) 50.4 (+1.1) 62.2 (+6.8)

Table 4. Ablation experiment results of APL Module on State Farm dataset. The best result are
highlighted in bold.

Dataset Backbone +DCN +GC mAP mAP@0.5 mAP@0.75 APM APL

State Farm

ResNet18

67.6 99.0 84.2 73.4 70.6
✓ 68.4 99.3 85.6 74.6 71.9

✓ 68.6 99.4 84.9 74.8 72.2
✓ ✓ 69.4 (+1.8) 99.5 (+0.5) 86.2 (+2.0) 74.9 (+1.5) 72.5 (+1.9)

ResNet50

69.5 99.4 87.9 64.5 76.0
✓ 71.0 99.7 88.1 67.7 76.4

✓ 71.3 99.7 87.5 67.4 77.2
✓ ✓ 71.3 (+1.8) 99.8 (+0.4) 91.1 (+3.2) 67.8 (+3.3) 77.8 (+1.8)

ResNet101

67.5 98.8 83.9 75.8 67.7
✓ 68.7 99.2 85.6 76.9 69.8

✓ 69.4 99.5 86.3 77.1 68.7
✓ ✓ 70.8 (+3.3) 99.9 (+1.1) 87.0 (+4.9) 77.8 (+2.0) 70.8 (+3.1)

ResNeXt101

68.7 99.1 85.3 76.5 72.0
✓ 69.8 99.3 85.8 77.1 72.5

✓ 70.1 99.5 86.2 77.3 72.8
✓ ✓ 71.2 (+2.3) 99.9 (+0.8) 90.2 (+4.9) 77.9 (+1.4) 74.5 (+2.5)
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Table 5. Performance comparison between HFPN and different FPNs on Bayonet-Drivers dataset.
The best result are highlighted in bold.

Dataset Backbone FPN AP mAP@0.5 mAP@0.75 APM APL Params (M)

Bayonet-Drivers

ResNet50 - 50.1 84.3 55.4 48.3 55.6 372.52
ResNet50 FPN [58] 51.4 85.6 56.0 49.5 54.0 68.93
ResNet50 BiFPN [59] 52.3 87.5 58.9 50.6 44.1 70.11
ResNet50 PAFPN [54] 51.6 86.1 57.2 49.5 55.0 72.47
ResNet50 BFP [55] 51.9 86.7 57.7 49.5 47.0 69.19
ResNet50 HFPN 53.4 (+3.3) 87.8 (+3.5) 58.9 (+3.5) 50.8 (+2.5) 56.5 (+0.9) 72.73

Table 6. Performance comparison between HFPN and different FPNs on State Farm dataset. The best
result are highlighted in bold.

Dataset Backbone FPN AP mAP@0.5 mAP@0.75 APM APL Params (M)

State Farm

ResNet50 - 69.5 99.4 87.9 64.5 76.0 372.52
ResNet50 FPN [58] 70.6 99.6 88.2 65.4 76.2 68.93
ResNet50 BiFPN [59] 70.8 99.5 88.1 64.8 76.1 70.11
ResNet50 PAFPN [54] 70.8 99.6 88.3 65.6 76.9 72.47
ResNet50 BFP [55] 70.9 99.7 89.5 64.9 76.7 69.19
ResNet50 HFPN 71.2 (+1.7) 99.8 (+0.4) 89.9 (+0.4) 65.7 (+1.2) 76.9 (+0.9) 72.73

5.3.3. Comparison of DGMB-Net with Other Semi-Supervised Methods

In this section, we undertook a comparison between DGMB-Net and other semi-
supervised methodologies. RDB-Net is utilized as the detection model. Experiments
were conducted using varying labeled ratios on both the Bayonet-Drivers and State Farm
datasets. The ratios of 1%, 5%, 10%, 20%, and 30% represent the proportion of labeled
images in relation to the total dataset. Table 7 presents the mAP values of both DGMB-Net
and other semi-supervised learning methodologies.

Table 7. Comparative experimental results of DGMB-Net with other semi-supervised methods on
Bayonet-Drivers dataset and State Farm dataset. The best result are highlighted in bold.

Dataset Method 1% 5% 10% 20% 30% GFlops

Bayonet-Drivers

supervised 10.3 14.6 39.2 47.1 49.3 -

CSD [60] 13.5 (+3.2) 15.4 (+0.8) 39.4 (+0.2) 47.2 (+0.1) 49.2 (−0.1) 234.47
STAC [51] 22.6 (+12.3) 28.2 (+13.6) 46.4 (+7.2) 50.7 (+3.6) 49.6 (+2.1) 234.47

Humble Teacher [61] 29.6 (+19.3) 33.8 (+19.2) 47.8 (+8.6) 51.3 (+4.2) 49.9 (+3.3) 234.47
E2E [62] 33.5 (+23.2) 37.5 (+23.0) 49.9 (+10.7) 52.6 (+5.5) 53.3 (+3.0) 234.47

DGMB-Net 36.0 (+26.7) 39.8 (+25.2) 51.0 (+11.8) 53.8 (+6.7) 54.5 (+5.2) 234.47

State Farm

supervised 2.7 20.6 60.5 62.6 68.4 -

CSD [60] 6.2 (+3.5) 22.8 (+2.2) 60.8 (+0.3) 62.8 (+0.2) 68.5 (+0.1) 234.47
STAC [51] 10.6 (+7.9) 25.6 (+5.0) 63.9 (+3.6) 65.1 (+2.5) 69.6 (+1.2) 234.47

Humble Teacher [61] 12.8 (+10.1) 26.9 (+6.3) 65.3 (+4.8) 65.8 (+3.2) 70.1 (+1.7) 234.47
E2E [62] 14.9 (+12.2) 28.8 (+8.2) 66.6 (+6.1) 66.9 (+4.3) 71.2 (+2.8) 234.47

DGMB-Net 16.6 (+13.9) 30.7 (+10.1) 68.7 (+8.2) 69.4 (+6.8) 72.3 (+3.9) 234.47

As can be discerned from the experimental results in Table 7, all the semi-supervised
methods showed a significant improvement over the supervised method. DGMB-Net
outperforms the supervised method by 26.7 points, 25.2 points, and 11.8 points when there
are 1%, 5%, and 10% labeled data, respectively. Moreover, it becomes evident that the
proposed semi-supervised learning method has led to improvements in the mAP value
when compared to other state-of-the-art methods. This can be attributed to the design of
the Nonlinear Weighted Pseudo Boxes Generation algorithm, which aligns the generated
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pseudo boxes with the ground truth, thereby enhancing the accuracy of pseudo labels.
Specifically, DGMB-Net outperforms the E2E by 3.5 points, 2.2 points, and 1.1 points when
there are 1%, 5%, and 10% labeled data on Bayonet-Drivers, respectively. Notably, the
semi-supervised learning methodology demonstrates a greater advantage when the label
ratio is smaller. When the entire dataset is employed for training, DGMB-Net attains mAP
values of 54.5 and 72.3 on the Bayonet-Drivers and State Farm datasets, respectively.

5.3.4. Comparison with Mainstream Detectors

Several classic detection networks, single-stage Yolox [63] and Retinanet [64] and
two-stage Fast R-CNN [65], Faster R-CNN [66], and Cascade R-CNN [67], were compared
with DGMB-Net on Bayonet-Drivers and State Farm datasets. Tables 8 and 9 report the
experimental results. As for two-stage methods, the AP of RDB-Net on Bayonet-Drivers is
14.9 percentage points, 4.3 percentage points, and 2.7 percentage points higher than Fast
R-CNN, Faster R-CNN, and Cascade R-CNN, respectively. As for single-stage methods, the
AP of RDB-Net on Bayonet-Drivers is 9.8 percentage points, 1.0 percentage points higher
than Yolox and Retinanet. Although early algorithms (Fast R-CNN and Faster R-CNN)
had fewer parameters, their AP value can only achieve 36.3 and 46.9 on Bayonet-Drivers.
However, the parameters of the RDB-Net only increased by 5.89 M compared to Cascade
R-CNN. At the same time, after introducing semi-supervised learning, the performance of
RDB-Net has been further improved. DGMB-Net boasts the highest detection precision
and the most optimal comprehensive detection performance.

Table 8. Comparison results of DGMB-Net and mainstream object detection algorithms on Bayonet-
Drivers dataset. The best result are highlighted in bold.

Dataset Model Backbone AP mAP@0.5 mAP@0.75 APM APL Params (M)

Bayonet-Drivers

Fast RCNN [65] ResNet50 36.3 78.9 31.2 39.6 25.6 40.53
Faster RCNN [66] ResNet50 46.9 83.9 48 44.7 48.4 41.13

Yolox [63] DarkNet 41.4 82.9 33.2 41.0 22.4 54.21
Retinanet [64] ResNet50 50.2 86.3 52.9 48.1 76.0 37.74

Cascade RCNN [67] ResNet50 48.5 83.3 51.6 46.3 29.2 68.93
RDB-Net ResNet50 51.2 87.1 53.4 48.6 77.1 74.82

DGMB-Net ResNet50 54.5 88.3 54.6 49.3 78.2 74.82

Table 9. Comparison results of DGMB-Net and mainstream object detection algorithms on State Farm
dataset. The best result are highlighted in bold.

Dataset Model Backbone AP mAP@0.5 mAP@0.75 APM APL Params (M)

State farm

Fast RCNN [65] ResNet50 48.6 84.3 43.8 45.3 49.4 40.53
Faster RCNN [66] ResNet50 65.9 98.0 87.5 65.2 75.6 41.13

Yolox [63] DarkNet 64.9 97.9 79.2 59.5 70.1 54.21
Retinanet [64] ResNet50 65.4 99.1 82.1 60.6 70.2 37.74

Cascade RCNN [67] ResNet50 66.8 99.0 90.1 68.5 77.8 68.93
RDB-Net ResNet50 68.6 99.3 90.5 69.6 78.8 74.82

DGMB-Net ResNet50 72.3 99.9 91.3 70.2 79.6 74.82

5.3.5. Visualization Results of DGMB-Net

This section performed a visual analysis of DGMB-Net. Figure 8 shows performance
diagrams for DGMB-Net on the Bayonet-Drivers dataset. The confusion matrix shows that
some errors occur; for example, belt and call were misclassified into background categories,
resulting in missed detection. The ROC curve for the DGMB-Net is given in Figure 8d. The
ROC curve showed that DGMB-Net achieved good results in both belt and call categories.
Figure 9 shows the precision–recall curves (PR Curve) for different datasets and different
categories. As is demonstrated in Bayonet-Drivers, DGMB-Net performed better on the
detection of phone call than that of belt. One possible cause is the deformation of belt



Sensors 2024, 24, 1386 16 of 22

during the driving. In addition, the background information such as the color of clothes
can interfere with the detection.

(a) (b)

(c) (d)

Figure 8. Performance diagrams for DGMB-Net using the Bayonet-Drivers dataset: (a) learning rate,
(b) train and validation loss, (c) confusion metrics, (d) Receiver Operating Characteristic (ROC) curve.

(a) (b)

(c) (d)

Figure 9. Precision–recall curve (PR Curve) for different datasets and different categories: (a) calls in
Bayonet-Drivers dataset, (b) belt in Bayonet-Drivers dataset, (c) all classes in Bayonet-Drivers dataset,
(d) all classes in State Farm dataset.

Figures 10 and 11 show examples of detection visualization results of images on
Bayonet-Drivers and State Farm datasets, respectively. The dashed boxes in blue, yellow,
and green represent missed detection, wrong detection, and correct detection with the
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highest confidence, respectively. It is shown that the proposed DGMB-Net successfully
addresses the aforementioned challenges. As shown in Figure 10a, in complex in-vehicle
background (the color of clothes and the color of seat belt are very similar), Fast R-CNN
missed detection. Furthermore, Faster R-CNN, Yolox, and Retinanet exhibited low confi-
dence, whereas DGMB-Net achieved the highest confidence. To verify the generalization
capability of DGMB-Net, this study also conducted visualization experiments on the State
Farm dataset. It is evident that DGMB-Net demonstrates outstanding detection results in
the in-vehicle environment. Simultaneously, it effectively addresses the occlusion challenge
posed by left-hand phone usage.

Figure 10. Some examples of detection results on the Bayonet-Drivers dataset.

Figure 11. Some examples of detection results on the State Farm dataset.
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6. Discussion
6.1. Advantages and Limitations

Current vision-based methods [2–6] for detecting risky driving behaviors primarily
focus on scenes within vehicles. They commonly employ a single or integrated CNN for
direct identification of risky or distracted behaviors, aiming to alert drivers and improve
safety. Different from them, this study can deal with different challenging scenes on the real
road captured by surveillance cameras by using the APL module and HFPN. Moreover, the
majority of methods proposed for detecting risky driving behaviors relies on supervised
learning [7,8], requiring a substantial volume of labeled data for efficient training. However,
obtaining such labeled data consistently poses a challenge in developing effective data
collection strategies. Furthermore, manually labeling driving data is not only relatively
expensive and time-intensive but is also subject to human judgment. In contrast, this study
employs an end-to-end semi-supervised learning approach, reducing labeling costs while
maintaining detection accuracy.

However, there are some limitations in this study. The risky behaviors identified in
this study included not wearing a seat belt and answering a phone. The experimental
results reveal high accuracy in detecting phone usage but a lower accuracy in identifying
instances of not wearing a seat belt. This discrepancy reduces the overall detection accuracy.
The challenge arises from seat belts undergoing deformation and being susceptible to inter-
ference from background elements, such as clothing color. To address this, the introduction
of deformable convolution is proposed to handle seat-belt deformations. Additionally,
addressing challenges posed by seat belt colors resembling clothing colors is essential for
future improvements. At the same time, although the detection accuracy of the method
proposed in this study is higher than that of other detection models [63–67], the number of
parameters in the model is also slightly increased, which has a certain impact on real-time
performance. In the future, how to further lightweight the network should be considered.

6.2. Implications

The findings of this study hold significant implications for the detection of risky
driving behavior within the intelligent transportation industry. Firstly, this study introduces
a novel dataset named Bayonet-Drivers, categorizing drivers into two groups: safe driving
and unsafe driving. The latter encompasses behaviors with a high likelihood of causing
crashes, specifically, failure to wear seat belts and phone calls. Bayonet-Drivers spans
challenging scenarios, including complex illumination, severe weather, and potential
interference from surrounding vehicle information. Applying Bayonet-Drivers in real-
time traffic monitoring supports the enhancement of efficient driver-behavior-detection
algorithms for future intelligent transportation systems, so as to further regulate the driver’s
behavior and ultimately improve road safety.

Additionally, this study establishes a risky-driving-behavior detection approach,
DGMB-Net. DGMB-Net greatly reduces manual labeling costs by semi-supervised learning.
By combining the APL module and HPN module, DGMB-Net can effectively deal with
different challenging scenarios in reality. Components like deformable convolution and
global context blocks can be selectively applied based on specific needs. Implementing
DGMB-Net in intelligent traffic monitoring enables automated detection of risky driving.
Upon detecting risky behaviors, the monitoring system will promptly feedback the data to
the traffic management department, initiating timely driver reminders and penalties.

7. Conclusions and Prospect

This study introduces Bayonet-Drivers, the pioneering benchmark for detecting risky
driving behaviors in traffic surveillance contexts. This comprehensive framework com-
prises many challenging scenarios, providing an invaluable standard for both the evolution
and appraisal of methodologies aimed at detecting risky driving behaviors. In addition,
DGMB-Net—a novel semi-supervised network architecture—is proposed specifically for
the detection of risky driving behaviors. The DGMB-Net incorporates an enhanced semi-
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supervised learning approach designed to navigate the costly challenge of data labeling. It
also integrates an Adaptive Perceptual Learning Module and a Hierarchical Feature Pyra-
mid Network to preserve detection accuracy. This study undertook a rigorous evaluation
of DGMB-Net’s performance and benchmarked it against several baseline models. The ex-
perimental outcomes provided unequivocal validation of the effectiveness and robustness
of DGMB-Net.

Bayonet-Drivers provides a new benchmark and suitable data for the development of
the transport industry. Simultaneously, DGMB-Net can effectively reduce the workload of
human monitoring and labeling for traffic management departments by means of semi-
supervision. Looking forward, on the one hand, a lightweight network design will be
incorporated to enhance DGMB-Net’s efficiency. On the other hand, additional types of
risky driving behaviors, such as drowsy driving, drunk driving, smoking, and eating,
among others, will be added to broaden the scope of the research. Additionally, the
application of unsupervised learning will be applied in the identification of risky behaviors.
This expanded focus will undoubtedly bolster the applicability of the detection network
within Intelligent Transportation Systems.
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NWPG Nonlinear Weighted Pseudo Boxes Generation
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ECA Efficient Channel Attention
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ROC Receiver Operating Characteristic
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