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Abstract: Neuromorphic Vision Sensors (NVSs) are emerging sensors that acquire visual information
asynchronously when changes occur in the scene. Their advantages versus synchronous capturing
(frame-based video) include a low power consumption, a high dynamic range, an extremely high
temporal resolution, and lower data rates. Although the acquisition strategy already results in much
lower data rates than conventional video, NVS data can be further compressed. For this purpose,
we recently proposed Time Aggregation-based Lossless Video Encoding for Neuromorphic Vision
Sensor Data (TALVEN), consisting in the time aggregation of NVS events in the form of pixel-based
event histograms, arrangement of the data in a specific format, and lossless compression inspired
by video encoding. In this paper, we still leverage time aggregation but, rather than performing
encoding inspired by frame-based video coding, we encode an appropriate representation of the time-
aggregated data via point-cloud compression (similar to another one of our previous works, where
time aggregation was not used). The proposed strategy, Time-Aggregated Lossless Encoding of Events
based on Point-Cloud Compression (TALEN-PCC), outperforms the originally proposed TALVEN
encoding strategy for the content in the considered dataset. The gain in terms of the compression ratio
is the highest for low-event rate and low-complexity scenes, whereas the improvement is minimal for
high-complexity and high-event rate scenes. According to experiments on outdoor and indoor spike
event data, TALEN-PCC achieves higher compression gains for time aggregation intervals of more
than 5 ms. However, the compression gains are lower when compared to state-of-the-art approaches
for time aggregation intervals of less than 5 ms.

Keywords: neuromorphic vision sensor (NVS); neuromorphic spike events; point-cloud compression;
silicon retinas; spike encoding

1. Introduction

A Neuromorphic Vision Sensor (NVS) [1] is a device imitating biological visual sensing,
i.e., reporting only light intensity changes in the observed scene. Differently from con-
ventional cameras, where frames are acquired at uniform intervals, NVSs asynchronously
acquire brightness changes per pixel with microsecond resolution. Spike events are trig-
gered in response to logarithmic illumination changes, i.e., whenever there is motion of the
vision sensor, movement in the scene, or a change of light conditions in the scene. These
unique properties enable NVSs to achieve an ultra-low response latency, a high dynamic
range, low informative data rates, and low power consumption.

Emerging applications of NVSs can be found in diverse scenarios, ranging from
autonomous cars [2] to robotics [3] and Unmanned Aerial Vehicles (UAVs) [4]. Furthermore,
these sensors have the potential to replace conventional vision sensors [5] in diverse and
unique computer vision applications such as smart agriculture.

Even if the biologically inspired vision-sensing technique provides an inherent com-
pression, further reduction of data can be beneficial for transmission in Internet of Intelligent
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Vehicles (IoV) such as Internet of Drones (IoD), and Industrial Internet of Things (IIoT)
scenarios. The rate at which spike events are triggered by these sensors depends on the
scene complexity and on the sensor speed, as studied in [6,7], where a model for spike event
rate estimation is also presented. The Address Event Representation (AER) protocol is used
for representing and exchanging uncompressed spike data, with each event represented
by a tuple (x, y, p, t), where x and y are the coordinates of the pixel where a brightness
change occurred, t is the timestamp expressed in µs, and p is the polarity of the event (an
increase or a decrease in light intensity). An example of event data representation as a
tuple is reported in Table 1. Each tuple is represented by 64 bits (4 bytes for timestamp and
4 bytes for the remaining three fields).

Table 1. Spike event stream sample.

x y p t

5 18 1 45
7 17 0 48
1 10 0 50
2 20 0 55
8 20 1 56
1 10 0 58
8 11 1 61

To introduce the NVS data representation and show how it can be interpreted as a point
cloud, Figure 1 shows an example of two different scenes of different complexity [6], and
hence different point cloud density—i.e., Shapes and Dynamic from the Dynamic and Active-
pixel Vision Sensor (DAVIS) dataset [8]. In the Shapes scene, spike events are produced
when the camera is rotated in front of static 2D shapes. In the Dynamic scene, spike events
are produced by both the motion within the scene and the rotation of the sensor. Motion
and camera information of the aforementioned sequences are further elaborated in [8].
The second column of Figure 1 shows the spatial (x,y) coordinate plots of the spike events
from each scene, i.e., Dynamic (above) and Shapes (below). Polarity zero-spike events are
projected onto the 2D plot for the Shapes scene, whereas polarity one-spike events are
reported in the Dynamic 2D plot. This representation is obtained by visualizing the 3D
point cloud representation of the data on the (x,y) plane. The last column shows the spatio-
temporal 3D plot (x, y, t), i.e., the 3D plot of the spatial and temporal coordinates of the
Dynamic (above) and Shapes (below) scenes, from a perspective that enables appreciating
the 3D nature of the data. The RGB images in Figure 1 do not refer to the same time instant
as the aggregated point clouds, as they are representative images of the sequence provided
in the DAVIS dataset.

1.1. Motivation

A growing number of diverse applications [2,3,9–15] consider the accumulation of
spike events over a fixed time interval. The accumulation of spike events allows the
use of state-of-the-art algorithms for applications ranging from classification to object
detection and tactile sensing. Table 2 shows the applications of spike event aggregation
using different algorithms on diverse tasks. For instance, digit classification [9] utilizes the
SKIM algorithm, where spike events are accumulated over a period of 20 ms. On the other
hand, the authors in [10] utilize a deep residual network algorithm, where spike events are
aggregated over a 50 ms time interval for motion estimation in autonomous driving. These
algorithms project the accumulated stream of spike events at uniform intervals in temporal
frames, which are then fed to different machine learning and deep learning algorithms.
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Shapes scene

Dynamic scene

Figure 1. First column: Dynamic and Shapes scenes. Second column: 2D plot (x, y) of spike events
from the Shapes and Dynamic scenes. Third column: 3D plot (x, y, t) from the two scenes.

Table 2. Algorithms employing the accumulation of spike events in diverse applications.

Paper Algorithm Application Task
Spike

Accumulation
Interval (∆t)

[3]
Convolutional

Neural Network
(CNN)

Slip detection

Object vibration
and stress

distribution
detection

10 ms

[9]
Synaptic Kernel
Inverse Method

(SKIM)

Visual
classification

Digit
classification 20 ms

[10]
Deep residual

network
(ResNet-50)

Autonomous
driving

Motion
estimation 50 ms

[11]
Time Delay

Neural Network
(TDNN)

Tactile sensing

Material
classification

and contact force
estimation

7 ms

[12]
Asynchronous
Convolutional

Network (YOLE)
Object detection

Detection of
objects,

and prediction
of their direction

and position

10 ms

[16]
Long Short-Term
Memory (LSTM)
neural networks

Tactile sensing Contact force
estimation 10 ms

Besides allowing the use of state-of-the-art machine and deep learning algorithms,
the accumulation of spike events has other advantages, i.e., it also performs inherent
compression of data, which can be useful for the storage and transmission of spike events.
Figure 2 shows a 3D point cloud plot (spatial and temporal coordinates of spike events with
a polarity of zero) with and without spike event accumulation over 20 ms. As shown in
Figure 2b, with the time aggregation of spike events, the point cloud has fewer 3D points (a
less dense point cloud) as compared to the case when no accumulation is applied, as shown
by the denser point cloud in Figure 2a.
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Although an increasing number of applications are considering spike event accumula-
tion, as mentioned above, most of the compression strategies consider raw spike events.
As in our earlier TALVEN approach [17], we aim to fill this research gap by considering
spike event accumulation over a fixed time interval, followed in this case by point-cloud
compression. We proposed already to use point-cloud compression for NVS data in [18],
and we propose here to extend the approach by using the time-aggregation of event data
prior to point cloud compression.

(a) (b)
Figure 2. Point clouds associated with the Shapes scene (polarity 0). (a) No temporal aggregation of
events; (b) temporal aggregation of events (20 ms).

1.2. Contribution

Our recent work, TALVEN [17], utilized spike event aggregation and video encoding,
i.e., the accumulated spike event stream is projected as an event frame for each polarity.
The two event frames for each polarity are concatenated as a single superframe. Each pixel
value in a superframe represents the aggregated spike event count. In other words, the se-
quence of spike events within the time aggregation interval is represented as a superframe.
A superframe can be interpreted as a 2D histogram of the event data in the aggregation
interval. Since in TALVEN the spike event stream is transformed into a format mimicking a
sequence of video frames, video encoding (lossless mode) is applied to the frames carrying
an accumulated spike event count. TALVEN achieved superior compression gains as
compared to the state-of-the-art compression approaches for aggregation intervals that are
longer than a content-dependent threshold value. This is due to the efficient exploitation of
spatial and temporal redundancy.

In this work, we represent the accumulated spike event stream as a point cloud with
spike events for each polarity as points in an (x, y, t) 3D space. The spatio-temporal point
cloud representation of neuromorphic vision sensor data is input into a point cloud encoder
(see also [18]). We first reduce in size the point cloud by spike event accumulation. Further
compression is applied to the accumulated data by employing a point cloud encoder. We
propose to use the standardized ISO/IEC MPEG Geometry-based Point Cloud Coding (G-
PCC) method on the accumulated data. This is the output of a standardization process and
the relevant source code is stable and reliable as such. The benefit of utilizing a standardized
encoding method would be that we expect that software and hardware encoders will be
largely available in media devices, hence making then stable, reliable, and not requiring an
additional cost.

The contributions provided in this work include: a novel strategy (TALEN-PCC)
to losslessly compress time-aggregated NVS data based on point-cloud compression; an
analysis of its performance for different time-aggregation intervals ∆t; and the comparison
in terms of compression gains of the proposed strategy with the state-of-the-art strategy
with time aggregation [17] on outdoor and indoor scenes from a public dataset [8].

The remainder of this paper is structured as follows. Related work is discussed in
Section 2, where first the state-of-the-art lossless compression strategies are briefly reviewed
and an introduction to point-cloud compression follows. Our compression approach is
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proposed in Section 3. Section 4 reports the evaluation setup and the considered datasets
used to assess the proposed and benchmark compression algorithms. The compression
gain of our strategy and benchmark are presented and discussed in Section 5. Finally,
Section 6 concludes the paper.

2. Related Work
2.1. NVS Data Compression

The authors in [19] proposed the first compression method specifically designed for
neuromorphic vision sensor data, called Spike Coding. The Spike Coding algorithm is
based on the spike firing model of the neuromorphic vision sensor. However, the encoding
of spike events via this method achieves limited compression gains, i.e., compression ratios
in the range of 2 to 3 are achieved on the dataset of intelligent driving by the Spike Coding
method [20].

In a previous work [17], we proposed to organize spike events in a sequence of
frames. We proposed to aggregate spike events into frames, in such a way that each pixel
value in a frame represents the event count. For each polarity, the combination of frames
over time can be seen as a video sequence. After combining the obtained frames into
superframes, video coding is applied to the aggregated spike event stream. The combination
of time aggregation and video encoding exploits temporal and spatial correlation within the
sequence of spike event stream, thus resulting in superior compression gains as compared
to the state-of-the-art compression methods.

A similar event aggregation strategy was used in [21], but adding events in each
(x,y) position with their signed polarity, and hence reducing the information in each (x,y)
position to three possibilities (no event, positive polarity, or negative polarity). They used
small aggregation intervals (results are provided for frame rates corresponding to 1 to 5 ms).
A different compression method was then used on this representation. The compression
ratios appear to have been calculated based on raw data in the frames rather than the
original event raw data. The same authors proposed a low-complexity method [22] with a
performance that was slightly better than Lempel–Ziv–Markov chain algorithm (LZMA)
(that we have seen underperforms vs. our TALVEN approach, used here as a benchmark).
A similar strategy was used in [23].

Other compression methodologies can be tailored to NVS data. These include ad-
vanced dictionary coders, such as Zstandard (Zstd) [24], Zlib [25], LZMA [26], and Brotli [27].
The output of the NVS is a multivariate stream of integers; therefore, integer-compression
algorithms such as Simple8B [28], Memcpy [28], Single-Instruction Multiple Data (SIMD)-
based strategies (such as SIMD-BP128 [29], and FastPFOR [29]), and Snappy [30] can be
applied to the spike event stream. IoT-specific compression strategies, such as Sprintz
in [28], can also be tailored to the neuromorphic spike event stream. Compression perfor-
mance results for NVS data of these approaches have been provided in [31].

In [18], we recognized the possibility of treating NVS data as a spatio-temporal point
cloud, which can be compressed via methods developed for volumetric point clouds. While
we considered there different point cloud sizes (i.e., splitting a large point cloud into smaller
point clouds in the time domain), we did not consider time aggregation and focused on
fully lossless compression. The same approach was very recently used in [32], where a
different point cloud codec (Draco) was also tested in addition to G-PCC, and the results
were compared with the benchmark results we provided in [31].

2.2. Point Cloud Compression

A 3D point cloud is a set of points in the 3D space, each represented by the coordinates
(x, y, z), with possibly attributed information (e.g., representing color). In the case of dy-
namic content, a different point cloud is considered at each time instance k∆t, representing
the time variation of a point cloud.

Point clouds can have an extremely large number of points, resulting in huge file sizes
and data rates and hence costs for storage and transmission.
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Different methods exist to compress point cloud data [33–35]; most of them perform
compression of point cloud geometry using octree coding [36], where data are transformed
into voxel representation, in order to appropriately exploit volumetric redundancy, and are
then partitioned until sub-cubes of dimension one are reached; local approximations called
“triangle soups” (trisoup) can be adopted, where the geometry can be represented by a
pruned octree plus a surface model [36,37].

When lossy compression is adopted, distortion metrics can be obtained for instance
from the symmetrized point-to-point or point-to-distance mean squared error, which is
converted to PSNR using the original point cloud bit depth as the peak error [38].

The Moving Picture Expert Group (MPEG) standardized a point-cloud encoder assum-
ing that data are represented as coordinates in a 3D space (x, y, z), plus reflectance and RGB
attributes for each point. Two main proposals were developed [39]: Video-based, which
is appropriate for point sets with a relatively uniform distribution of points (V-PCC); and
geometry-based (G-PCC) [40], which is appropriate for more sparse distributions. G-PCC
decomposes the 3D space into a hierarchical structure of cubes, and each point is encoded
as an index of the cube it belongs to; it has the advantage of a native 3D representation.

Detailed reviews and an analysis of point-cloud compression approaches, in particular
in MPEG, can be found in [35,39,41], and a good overview of the standardization activities
is provided in [42].

3. Proposed Strategy

The proposed method of compression is shown in Figure 3. We propose here to
(1) split the NVS stream into two streams, each associated with a different polarity, (2) select
an aggregation time interval ∆t, and (3) obtain for each polarity a representation of the
NVS data as points in spatio-temporal 3D space positions [x, y, k∆t], where each of these
positions is characterized by the number of events in position (x, y) in the interval of
duration ∆t between timepoints (k − 1)∆t and k∆t. We have at this point two point clouds,
one per polarity, composed of time-aggregated NVS data reported in a space–time (x, y, k∆t)
tridimensional space as a point cloud. (4) We perform on each of them lossless compression
based on point-cloud compression. In this case we propose to use the G-PCC strategy [40],
using the attribute field (16 bits) associated with each point in the cloud to represent the
number of events aggregated. The main steps of the proposed strategy are discussed in the
following subsections.

Write event count for each position into 

M X N matrices for flags 0 and 1

Apply raster 

scan to the flag 

0 and 1 matrices

Create a 

multivariate 

stream from 

both the 

matrices

Flag 0 matrix

Flag 1 matrix

e = [x, y, p, t]

Time aggregation factor

 

X Y
Event-
count

GPCC encoder for Flag 0

GPCC encoder for Flag 1

Attributes
     input

Positions
    input

Event
count

Attributes
     input

Event
count

Positions
    input

X Y
Event-
count

NVS

∆𝑡

X, Y, 𝒌∆𝒕

𝒌∆𝒕

𝒌∆𝒕

X, Y, 𝒌∆𝒕

Figure 3. Proposed method (TALEN-PCC) of compression using 3D point cloud encoding [40] for
time-aggregated NVS data. For a more detailed version of the G-PCC encoder section, see Figure 4.
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3.1. Spike Event Aggregation

The raw spike event data, [x, y, p, t], undergo aggregation, i.e., all the spike events
within the time-aggregation interval of ∆t are accumulated. The accumulation is performed
by associating the event count with the respective spatial position (x, y). For instance,
consider the sample event stream shown in Table 1. After applying accumulation, the spatial
locations of (7, 17), (1, 10), and (2, 20) of the polarity zero matrix will have event counts of
1, 2, and 1, respectively. Similarly, the spatial positions of (5, 18), (8, 20), and (8, 11) of the
polarity one matrix will have an event count of one.

3.2. Multivariate Stream

The next step is the creation of a multivariate stream from polarity one and zero
matrices. We apply a raster scan to the matrices in such a way that spatial locations with a
zero event count are filtered, i.e., only non-zero event count locations are converted into a
multivariate stream. Spatial locations are converted into a multivariate stream with four
variables, [x, y, Event count, k∆t].

Figure 3 shows the creation of a multivariate stream. After the raster scan (Flag 0
matrix), the spatial location (1, 7) has an event count of 1, followed by (1, 8) with an event
count of one. In the second row, the spatial location (2, 2) has the non-zero event count
of 3. Figure 3 shows the multi-variant stream with a time-aggregation interval of 1 ms
(∆t = 1). According to the figure, the raw spike event stream [x, y, p, t] is transformed into
two aggregated streams, [x, y, Event count, k∆t], of flags zero and one (shown in Figure 3).

3.3. G-PCC Encoding

The next step is to apply compression to the two streams. The aggregated multivariate
stream can be compressed using any multivariate compression algorithm such as dictionary-
based compression (LZMA or Zlib) or fast integer compression. In other words, the spike
event-aggregation and multivariate stream-extraction steps can be combined with any
dictionary or integer compression algorithm. We propose to apply a geometry-based
3D point cloud encoder. Our previous work in [18] shows excellent performance of the
geometry-based point-cloud encoder (G-PCC) on the raw spike event stream. G-PCC
encoding outperforms LZMA and spike coding. The G-PCC compression strategy has two
inputs, namely position and attribute. The position input takes the 3D, (x, y, z), volumetric
data, whereas the attribute input takes color or reflectance input associated with the 3D
points. G-PCC supports lossless compression of the volumetric data; therefore, we utilize
the lossless mode of the encoder.

Rather than using the encoder on spatial 3D data, we propose to apply spatial and
temporal coordinates, [x, y, k∆t], to the position input of the G-PCC encoder. In other words,
we utilize the G-PCC encoder while using the z-axis for the evenly spaced time-aggregation
instants. The G-PCC encoder exploits the volumetric redundancy within the 3D point
cloud stream. The event count is fed into the reflectance input of the G-PCC encoder, as
shown in Figure 3. We observe that we can represent a maximum value of 65536 events at
each spatial location (per time aggregation interval) with the 16 bit attribute field.

The first step of the volumetric data processing is the coordinate transformation. Af-
ter the coordinate transformation of the 3D points, voxelization and geometry analysis
steps are performed as shown in Figure 4. The encoder utilizes the concept of octree decom-
position, where 3D point clouds are decomposed recursively into subcubes. The encoder
finds the best-matching subcubes, i.e., the correlation between 3D point shapes is exploited
by finding the subcubes that have a similar geometry. The final step of the G-PCC encoder
is the entropy coding, where the decomposed subcubes are fed into the coder to further
exploit the redundancies. The resultant stream of the G-PCC encoder is composed of a
geometry bitstream and an attribute bitstream, as shown in Figure 4.
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Figure 4. Positions and attributes input into the G-PCC point-cloud encoder [40], where ∆t = 20 ms,
kmax = 6, and Tseq = kmax × ∆ = 120 ms.

3.4. Implementation Details

The summary of all the steps of the aggregation-based point cloud encoding is shown
in Algorithm 1. The aggregation time interval, ∆t, depends for instance on the machine
or deep learning algorithm to be used for a particular application. The total number of
iterations, kmax, depends on the spike event sequence duration Tseq and the accumulation
time interval ∆t. In each iteration (for loop), the spike events are accumulated over the
time interval ∆t. After each iteration, a raster scan is applied to produce the multivariate
stream of spatio-temporal coordinates and spike event count. After all the iterations (end
of for loop), the resultant multivariate stream is fed into the G-PCC encoder, as shown
in Algorithm 1. The graphical illustration of Algorithm 1 is shown in Figure 4, where
∆t = 20 ms, kmax = 6, and Tseq = kmax × ∆ = 120 ms. The point-cloud representation
of the positions input is shown in Figure 4. The G-PCC encoder exploits the volumetric
redundancies within the discrete set of spatiotemporal points.

3.5. Computation Complexity

The computation complexity of the proposed TALEN-PCC strategy is a function of
the three processing steps discussed in Sections 3.1–3.3. The complexity in the spike event
aggregation step (Section 3.1) is a linear function of the total number of input events that
are projected in polarity one and zero matrices. In the creation of the multivariate stream
(Section 3.2), a raster scan is applied to the matrices; therefore, the processing complexity
is dependent on the resolution of the matrix. The complexity of this step is twice the
spatial resolution, i.e., 2 × M × N. The complexity of the final step of TALEN-PCC is
dependent on the G-PCC encoder. According to [41], the lossless compression mode of
3D geometric compression (lossless geometry) requires minimal computation with lower
time complexity. Moreover, the hardware acceleration and parallel optimization of the
proposed TALEN-PCC method can further reduce the complexity and speed challenges. It
is important to note that the computation complexity of TALVEN is comparatively higher
than TALEN-PCC, mainly because of the higher complexity of the motion compensation of
the superframes.
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Algorithm 1 TALEN-PCC

Input: Spike event data stream with Nevents

Input: Aggregation time interval ∆t [ms]

Input: DVS spike sequence duration Tseq [ms]

Input: kmax =
Tseq
∆t

for k = 1 to kmax do
while t ≤ k∆t do

Accumulate flag 0 events. Write event count in an M × N matrix for flag 0

Accumulate flag 1 events. Write event count in an M × N matrix for flag 1

end while

Apply raster scan to flag 0 matrix. Extract spatial coordinates (x, y), and event count
from the raster scan of flag 0 matrix. Multivariate stream of x, y, Event-count, k∆t for
flag 0 is input to a file.

Apply raster scan to flag 1 matrix. Extract spatial coordinates (x, y), and event count
from the raster scan of flag 1 matrix. Multivariate stream of x, y, Event-count, k∆t for
flag 1 is input to a file.

end for
Multivariate streams extracted from the raster scans of both the matrices are fed to GPCC
encoder.

Spatial coordinates (x, y), and k∆t are fed to the positions input of the GPCC encoder.

Event count is fed to the Attributes input of the GPCC encoder.

Output: Polarity 1 compressed bitstream, with size γ1 (bits)

Output: Polarity 0 compressed bitstream, with size γ0 (bits)

Output: Total size (bits) of the output stream, γ = γ0 + γ1

4. Performance Evaluation Setup
4.1. Dataset

Comparative compression performance analysis of the proposed and benchmark strate-
gies was conducted on the Dynamic and Active-pixel Vision Sensor (DAVIS) dataset [8]. The
dataset has diverse indoor and outdoor scenes with varied sensor motion, ranging from
rotational to translational, etc. We extracted sequences with diverse scene complexities and
sensor motion speeds. The proposed and benchmark compression algorithms were applied
to the extracted sequences reported in Table 3.

4.2. Data Processing

The AER data format is utilized by the DAVIS sensor for the representation of the
spike event stream. According to the AER format, each spike event is 64 bits long. Temporal
information is represented by 32 bits, whereas spatial information is represented by 19 bits,
i.e., x and y spatial information is represented by 10 and 9 bits, respectively. The polarity
flag and polarity change (the polarity change is set to one when the polarity flag switches
from zero to one or one to zero) information is represented by 2 bits. The remaining 11 bits
are used to represent sensor information such as temperature, gyroscope, and acceleration.
Further details related to the 8 byte spike event are reported in [31].

Data acquired by the sensors was converted from a series of 64 bit AER data into a
multivariate stream (x, y, p, t) of spike events, which we used as input for our method.
Figure 6 in [31] illustrates AER vs. four-tuple conversion.
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Table 3. Extracted dataset for experimental analysis. The indoor/outdoor sequences are ordered
from higher to lower event rate.

Sequence Event Rate (kev/s)
Extracted Sequence

Duration (s) and
Start/End Time (s)

Scene Complexity Speed

In
do

or

Boxes (Rotation) 4288.65 5 (45–50) High High
Poster (Rotation) 4021.1 5 (45–50) High High

Dynamic (Rotation) 1077.73 20 (1–20) Medium Medium
Slider (Depth) 336.78 3 (1–3) Medium Low

Shapes (Rotation) 245.61 20 (1–20) Low Low
O

ut
do

or

Running3 1525.5 20 (40–60) Medium High
Running2 1229.4 20 (20–40) Medium Medium
Running1 713.8 20 (1–20) Medium Medium

Urban 503.04 10 (1–10) High Low
Walking 342.2 20 (1–20) Medium Low

4.3. Benchmark Strategies

We have observed in [17] that the TALVEN compression approach outperforms the
other lossless compression strategies. For this reason, and since TALVEN is the only other
compression strategy based on time aggregation, we compare the proposed strategy with
the TALVEN strategy. We also compare the proposed TALEN-PCC strategy with the Spike
Coding (SC) algorithm [19]. SC is the the first compression algorithm designed specifically
for the spike event stream from neuromorphic vision sensors. The proposed and the
benchmark strategies were evaluated at six different time-aggregation intervals of 1 ms,
5 ms, 10 ms, 20 ms, 40 ms, and 50 ms.

4.4. Compression Ratio

The performance of the considered and benchmark strategies was evaluated by com-
puting the end-to-end compression ratio CR. For a scene of duration Tseq,

CR =
Nevents × 64

γ
=

Nevents × 64
γ0 + γ1

(1)

where γ is the total size (in bits) of the compressed output stream of the time duration T,
γ0 and γ1 represent the size (in bits) of the compressed output streams associated with
polarities 0 and 1, respectively, and Nevents is the total number of spike events in the time
duration T, with each event requiring 64 bits for representation in uncompressed mode.

5. Results

The compression performance analysis is divided into two parts. In the first part,
we analyze the compression performance with respect to the scene complexity and event
rate at a fixed time aggregation interval. Section 5.1 reports the comparative compression
performance of different outdoor and indoor scenes with varied scene complexities and
spike event rates. In the second part (Section 5.2), we compare the compression performance
of the proposed strategy with the benchmark strategies at different time-aggregation
intervals of 1 ms, 5 ms, 10 ms, 20 ms, 40 ms, and 50 ms.

5.1. Compression Gain Analysis at ∆t = 20 ms

Figure 5 shows the end-to-end compression performance for the ten scenes in Table 3,
when neuromorphic events are aggregated over a time interval of 20 ms. The figure
reports via a radar plot the comparison of compression ratios (reported in the radii) for the
proposed point cloud-based strategy and our previously proposed TALVEN strategy (based
on the principles of video compression). For all sequences, the proposed point cloud-based
strategy outperformed the state-of-the art TALVEN strategy, in particular for scenes with a
low event rate, such as Shapes. As observed in previous works, the compression ratios were
highly variable with the content of the scenes.



Sensors 2024, 24, 1382 11 of 15

The Boxes and the Poster scenes yielded the highest compression gains owing to
the highest event rate of more than 4 mega-events per second among all the considered
scenes. A high event rate results in a higher accumulation of spike events, which in turn
results in a higher event count per spatial location, thus reducing the accumulated stream.
Therefore, both strategies achieved the highest compression ratio for the Boxes and Poster
scenes, as shown in Figure 5. Compression performance was highly dependent on the
scene complexity. For instance, the Shapes scene has the lowest scene complexity along
with low motion of the sensors, which resulted in the lowest event rate of 246.61 Kev/s
among the considered scenes. The Shapes scene resulted in a higher compression gain
of 29.21 for TALVEN and 34.34 for TALEN-PCC. Both strategies exploit the spatial and
temporal correlation of the low-complexity Shapes scene, thus resulting in one of the highest
compression gains among the considered scenes. The Dynamic scene has a higher event
rate (4.4 times higher than that of the Shapes scene); however, the compression gain is
approximately similar to that of the Shapes scene. Intuitively, a higher event rate should
yield a higher compression gain. However, the higher scene complexity of the Dynamic
scene limits the compression gain. Slider yielded the lowest compression gain among
the considered indoor scenes, owing to a lower event rate (low speed of the sensor) and
higher scene complexity. The outdoor Urban and Walking scenes have approximately the
same sensor motion. However, the scene complexity of the Urban scene is more dense,
which results in higher event rate for the Urban scene as compared to the Walking scene.
Therefore, both strategies resulted in a higher compression gain for the Walking scene,
as shown in Figure 5, mainly because of its low scene complexity. The scene complexity of
all three running scenes is approximately the same; therefore, the compression performance
depends on the event rate. The Running1 scene has the lowest sensor motion (lowest
event rate) among the three scenes, whereas the Running3 scene has the highest speed.
Both strategies resulted in a higher compression gain for the Running3 scene followed by
Running2 and Running1, as shown in Figure 5.

0

16

33

49 poster

boxes

shapes

slider

dynamicrunning2

running3

running1

walking

urban
TALEN-PCC

TALVEN

Figure 5. Compression ratio performance for the proposed strategy (TALEN-PCC) vs. TALVEN [17]
for the ten scenes in Table 3. Aggregation time ∆t = 20 ms.

5.2. Comparative Performance Analysis of the Proposed and Benchmark Strategies

The compression performance of the proposed and benchmark strategies at different
time accumulation intervals is shown in Figure 6. The spike-coding strategy yielded
better compression gains at lower time aggregation intervals. This is mainly because
the SC strategy utilizes macro-cubes (also called event frames), where a fixed number of
spike events is projected. Spike event traffic from neuromorphic vision sensors is highly
variable, i.e., the traffic is bursty in nature. The projection of a fixed number of events
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(32,768 spike events as studied in [20]) per macro-cube results in a fixed number of event
frames irrespective of the time-accumulation interval. For instance, a 1 ms accumulation
interval results in 1000 frames per second for TALVEN. On the other hand, 32,768 events per
macro-cube resulted in only 7.5 event frames per second if we consider the Shapes sequence.
The higher the number of frames, the higher the overhead information, which results
in limited compression gains (at lower aggregation intervals) for the TALVEN strategy.
SC yields limited compression gains at higher time-aggregation intervals. This is mainly
because the SC strategy does not take advantage of spike event accumulation, which results
in limited compression gains at higher time intervals, as shown in Figure 6.

According to Figure 6, the increase in the time aggregation interval size increases the
compression gains for TALVEN and TALEN-PCC. This is mainly because as the aggregation
interval increases, more spike events accumulate, which boosts the compression gain.
At lower time-aggregation intervals, for instance 1 ms, the performance difference between
TALEN-PCC and TALVEN is the highest. The number of frames per second is very high
for TALVEN, i.e., 1000 fps for 1 ms. These frames carry spike event count information at
each spatial location. The low-event rate sequences (Shapes, Slider, Urban, and Walking)
resulted in a higher proportion of empty spatial locations (zero event count) within a frame,
which in turn resulted in limited compression gains for TALVEN. TALEN-PCC resolved
this issue by filtering out zero-event count spatial locations by applying the raster scan,
thus resulting in better compression gains for lower- and medium-event rate sequences, as
shown in Figure 6. TALVEN also suffers from higher overhead information related to each
frame. Furthermore, TALVEN exploits inter-frame correlation between the neighboring
frames, whereas TALEN-PCC exploits temporal correlation within the entire point cloud,
thus resulting in better exploitation of spatial and temporal redundancies.

TALEN-PCC outperformed TALVEN for all of the considered 10 scenes. The difference
in compression performance was the highest for the low-event rate sequences. On the
other hand, the compression difference was minimal for the high-event rate sequences of
Poster and Boxes (high-complexity scenes). This is mainly because a high scene complexity
results in limited spatial and temporal correlation, and thus the difference in compression
performance between TALEN-PCC and TALVEN is minimal. Both strategies resulted
in higher compression gains (Poster and Boxes sequences), mainly because of the higher
accumulated spike event count.
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Figure 6. Compression ratio performance for the proposed strategy (TALEN-PCC), TALVEN [17],
and Spike Coding (SC) [19] for different aggregation time intervals.
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6. Conclusions and Future Work

In this paper, we proposed a strategy to losslessly compress, via point-cloud compres-
sion, time-aggregated spike-event data generated from NVSs. According to the experi-
mental analysis, the proposed strategy, TALEN-PCC, shows improved compression ratios
vs. the benchmark strategies of TALVEN and SC. In particular, an improved compression
ratio for time aggregation-based TALEN-PCC vs. TALVEN of up to 30% was observed for
the analyzed sequences. The lower were the scene complexity and event rate, the higher
was the compression difference between the proposed and benchmark strategies. On the
other hand, the compression difference was minimal, between TALVEN and TALEN-PCC,
for high-event rate sequences. In future work, we will address and discuss aspects such
as the impact of different aggregation time intervals on the compression ratio, complexity,
and delay.

Future work will include an analysis of the relationship between content complexity
and compression efficiency. In a previous paper [6], we studied a method to characterize
the content of a scene that is linked with its data rate, and we developed a relevant model.
We plan to extend the model to the case of the data rate of compressed NVS data.
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