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Abstract: The ubiquity of sensors in smart-homes facilitates the support of independent living for
older adults and enables cognitive assessment. Notably, there has been a growing interest in utilizing
movement traces for identifying signs of cognitive impairment in recent years. In this study, we
introduce an innovative approach to identify abnormal indoor movement patterns that may signal
cognitive decline. This is achieved through the non-intrusive integration of smart-home sensors,
including passive infrared sensors and sensors embedded in everyday objects. The methodology
involves visualizing user locomotion traces and discerning interactions with objects on a floor plan
representation of the smart-home, and employing different image descriptor features designed for
image analysis tasks and synthetic minority oversampling techniques to enhance the methodology.
This approach distinguishes itself by its flexibility in effortlessly incorporating additional features
through sensor data. A comprehensive analysis, conducted with a substantial dataset obtained
from a real smart-home, involving 99 seniors, including those with cognitive diseases, reveals the
effectiveness of the proposed functional prototype of the system architecture. The results validate the
system’s efficacy in accurately discerning the cognitive status of seniors, achieving a macro-averaged
F1-score of 72.22% for the two targeted categories: cognitively healthy and people with dementia.
Furthermore, through experimental comparison, our system demonstrates superior performance
compared with state-of-the-art methods.

Keywords: trajectory mining; visual feature extraction; smart environments; machine learning;
environmental sensors; ambient sensing; ambient assisted living

1. Introduction

As we witness, the number of older adults in relation to people of working age is
steadily increasing. According to [1], there were an estimated 258 million people aged
over 65 globally in 1980, a number that surged to 771 million in 2022. Projections indicate
that the older adult population will reach 994 million in 2030 and 1.6 billion in 2050. This
demographic transition is expected to lead to a rise in the old-age dependency ratio within
the European Union, from 27.5% in 2013 to a projected 49.4% in 2050. Associated with
this societal shift is an increased number of people with declining cognitive function and
mobility, which has significant societal consequences [2]. Notably, the global number of
people with dementia (PwD) exceeded 35 million in 2013 and is anticipated to double in
2030, reaching a staggering 115 million in 2050 [3]. Therefore, there will be an amplified de-
mand for professional caregivers, particularly for individuals with chronic conditions like
dementia and cognitive impairment. These individuals face increased risks of diminished
independence and safety concerns because a significant portion of those in need of care
prefer to remain in their own residences. Consequently, early detection of cognitive impair-
ments could be pivotal in facilitating timely therapies and enabling extended periods of
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independence and social engagement [4,5]. Hence, a promising strategy involves focusing
on the demographic transition and addressing the aging trend by shifting from formal care
settings to in-home care.

With the advancement of sensor-based technologies and AI algorithms, cutting-edge
e-health solutions are emerging for in-home care. These solutions target the prevention of
chronic diseases and facilitate time-dependent and location-based monitoring, enable the
extraction of hidden information, and allow the management of older adults’ behaviors
through a variety of assistive technologies [5–7]. Various sensor-based systems, including
wearable, vision-based, and environmental sensors, aim to detect early signs of cognitive
impairment by monitoring behavioral patterns. Some rely on clinical models [8,9], while
others use pattern mining methods [10]. Nevertheless, methods able to detect performed
activities raise privacy concerns and may exhibit reduced accuracy, attributed to potential
errors in activity recognition modules [11]. To overcome these challenges, a promising
solution involves leveraging positioning technologies and trajectories for monitoring the
movement patterns of older adults instead of personal activity [6,12–15].

Movement-based indicators serve as established metrics for classifying abnormal
movement patterns exhibited by PwDs [5,12]. Initially, Algase et al. [16] introduced the
concept of locomotion to describe the temporal phases of movement. In this context,
a locomotion episode is defined as a rhythmic sequence comprising walking and non-
walking phases. A widely recognized model in this framework was introduced by Martino-
Saltzman [17]. This model classifies trajectories into four distinct patterns of movement:
direct, random, lapping, or pacing. Cognitively healthy (CH) individuals typically follow a
direct path, whereas random, pacing, and lapping patterns are characteristic indicators of
dementia. An example of these locomotion patterns in a smart-home context is represented
in Figure 1.

(a) (b)
Figure 1. Example of movement patterns based on the Martino-Saltzman model, adopted from [18].
In (a), all four trajectories seem abnormal without context. Solid lines resemble direct and random
walks, the dashed line indicates pacing, and the dotted line suggests a lapping movement. Within the
home floor plan context (b), only one trajectory is likely abnormal. Green solid lines represent the
shortest paths, the back-and-forth movement in the kitchen (green dashed line) might be a normal
table-setting activity, while the repeated looping movement in the living room (red dotted line) could
indicate an abnormal lapping pattern, possibly linked to cognitive issues.

Notably, research findings indicate that individuals with severe dementia display
movement-based anomalies throughout the day, whereas those with moderate demen-
tia exhibit an increased percentage of such anomalies, particularly in the evening and
predominantly at night [5,17].
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Existing efforts to identify cognitive impairment through movement patterns are
predominantly centered on outdoor environments. Lin et al. [19] analyzed GPS trajectories
in outdoor settings to detect wandering using the Martino-Saltzman model [17]. Ng and
Kong [20] devised a smart GPS tracker for the secure outdoor mobility of the elderly,
integrating wandering detection and activity recognition. However, since many elderly
individuals, particularly those experiencing cognitive decline, spend a significant portion
of their time indoors, assessing cognitive status using indoor movement traces becomes
crucial. Identifying indoor wandering poses significant challenges due to the intricacies
of navigating within smart-home layouts. The presence of obstacles and the need to
navigate around furniture, doorways, and other objects can impede movement patterns.
Additionally, the execution of daily activities within the home can further complicate the
analysis, as activities such as cooking, cleaning, and interacting with household items
may influence the trajectory of movement. These factors contribute to the complexity of
accurately identifying and interpreting indoor wandering behaviors.

Previous works have addressed this challenge. Vuong et al. [21] applied supervised
machine learning (ML) to categorize indoor trajectories according to the Martino-Saltzman
model [17]. Lin et al. [22] introduced a method for identifying repetitive indoor movement
traces episodes based on established wandering models. Khodabandehloo and Riboni [23]
proposed a collaborative mining approach using statistical features from indoor trajectories
to assess cognitive status. Kearns et al. [15] utilized precise localization technologies within
a retirement home. They gauged movement tortuosity as a means to identify wandering
episodes, and discovered a correlation between increased path tortuosity and lower Mini-
Mental State Examination (MMSE) scores, as evaluated by clinicians. Subsequent studies
revealed additional predictive features such as speed, path-efficiency, and turn-angle for
dementia [13]. Faruk et al. [24] explored the same approach proposed in the previous
work of Zolfaghari et al. in [12]. They employed movement traces encoded into images,
collected within a smart indoor environment, and utilized a convolutional neural network
(CNN). While deep learning methods have demonstrated high recognition rates, their
effectiveness is contingent upon the availability of substantial labeled training data. This
poses challenges in real-world settings, particularly within sensitive domains such as
the one addressed in [24]. Other studies demonstrated a significant correlation between
in-home walking velocity, activity patterns, and the inhabitant’s cognitive status [14].

Furthermore, Zolfaghari et al.’s earlier studies in [12,25] critically assessed their limita-
tions and identified crucial areas for improvement. This includes the imperative to enhance
the research by incorporating additional features, suggesting a more comprehensive ap-
proach to feature enrichment. In the domain of spatial tracking, the recommendation is to
move beyond reliance on passive infrared (PIR) and door sensors, advocating for the adop-
tion of more precise radio-frequency identification (RFID)-based localization technologies
to refine spatial data accuracy. Additionally, recognizing an imbalance in class distribution
within the general population, the exploration of imbalanced classification techniques was
initiated and discussed in [26]. These insightful limitations not only shaped the trajectory
of the current research but also laid the foundation for the advancements presented in
this article.

Our current study tackles the aforementioned challenges while also addressing a
significant research gap in the field. While existing methodologies mainly rely on numerical
feature extraction from locomotion data [13,15,23], we introduce a novel approach by
utilizing image-based techniques. This innovative method allows us to identify abnormal
indoor movement patterns, which potentially serve as indicators of cognitive decline.
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We employed publicly available data obtained from a real smart-home and developed
an unobtrusive sensor-based trajectory mining system. This system transforms movement
traces within an indoor environment into interpretable images, incorporating visual cues
associated with speed of movement, sensor activations, and interactions with objects
into the image-encoding process. This innovative approach was inspired by the earlier
works of Zolfaghari et al. in cognitive assessment, as presented in [12,26], as well as their
contributions to human activity recognition outlined in [27].

This article distinguishes itself from prior studies [6,12,26,28] by visualizing movement
pattern through images, discerning interactions with objects on a floor plan representation
of the smart-home by additional visual cues and employing different image description
features specifically designed for image analysis tasks, namely Connected Region Features
(CRF) [29] and Speeded-Up Robust Features (SURF) [30]. We employ a singular trajectory
image, as opposed to two. Existing studies have laid the foundation, but our approach
surpasses them by offering flexibility through the effortless incorporation of additional
features derived from sensor data. This adaptability enhances the system’s robustness and
makes it well-suited for real-world applications.

A notable aspect of this approach is the dependence not only on PIR sensors and door
sensors but also on RFID sensors integrated into everyday objects, ensuring an unobtrusive
and privacy-preserving system, while incorporating more accurate localization technology.
The study addresses the scarcity of large-scale sensor-based datasets for cognitive impair-
ment evaluation, highlighting the challenge of collecting data from PwDs, leading to an
imbalanced scenario. In contrast, acquiring data from CH individuals is comparatively
straightforward [5]. Consequently, the classification process is enhanced using the synthetic
minority oversampling technique (SMOTE) [31] to address imbalanced conditions.

We developed a functional prototype of the system architecture and conducted ex-
tensive analysis with real-world data acquired from a real smart-home dataset involving
99 older adults. In summary, the contributions of this article include:

• A novel visual encoding method for cognitive assessment;
• Employing different image features designed for image analysis tasks;
• Utilizing synthetic data generation to enhance the model performance;
• A functional prototype of an unobtrusive system architecture;
• A comprehensive experimental evaluation.

Our approach tackles crucial challenges in adaptability and model generalization by
employing data augmentation and enhancing the representation of trajectories from the
minority class. This contributes to a more balanced and robust dataset for our cognitive
assessment framework. Furthermore, the incorporation of additional features bolsters and
enriches the comprehensiveness of our approach. These supplementary features not only
encode rich information from sensor events but also enhance model generalization, leading
to improved performance.

The remainder of this article is structured as follows. Section 2 illustrates our overall
system architecture. Section 3 reports on the system setup and experimental evaluation.
Finally, Section 4 discusses the results and the limitations of this work, concludes the article,
and outlines future directions.

2. Methodology

This section provides an overview of the functional prototype of the system architec-
ture, which is depicted in Figure 2. We will examine each module and its sub-modules in
more detail.
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Figure 2. Overview of the functional prototype of the system architecture.

2.1. Overview of the Functional Prototype of the System Architecture

The architecture is built upon a SMART-HOME INFRASTRUCTURE that leverages
a STREAM PROCESSING SOFTWARE PLATFORM, an INTEGRATED POSITIONING SYSTEM,
and PRE-PROCESSING OF POSITION DATA. This integration enables the synthesis of sensor
data and extraction of spatio-temporal information from events based on the relative
position of each sensor in the home, as well as the implementation of noise reduction, data
cleaning, and partitioning the temporal stream of position records into trajectories.Within
the MOVEMENT PREPROCESSING module, the trajectories are utilized to encode movement
patterns and object interactions. This is achieved through TRAJECTORY SEGMENTATION

and VISUAL ENCODING, resulting in trajectory images.
These encoded images undergo feature extraction using CONNECTIVITY AND DESCRIPTOR-

BASED FEATURE EXTRACTION, and the output is feature vectors including distinctive in-
formation from trajectory images, followed by SMOTE to enhance the minority class,
i.e., PwDs. These feature vectors are processed through traditional ML algorithms in the
SHORT-TERM COGNITIVE ASSESSMENT. This process categorizes each trajectory, distinguish-
ing whether it corresponds to a CH individual with normal movement patterns or a PwD
with abnormal movement patterns. The concluding sub-module within the COGNITIVE

ASSESSMENT module is the LONG-TERM COGNITIVE ASSESSMENT, tasked with formulating
a diagnostic hypothesis for the individual. This hypothesis may indicate either CH or PwD.

In the study presented in this article, we focus on the scenario where an individual
resides alone at home, a prevalent situation among elderly people. To accommodate seniors
living with others or pets, our system can be readily expanded by integrating an identity-
aware positioning system or incorporating a data association algorithm. This algorithm is
responsible for linking each location reading to the specific individual who triggered the
corresponding sensor, as discussed by Riboni et al. in their work [32]. In the rest of this
section, we explain the mentioned modules and sub-modules in detail.

2.2. Smart-Home Infrastructure

In this study, we employed publicly available data obtained from a real smart-home,
as collected by the Center of Advanced Studies in Adaptive Systems (CASAS) at Washing-
ton State University (WSU), Pullman, WA, USA (note: http://casas.wsu.edu/datasets/
assessmentdata.zip (accessed on 25 September 2023)) [33].

The CASAS smart-home is a two-story apartment equipped with a range of sensor
types, incorporating both ambient and wearable variants. Among these sensors are PIR
motion detectors, used to pinpoint an individual’s location within the house, door sensors
(open/closed), RFID-embedded sensors in kitchen items for tracking interactions with
objects and their usage, power sensors for detecting the operation of specific electrical

http://casas.wsu.edu/datasets/assessmentdata.zip
http://casas.wsu.edu/datasets/assessmentdata.zip
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appliances, and temperature sensors, among other functionalities. These sensors are
responsible for the continuous data collection. The smart-home layout encompasses a
living/dining room, three bedrooms, a kitchen, and a bathroom. Further details about this
dataset can be found in [33].

Since the central focus of this study is on processing movement data, the foundational
methods of our contribution remain largely independent of the specific sensor infrastructure
in place. Consequently, in this study, we employed a publicly available sensor-equipped
smart-home infrastructure capable of real-time monitoring of the smart-home resident’s
position by an array of ambient sensors, such as PIR motion sensors and door sensors, and
interactions with everyday objects and appliances with RFID-embedded sensors. Indeed,
the positioning infrastructure comprised 52 PIR motion sensors attached to the ceiling,
providing an approximate spatial resolution of one meter. It is worth noting, however, that
there is no available information regarding the sampling rate.

Given our assumption that the residence was occupied by a unique individual, our
focus was not directed towards linking the sensor record to the specific person who acti-
vated it. The researchers of CASAS acquired data from 400 adult subjects aged over 18
who underwent comprehensive clinical assessments for cognitive health. Subjects were
categorized into 10 diagnosis groups. Since our focus was on assessing cognitive issues, we
considered data from 99 subjects, including 80 CH older adults aged 60 to 74 and 19 PwDs
capable of performing home activities. Each person was monitored for only a few hours
on a single day. It should be noted that the age group of the PwDs is not provided in the
CASAS project [33].

2.2.1. Stream Processing Software Platform

The STREAM PROCESSING SOFTWARE PLATFORM in our proposed functional prototype
of the system architecture was developed to collect raw sensor events. Each time a sensor
is triggered, the platform transmits a raw sensor event , e = ⟨t, s_id, v⟩, to a STREAM

PROCESSING SOFTWARE PLATFORM (e.g., Apache Kafka) for integration and temporal
synchronization, where, t represents the timestamp of the event, s_id denotes the unique
identifier of the sensor, and v signifies the generated value. For reference, an example of
raw sensor events is illustrated in Table 1.

Table 1. Raw data from discrete sensors.

Timestamp (t) Sensor ID (s_id) Value (v)

09:10:00.094833 M001 ON

09:10:01.014748 M023 ON

09:10:01.045917 M021 OFF

09:10:01.093183 M022 OFF

09:10:02.087933 M023 OFF

09:10:03.072194 M023 ON

09:10:05.014012 D012 OPEN

09:10:05.043057 M001 OFF

09:10:06.038858 M023 OFF

09:10:19.094168 D012 CLOSE

2.2.2. Integrated Positioning System

The INTEGRATED POSITIONING SYSTEM was developed to gain spatio-temporal in-
sights effectively from sensor events by leveraging the relative positioning of each sensor
within the smart-home. The SENSOR POSITION TABLE serves as a repository for the spatial
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coordinates of each sensor within the smart-home. Each entry in this table takes the form
of a triple:

⟨s_id, (x, y)⟩,

where s_id is the unique identifier of the sensor, and (x, y) denote the respective relative
coordinates of that sensor in the smart-home layout. For reference, an example of a sensor
position table is illustrated in Table 2.

Table 2. Sensor position table.

Sensor ID (s_id) x y

M025 0.95 1.26

I012 1.07 8.78

I011 0.76 9.10

M024 2.99 1.21

D001 2.17 0.23

T003 3.02 4.67

M036 5.26 4.97

M030 5.81 6.06

D003 5.56 6.40

M029 5.84 7.16

Upon receiving a sensor record, the positioning system combines this record with
the data from the position table, subsequently extracting and recording the coordinates
alongside the timestamp value, resulting in a position record, p:

p = ⟨x, y, t⟩,

where x and y represent the relative spatial coordinates of the smart-home resident at
timestamp t.

2.2.3. Pre-Processing of Position Data

The PRE-PROCESSING OF POSITION DATA is pivotal for noise reduction and refining
data, especially in real-world scenarios. To achieve this, we developed two noise-reduction
techniques, as detailed by Zolfaghari et al. in [12]. On the position history, P, two key steps
were taken: firstly, excluding pi+1 from P if the speed between consecutive position records
⟨pi, pi+1⟩ exceeded a defined threshold v (set to 15 m/s in our experiments based on typical
speed ranges); secondly, removing pi+1 from P if the distance between consecutive position
records exceeded a threshold d (set to 5 m in our experiments, considering sensor layout).
These measures collectively enhanced the quality of position data for subsequent analysis.
The speed range might seem too high when talking about people moving in an apartment.
This is because the CASAS smart-home uses a positioning system with around a 1-meter
accuracy, and the sensors’ detection ranges overlap. So, the calculated speed is an estimate
and might have errors. Despite this, our experiments show that this estimated speed value
is still helpful in making our functional prototype of the system architecture work better.

2.3. Movement Preprocessing

This module is in charge of trajectory segmentation and visually representing the
salient features of each trajectory through trajectory images. Following this, we will
provide a detailed explanation of each respective sub-module.
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2.3.1. Trajectory Segmentation

A trajectory, representing a single episode of movement, is a connected sequence
of temporally linked positions. We utilized non-overlapping segmentation methods to
represent movement patterns precisely. In essence, a trajectory comprises movement and
non-movement phases. Non-movement phases occur between consecutive sensor activa-
tions, not exceeding a given threshold, Ts. We varied Ts from 60 s to 480 s in the experiments.

The segmentation algorithm discerns non-movement phases by detecting intervals
where no sensor is triggered for more than Ts. If there is no user movement detected for
more than Ts, it signals the conclusion of the previous trajectory and initiates a new one.
This method supports the identification of essential locations and events, contributing to
thorough behavioral analysis, enhancing data interpretation, and improving abnormal
movement detection. The thorough details regarding the trajectory segmentation strategy
can be found in [12].

2.3.2. Visual Encoding

To enhance trajectory classification and cognitive assessment, this sub-module is in
charge of visually encoding segmented trajectories and events of interest (EOI) in images,
inspired by the method presented in [27]. In this context, EOIs refer to object interactions,
the resident’s position, and movement indicators within the smart-home, which can be
gathered through the sensor events. These aspects contribute to the interpretability of the
generated images, enabling a clearer understanding of movement patterns, interactions,
and activities within the smart-home environment. Our encoded images offer enhanced
interpretability compared with other visual encoding methods, such as the one proposed
by Gochoo et al. [6]. In their approach, trajectories are represented as binary images,
with the x-axis denoting the temporal order of sensor activation and the y-axis representing
sensor identifiers. While their method employs deep convolutional neural networks for
classification, the transformation from two-dimensional to one-dimensional space in their
approach results in partial disruption of spatial information. This discrepancy arises
from the mapping of three-dimensional spatio-temporal trajectory points onto a two-
dimensional grid, where metric operations and topological relationships are not preserved.
Consequently, proximity in geographic space may not translate to proximity in the grid-
based representation, affecting the accuracy of pattern recognition.

Table 3 reports EOI features considered in our experimental setup (Section 3) with
their respective colors. It should be noted that, in the CASAS dataset [33], motion sensors
are denoted by ‘M’, door sensors by ‘D’, and RFID-embedded sensors by ‘I’.

The Sensor Position category in Table 3 is employed to signify directional changes and
is distributed across the smart-home in three directions: left-side (brown points), center-
ward (vivid violet points), and right-side (white points). These marked positions in the
trajectory image offer insights into the spatial distribution of sensors within the smart-home.
The Sensor Interaction category indicates interactions with doors and used objects, proving
highly beneficial for identifying specific activities. In the Movement Indicators category,
a red point along the trajectory indicates a moment when the resident remains stationary
for over 2 seconds. Black points represent sharp angles, equal to or exceeding 90 degrees,
signifying abrupt changes in the trajectory’s direction. Furthermore, as depicted in Figure 3,
the resident’s trajectory in the smart-home is illustrated by a blue line, with varying shades
denoting different movement speeds. Lighter shades indicate an increase in speed, while
darker shades signify a decrease in the speed of movement.
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Table 3. Considered colors and their corresponding category in the current article.

Category Sensor ID(s) Object/Position Color

Sensor Positions

M011, M010, M009, M008, M019, M020 Center RGB (153, 153, 255)

M004, M005, M003, M006, M002, M007,
M001, M023, M022, M021, M026, M025,
M024

Left RGB(153, 76, 0)

M012, M013, M014, M015, M016, M017,
M018, M051

Right RGB(255, 255, 255)

Sensor Interactions

I001 Oatmeal RGB(36, 173, 9)

I002 Raisins RGB(237, 123, 17)

I006 Medicine Con-
tainer

RGB(242, 0, 255)

I010 Medicine Box RGB(237, 147, 186)

D001, D002, D003, D004, D005, D006,
D007, D008, D009, D010, D011, D012,
D013, D014, D015, D016, D017, D018

Doors RGB(255, 255, 0)

Movement Indicators

- Stationary Posi-
tions

RGB(245, 66, 66)

- Abrupt Directional
Changes

RGB(0, 0, 0)

- Speed Shade of Blue

(a) (b)
Figure 3. (a) Illustration of an encoded image showcasing directional changes. Dashed boxes in black
and white highlight regions of interest, each zoomed in on the right. (b) Zoomed views reveal details
within the boxed areas. White points indicate right-side directional changes, Brown points indicate
left-side directional changes, and Vivid violet points indicate movement towards the central position.
The shade level of the Blue line depends on the speed of the movement.

It is important to note that, in our smart-home environment, each pixel corresponds
to an area of approximately 0.1 m2. This spatial resolution results in image dimensions of
100 by 130 pixels in the RGB color model. The line thickness in the visual representation
signifies the frequency of traversal for each path, with a weight of 1 assigned for a single
traversal, and this weight increasing with subsequent traversals. Consequently, paths that
are frequently traveled appear more pronounced in the visualization. In instances where
there are multiple traversals within a single trajectory, the image reflects the most recent
speed data for that specific path, ensuring that the representation accurately captures the
latest speed information.
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2.4. Cognitive Assessment

The COGNITIVE ASSESSMENT module is responsible for extracting vision-based fea-
tures, enhancing the representation of trajectories by SMOTE, and conducting both short-
term and long-term cognitive assessments to determine if the walked path is made by a CH
individual or someone with dementia. Following, we will provide a detailed explanation
of each respective sub-module.

2.4.1. Connectivity and Descriptor-Based Feature Extraction

Image descriptors are methods used to capture distinctive information from images,
and in this specific work they refer to evaluating CRF [29] and SURF [30]. Indeed, we chose
CRF and SURF for our image-encoding method due to their effectiveness in image analysis
tasks, complementarity in capturing different aspects of the image, and compatibility
with existing systems. CRF provides valuable spatial information by capturing connected
regions, while SURF is robust to changes in scale, rotation, and lighting conditions, making
it suitable for detecting local image features. Leveraging these features, we aimed to create a
comprehensive representation of trajectory images to identify abnormal movement patterns
in smart-home environments.

To extract these features, in addition to having RGB trajectory images, we initially
converted our trajectory images into both binary and grayscale formats. In binary images,
pixels with luminance greater than the specified threshold (thr = 0.5) are replaced with the
value 1 (white), and all other pixels are set to the value 0 (black). Meanwhile, the process of
converting RGB images to grayscale involves eliminating hue and saturation information
while preserving luminance.

The CRF features analyze properties of regions of pixels in an image, where a region is
defined as a group of connected pixels. These features are employed to analyze regions
of interest in images [29]. In this case, they are encoded movements. In order to extract
these features, we used the ‘regionprops’ function in MATLAB R2023a (note: https://
it.mathworks.com/help/images/ref/regionprops.html (accessed on 10 October 2023)),
which measures properties of image regions in a binary image and the corresponding
grayscale image. Notable features in this category include:

• Area : this represents the total number of pixels that compose the trajectory path or
shape. Each pixel within the region contributes to the overall area. It includes all
pixels within the defined region, regardless of their intensity or value.

• MajorAxisLength: this represents the length of the longest diameter of the ellipse that
best fits the trajectory region. It measures the elongation of the trajectory: a longer
MajorAxisLength indicates a more stretched shape, while a shorter one suggests a
more compact or circular trajectory.

• MinorAxisLength: in a trajectory image, this is the length of the shorter diameter of the
ellipse that best fits the trajectory region. It measures the width or thickness of the
trajectory, with a longer MinorAxisLength suggesting a wider trajectory and a shorter
one indicating a narrower shape.

• Eccentricity: this measures how stretched or elongated the trajectory is when repre-
sented by an equivalent ellipse. It is a dimensionless value ranging between 0 (perfect
circle) and 1 (infinitely elongated). Higher eccentricity suggests a more elongated
trajectory, while lower values indicate a more circular shape. This metric provides
insights into the overall shape of the trajectory.

• Orientation: in a trajectory image, this indicates the angle between the x-axis and the
major axis of the ellipse that best fits the trajectory region, providing insights into the
directional alignment of the trajectory.

• Perimeter: this measures the total length of the boundary of the trajectory region,
offering information about the complexity or irregularity of the trajectory path.

• Circularity: this is a metric that quantifies the roundness of the trajectory region by
considering the relationship between its area and perimeter, and is computed as
(4 ∗ π ∗ Area/Perimeter2) ∗ (1 − 0.5/r)2, where r = Perimeter/(2 ∗ π) + 0.5.

https://it.mathworks.com/help/images/ref/regionprops.html
https://it.mathworks.com/help/images/ref/regionprops.html
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• FilledArea: the number of ‘on’ pixels (i.e., pixels with a value of 1) within the image.
It represents the total number of pixels that forms the trajectory path or shape. This
metric provides information about the spatial coverage or size of the trajectory within
the image.

• EulerNumber: this offers valuable insights into the topological features of the trajectory
region, facilitating a deeper understanding of the trajectory’s structural complexity.
The calculation involves discerning the disparity between the number of objects and
the presence of “holes” within the region. In this context, “holes” refer to areas
within a binary image enclosed by connected boundaries but distinct from the main
object. These regions represent empty spaces or voids within the primary object
or shape. When computing the EulerNumber, the process entails subtracting the
count of holes from the number of connected components or objects. Positive Euler
values indicate the presence of voids, implying a more intricate and complex structure,
whereas negative values suggest a more cohesive or compact arrangement without
such openings.

• EquivDiameter: the diameter of a circle with the same area as the trajectory region. It
offers a representative size measure for the trajectory, providing a single-dimension
approximation that corresponds to the size of a circular region with the same area. It
is computed as

√
(4 ∗ Area/π).

• Solidity: this is a metric that quantifies the compactness of the trajectory region by
considering the relationship between its area and the area of its convex hull. It
provides insights into how tightly packed the trajectory is within its convex hull, and
is computed as Area/ConvexArea.

• Extent: this quantifies the spatial occupancy of the trajectory region within its bounding
box. It provides insights into how much space the trajectory occupies within its
bounding box.

• MaxIntensity: the maximum intensity value of pixels within the trajectory region. It
represents the highest brightness level present in the trajectory region.

• MeanIntensity: the average intensity value of all pixels within the trajectory region. It
provides a measure of the overall brightness.

• MinIntensity: the minimum intensity value of pixels within the trajectory region. It
represents the darkest region of the trajectory region.

SURF is a fast and robust feature detection algorithm in image processing and com-
puter vision, designed for efficiently identifying key points in images [30]. It achieves
speed by using box filters and integral images to approximate convolutions, making it
efficient for real-time applications. It handles scale and rotation changes, extending the
scale-invariant feature transform (SIFT) algorithm. Indeed, by using a scale-space represen-
tation and approximating the Hessian matrix determinant, SURF tries to identify points
that are invariant to changes in scale and rotation [34].

SURF works by selecting interest points where significant changes occur in intensity
or color. These interest points are locations where the algorithm focuses its attention for
further analysis. Once interest points are identified, SURF describes the local neighbor-
hoods around these points. It does this by considering image gradients in horizontal and
vertical directions, capturing information about the local structure of the image. Then it
creates unique descriptors for each interest point, based on the information in its local
neighborhood. These descriptors are designed to be distinctive and invariant to various
image transformations [30].

The robust feature detection capability of SURF seamlessly integrates into our trajec-
tory image analysis through the use of the ‘bagOfFeatures‘ function in MATLAB R2023a,
leveraging RGB trajectory images. By employing the ‘Detector’ option for ‘PointSelec-
tion’, the function meticulously selects point locations using a SURF ‘Detector’ with the
‘PointSelection’ property. This ensures thorough selection of feature points through an
optimized SURF detector, enhancing precision and efficiency in the subsequent feature
extraction process. The function’s outcome is a bag of visual words, encapsulating a
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variety of distinctive features in the trajectory image. These features may include de-
scriptors resembling ‘straight’, ‘curve’, or ‘circular’, each contributing to the detailed and
varied representation of the trajectory pattern. Subsequently, employing the ‘encode’
function with the bag of visual words as input yields a feature vector, which is essen-
tially forming a histogram capturing the occurrences of visual words in the trajectory
image (note: https://it.mathworks.com/help/vision/ref/bagoffeatures.html (accessed on
10 October 2023)).

The histogram for each image effectively captures the unique characteristics of the
movement pattern within the smart-home environment.

2.4.2. Synthetic Minority Oversampling (SMOTE)

In this study, we observe a significant imbalance in trajectory data, as delineated in
the SMART-HOME INFRASTRUCTURE, i.e., the subset of the CASAS dataset, encompassing
80 CH older adults and a more constrained set of 19 PwDs. In this regard, the distribution
of trajectories per person for CH and PwD is reported in Table 4. The standard deviation
(STD) functions as an indicator of the variability in trajectory numbers among individuals.
Given the uneven walking patterns of individuals within the smart-home, the number of
trajectory images per person fluctuates. Notably, with an increase in the time interval of the
segment (from 60 s to 480 s), there is a corresponding decrease in the number of trajectories
for each individual.

The total number of samples for trajectories based on different time interval segmenta-
tions is as follows: 1629 in 60 s, 812 in 120 s, 381 in 240 s, and 208 in 480 s.

Table 4. Average number of trajectories per person, with their respective STDs.

Trajectory Segments CH PwD

60 s 12.87 ± 7.54 3.26 ± 7.08

120 s 6.34 ± 4.02 1.70 ± 3.82

240 s 3.04 ± 1.93 0.73 ± 1.68

480 s 1.64 ± 1.13 0.42 ± 0.99

To address the imbalance problem effectively, we integrate SMOTE, a method catego-
rized under data augmentation. SMOTE assumes a pivotal role in rectifying the dataset’s
imbalance by generating synthetic feature vectors. The process involves selecting instances
that closely align in the feature space, establishing connections between them, and subse-
quently generating new samples along these connections [31]. To clarify, an “instance” here
represents a single trajectory data point, capturing the movement pattern of an individual.
In this scenario, “samples” would be subsets of these instances, comprising trajectories
from CH older adults or PwDs.

The SMOTE procedure begins by randomly selecting an instance, denoted as a,
from the minority class. Subsequently, the k nearest minority neighbors of a are iden-
tified, where k = 5 in our case. A synthetic instance is then created by randomly selecting
one of these neighbors, referred to as b, and connecting a and b to form a line segment in
the feature space. The resulting synthetic instances are effectively generated as convex
combinations of the chosen instances a and b [35].

The strategic application of SMOTE proves notably impactful in the domain of cog-
nitive assessment, especially when dealing with feature vectors extracted from trajectory
images. As previously mentioned, augmenting instances enhances the representation of
trajectories from the minority class, resulting in a more balanced and robust dataset for our
cognitive assessment framework.

https://it.mathworks.com/help/vision/ref/bagoffeatures.html
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2.4.3. Short-Term Cognitive Assessment

In this sub-module of our functional prototype of the system architecture, we evaluate
different ML classifiers designed to categorize movement patterns as either walked by a
CH subject or a PwD, based on the predicted category. These ML classifiers are:

• Naïve Bayes (NB);
• k-nearest neighbor (kNN), where k = 5;
• Decision tree (DT);
• Support vector machine (SVM) with ‘rbf’ kernel and regularization parameter equal

to 0.7;
• Neural network (NN), composed of 100 neurons in a hidden layer, ReLU activation

function, Adam optimizer, and trained for 1000 epochs, with a batch size equal to 200.

The SHORT-TERM COGNITIVE ASSESSMENT evaluates each path traversed by the resi-
dent as either “0—normal” or “1—abnormal”. In this context, normal trajectories mirror the
walking patterns of CH individuals, while abnormal trajectories resemble those observed
in PwDs. Our approach involves collaborative training, where the CLOUD-BASED MODEL

TRAINING receives training sets with tagged feature vectors for locomotion, and various
instances of designated models locally assimilate and train on these sets. This sub-module
further refines the short-term cognitive assessment based on these features. For privacy rea-
sons, the feature vectors are processed solely by the trusted cloud residing in CLOUD-BASED

MODEL TRAINING, ensuring data security.

2.4.4. Long-Term Cognitive Assessment

The LONG-TERM COGNITIVE ASSESSMENT sub-module employs ML algorithm predic-
tions to generate a diagnostic hypothesis regarding the subject’s cognitive health. For robust
results, the sub-module requires data spanning an extended period, such as the preced-
ing 30 days. This time frame ensures a comprehensive examination of the smart-home
resident’s movements. However, in our study, the dataset, comprising information from
99 individuals, was limited in its observational scope. Each person was monitored for
only a few hours on a single day, presenting a challenge to achieving a more extended and
in-depth analysis.

The long-term prediction, ltp, is determined by the most frequently predicted class
using the formula:

ltp = arg max
c∈{‘CH′ ,‘PwD′}

∣∣ {c ∈ {c1,. . . , cm}}
∣∣,

where c1, . . . , cm represents the history of short-term cognitive assessments for the smart-
home resident’s movement patterns.

3. Experimental Evaluation

In this section, we present the development and experimental evaluation of our
proposed functional prototype of the system architecture.

3.1. Setup

Our functional prototype of the system architecture was implemented in Python,
and the Image Processing Toolbox in MATLAB was employed for extracting CRF and
SURF. The experiments were conducted on a MacBook M1 Pro. Our approach involves
short-term and long-term cognitive assessment of movement patterns, employing a leave-
one-person-out (LOPO) cross-validation strategy. In LOPO, one resident’s trajectory data
are exclusively used for testing, ensuring that each resident’s data are never simultaneously
used for both training and testing.
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Performance assessment relies on weighted and macro-averaged precision, recall,
and F1-score. These scores are defined as follows:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
, (3)

where TP represents the true positive rate, FP denotes the false positive rate, and FN is
equivalent to the false negative rate. Precision quantifies the count of items accurately
labeled as part of the positive class, divided by the total items correctly or incorrectly
labeled within the same class. Recall assesses the ratio of correctly identified positives (also
known as TP). Lastly, the F1-score conveys the balance between the precision and the recall.

Additionally, the macro-averaged scores are well-suited for handling imbalanced
datasets, with the macro F1-score offering robustness in cases of imbalanced data by
treating all classes equally, regardless of their sizes. In this series of experiments, we
assessed our visual encoding method presented in Section 2.3.2, along with the connectivity
and descriptor-based features introduced in Section 2.4.1, using traditional ML classifiers,
which reside in the SHORT-TERM COGNITIVE ASSESSMENT sub-module and are presented
in Section 2.4.3.

Building upon Zolfaghari et al.’s prior investigation [26], we found that the integration
of heterogeneous features enhances recognition accuracy. Furthermore, our goal was
to develop a thorough depiction of trajectory images through the integration of these
characteristics. This depiction can be applied to detect atypical movement patterns within
smart-home settings.

Therefore, we conducted the first set of analyses, relying solely on the combina-
tion of the two feature categories, CRF and SURF, extracted by the CONNECTIVITY AND

DESCRIPTOR-BASED FEATURE EXTRACTION sub-module in the COGNITIVE ASSESSMENT

module from encoded trajectory images. In the second set of evaluations, we applied
SMOTE to address the imbalanced dataset, aiming to enhance the ML models’ performance
and adaptability in the imbalance situation. This technique is explained in Section 2.4.2.
The last set of experiments pertains to LONG-TERM COGNITIVE ASSESSMENT, as described
in Section 2.4.4.

3.2. Experimental Results

In the following, we report the results of our experimental evaluation.

3.2.1. Short-term Cognitive Assessment by Integrating CRF and SURF

The results based on utilization of CRF and SURF is reported in Figure 4. Among
various ML models, SVM demonstrated superior performance, with macro-averaged F1-
scores of 60.75% and weighted-averaged F1-scores of 76.39% for the trajectory segments of
Ts = 120 s. However, the SVM model’s performance declined noticeably with an increased
time interval, reaching a weighted-averaged score of 17.86% and a macro-averaged score of
23.39% for the Ts = 240 s trajectory segments. Furthermore, within distinct time intervals,
it was noted that kNN consistently yielded robust results in both macro-averaged and
weighted-averaged scores. Notably, there were no significant fluctuations in the results
across different time intervals. NB achieved its lowest macro-averaged F1-score in Ts = 60 s
segments, while DT and NN exhibited their respective lowest scores in the Ts = 120 s
segments. Similarly, SVM’s lowest score was noted in the Ts = 240 s segments, and DT
performed least effectively in the Ts = 480 s segments. These outcomes indicate the
limitations of these models in successfully identifying a noteworthy portion of minority
class trajectories, particularly those linked to PwDs, especially as the time interval increased.
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(a)

(b)
Figure 4. Macro-averaged F1-scores (a) and weighted-averaged F1-scores (b) for cognitive assessment
by employing traditional models and LOPO cross-validation, taking into account both CRF and SURF.

Based on these findings, it becomes apparent that incorporating additional visual
cues in encoded trajectory images derived from sensor activations can lead to performance
levels that are nearly satisfactory in the context of cognitive assessment applications.

Furthermore, Figure 4 highlights that, as the time interval between consecutive sensor
activations indicating non-locomotion phases increases, there is a noticeable decline in
the models’ performance, particularly in relation to the macro-averaged F1-score. This
decline can be attributed to the increased complexity of trajectories over longer time
intervals, posing challenges in extracting meaningful features for accurate classification
and cognitive assessment. Additionally, the observed results in the weighted-averaged
F1-scores are notably superior to those in the macro-averaged F1-scores. This discrepancy
is a consequence of class imbalance, wherein the classifiers exhibit a bias toward predicting
the more prevalent class, CH.
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3.2.2. Short-Term Cognitive Assessment by Applying SMOTE

In order to handle the imbalance problem we mentioned, in this series of experiments
we employed the SYNTHETIC MINORITY OVERSAMPLING (SMOTE) technique. Following
feature extraction, additional feature vectors were generated by synthesizing new instances
from existing ones. The results of these experiments are presented in Table 5.

Table 5. Movement images classification results using CRF and SURF extracted from encoded images
and enriched by SMOTE. Bold numbers represent the best results for each experiment.

Segments Measures (%) NB KNN DT SVM NN

60 s

Weighted
Precision 68.71 68.10 68.96 85.11 64.63

Recall 46.81 58.11 76.17 85.39 50.37

F1-score 51.53 61.80 71.41 82.88 55.21

Macro
Precision 50.89 50.42 52.47 84.40 46.63

Recall 51.35 50.60 51.03 66.44 44.85

F1-score 43.85 48.74 49.60 70.20 42.99

120 s

Weighted
Precision 67.89 67.54 66.92 65.35 65.99

Recall 59.07 54.75 59.93 40.70 50.93

F1-score 62.32 58.82 62.73 44.44 55.41

Macro
Precision 51.59 51.04 50.43 48.95 49.40

Recall 52.14 51.53 50.57 48.56 49.10

F1-score 50.28 48.33 49.54 39.46 45.55

240 s

Weighted
Precision 73.34 71.41 71.66 73.61 71.57

Recall 61.58 53.95 74.74 46.32 60.79

F1-score 65.38 58.73 72.97 50.60 64.54

Macro
Precision 55.40 52.83 55.43 54.31 53.45

Recall 58.22 54.51 54.09 56.43 55.17

F1-score 53.80 48.56 54.34 44.54 51.95

480 s

Weighted
Precision 68.16 69.97 71.20 28.08 66.98

Recall 57.01 56.04 73.43 13.05 63.77

F1-score 60.95 60.31 72.19 13.78 65.25

Macro
Precision 50.58 52.49 55.96 20.38 49.05

Recall 50.85 53.79 54.94 18.84 48.88

F1-score 48.53 49.60 55.23 13.03 48.78

Notably, there is an improvement in the performance of almost all models in terms of
both macro-averaged and weighted-averaged results in relation to the analysis presented
in Section 3.2.1.

Among the evaluated models, SVM demonstrated the best results in the Ts = 60 s tra-
jectory segments, achieving 70.20% and 82.88% F1-scores in macro-averaged and weighted-
averaged, respectively. Conversely, NB yielded the lowest result in the Ts = 60 s trajectory
segments, obtaining 43.85% in the macro-averaged F1-score and 51.53% in the weighted-
averaged F1-score, respectively. However, as the time interval between consecutive sensor
activations increased, SVM shows the lowest performance in the Ts = 480 s trajectory seg-
ments, with a 13.78% weighted-averaged F1-score and a 13.03% macro-averaged F1-score.
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When examining kNN and NN, the outcomes exhibited minimal variation with increasing
time intervals. In contrast, DT consistently demonstrated improved results, particularly in
macro-averaged and weighted-averaged metrics, as the time intervals increased.

A noteworthy observation emerges when comparing kNN and NN results with and
without employing SMOTE. Notably, without SMOTE, kNN achieved a 56.04% and 75.74%
F1-score in macro-averaged and weighted-averaged categories, respectively. NN gained a
53.25% and 71.50% F1-score in macro-averaged and weighted-averaged categories, respec-
tively, without SMOTE. This comparison underscores the impact of employing SMOTE in
enhancing the performance metrics of kNN and NN. This behavior could be attributed
to the complexity introduced in decision boundaries by generating synthetic samples.
Additionally, the sensitivity of kNN to its parameters, including the selection of a distance
metric and the number of neighbors, might play a role. The incorporation of synthetic
samples through SMOTE could potentially impact the optimal parameter settings for kNN,
contributing to the observed behavior.

3.2.3. Comparative Analysis of the Model vs. State-of-the-Art

We performed a comprehensive comparative analysis that included our proposed
approach, referred to as CRF + SURF + SMOTE. This approach integrates CRF and
SURF, enhancing the representation of the minority class, which in this case pertains
to PwDs, through the application of SMOTE. We benchmarked our approach against
established models found in the existing literature. Given that the most favorable outcomes
were obtained in segments with Ts = 60 s time intervals, these results were utilized
for comparison against the achievements of state-of-the-art approaches. The results are
presented in Table 6, and the evaluation is conducted using LOPO cross-validation.

Table 6. Comparative analysis of the best result of the proposed technique against existing best
results gained by literature approaches in terms of macro-averaged F1-score. The bold approach
highlight our recommended functional prototype for the system architecture, while bold numbers
signify the optimal results attained.

Approaches Measures (%) NB KNN DT SVM NN

RR-STF
Precision 49.58 50.15 50.23 60.26 60.27

Recall 49.04 50.17 50.4 60.26 62.85

F1-score 47.87 50.11 49.43 60.26 61.17

NTF
Precision 57.60 53.70 58.2 58.50 61.40

Recall 55.60 56.80 63.60 58.80 73.40

F1-score 56.2 52.10 58.7 58.7 59.3

CRF + SURF + SMOTE
Precision 50.89 50.42 52.47 84.40 46.63

Recall 51.35 50.6 51.10 66.44 44.85

F1-score 43.85 48.74 49.60 70.20 42.99

To facilitate this comparison, we introduced a baseline feature extraction method,
labeled as Numeric Trajectory Features (NTF). This method involves the extraction of features
aligned with clinical indicators of cognitive decline found in the literature. The computation
of spatio-temporal features, such as trajectory length, duration, centroids, and the number
of activations for each position sensor along the trajectory, as well as Martino-Saltzman
indicators [17] and low-level motion indicators (overall jerk, sharp angles, and overall
straightness), relies on algorithms presented in [9] for the recognition of cognitive issues.

Furthermore, we compare the technique proposed in this work with Randomly Rotated
Spatio-Temporal Features (RR-STF) in [26]. This method adopted an approach that combined
spatio-temporal features with features extracted from images depicting trajectories within
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a smart-home. The authors introduced a data augmentation technique based on random
image rotation to enhance the generalization of the trained model.

It is worth noting that we implemented these methods by referencing the information
presented in their respective papers, which detailed the system architecture. By reviewing
the results, it is evident that our CRF + SURF + SMOTE approach gained better results
compared with NTF and RR-STF [26]. The classifier achieving the best performance in this
pool of experiments is SVM, with a F1-score of 70.20%.

3.2.4. Long-Term Cognitive Assessment Results

In this evaluation, we apply the algorithm for long-term cognitive assessment de-
scribed in Section 2.4.4 on the proposed functional prototype of the system architecture
utilizing CRF, SURF, and SMOTE. The results are summarized in Figure 5. Remarkably,
as anticipated, SVM stands out among various machine learning algorithms, delivering
highly promising outcomes with Ts = 60 s. It achieves a macro-averaged F1-score of 72.22%
and a weighted-averaged F1-score of 84.51%. This performance is particularly noteworthy
for the short-term cognitive assessment, as SVM consistently produces the best results in
this context.

Additionally, this performance signifies a substantial improvement, showing a 10%
increase in the macro-averaged F1-score and a 5% increase in the weighted-averaged F1-
score compared with the previous work presented in [26]. In that work, the achieved scores
were 62.56% for the macro-averaged F1-score and 79.1% for the weighted-averaged F1-score.
However, upon evaluating the NN performance in long-term cognitive assessment, it is
evident that its performance is comparable to the one of other algorithms with Ts = 60 s,
and it could gain 61.94% for the macro-averaged F1-score and 70.59% for the weighted-
averaged F1-score. In this analysis, depicted in Figure 5, the stability in the performance
of DT and kNN stands out, as opposed to NB or SVM. However, it is crucial to highlight
that both DT and kNN exhibited poor performance compared with SVM, particularly
concerning Ts = 60 s. This observation implies a reduced level of effectiveness for DT
and kNN in this particular context. However, it is worth noting that DT, in particular,
performed relatively well compared with NB and kNN.

(a)
Figure 5. Cont.
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(b)
Figure 5. Macro-averaged (a) and weighted-averaged measures (b) for long-term cognitive assessment.

4. Discussion and Conclusions

This study tackles the challenge of cognitive assessment through the analysis of
indoor movements. Our methodology entails the extraction of visual cues from trajectories,
taking into account sensor activations, their position and direction, object interactions, CRF
and SURF, which are well-known features in computer vision tasks, the application of
SMOTE, and the incorporation of classical ML algorithms. The results, based on a real-
world dataset of CH older adults and PwDs, show promising short-term and long-term
cognitive assessment accuracy. Our experimental evaluation of the proposed functional
prototype of the system architecture highlights the superior performance achieved through
the integration of our visual cues, coupled with the utilization of features extracted using
CRF and SURF and SMOTE. The efficacy of our approach is attributed to the inclusion of
supplementary features, such as speed, position, direction, object interactions, and low-
level movement indicators. These elements, not captured by existing solutions, contribute
to the strength and comprehensiveness of our approach.

Additionally, the experiments demonstrate a substantial enhancement in the assess-
ment performance of the proposed functional prototype of the system architecture when
considering the entire trajectory history. It is crucial to note that, despite the dataset includ-
ing over 99 individuals, each person was observed for only a few hours on a single day. This
limited observation period may not provide sufficient data to predict the cognitive status of
all individuals reliably. Consequently, we anticipate achieving more accurate predictions by
incorporating a longer history of observations. However, this intuitive assumption requires
validation through additional experiments conducted in a larger trial. Indeed, the obtained
macro-averaged F1-score indicates that the proposed functional prototype of the system
architecture could potentially serve as valuable assistance for clinicians in conducting
a clinical evaluation of the cognitive health status of elderly individuals. Nevertheless,
to substantiate this hypothesis, a comprehensive trial involving the collaboration of clini-
cians and the deployment of our system in real-world conditions is imperative. Moreover,
considering the challenge of limited large-scale datasets in sensor-based trajectory data
mining, our results highlight the efficacy of incorporating additional visual cues via an
encoded trajectory image method, extracting features by CRF and SURF, and enhancing
them with SMOTE. This not only encodes rich information from sensor events but also
improves model generalization, leading to enhanced performance. This approach proves
well-suited for applications in healthcare and sensor-rich smart environments.
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Nevertheless, several challenges persist. While SMOTE effectively generates synthetic
minority class instances, it has limitations and potential biases. These include overfitting
to the minority class, inaccurate representation of the true distribution, and sensitivity
to noisy instances. To address these concerns, researchers are exploring alternatives like
cost-sensitive learning, ensemble methods, and various resampling techniques. This flex-
ibility allows tailoring the approach to specific dataset challenges, mitigating potential
biases introduced by a singular technique like SMOTE. Moreover, the results presented in
Figures 4 and 5 and Table 5 consistently show that weighted-averaged values outperform
macro-averaged ones in ML algorithms. This bias is attributed to the model’s inclination to
predict the most frequent class, which, in our context, is CH.

As previously stated, our study assumed a single resident in the smart-home, pro-
viding a focused analysis but introducing a limitation. Addressing this limitation could
be a focus of future research by exploring the integration of an identity-aware indoor
localization system. Such a system could enable the distinction of movement traces and
interactions among multiple smart-home residents. Additionally, the implementation of
an algorithm for multi-resident data association, as proposed by Riboni et al. [32], could
further enhance the overall approach. Moreover, deploying a smart-home system with PIR
motion sensors, door sensors, and RFID-embedded sensors is indeed feasible, emphasizing
compatibility, ease of integration, cost-effectiveness, user acceptance, scalability, and in-
teroperability with existing devices as pivotal considerations. Additionally, factors such
as power consumption, customization flexibility, adherence to regulations, availability of
technical support, and the implementation of robust security measures are essential for a
successful deployment.

The implementation of sensor-based AI systems determines different concerns in
terms of privacy and ethics considerations, especially when those systems are deployed
at patients’ homes. Indeed, smart-home systems acquire and process very sensitive data
such as locomotion, sleep patterns, presence/absence of people in the home, activities
of daily living, and personal routines. Hence, a privacy-by-design methodology should
be employed to implement these systems, possibly anonymizing the data and executing
reasoning at the edge in order to limit the release of data to third parties. Strong security
measures are also necessary to prevent unauthorized access to sensitive information. When
those systems are addressed to people with cognitive decline, a critical issue is acquiring
informed consent from inhabitants. Indeed, some people with cognitive impairment cannot
fully understand the research objectives or the privacy implications regarding personal
data acquisition. Hence, it is necessary to rely on statutory frameworks for assessing
the decision-making capacity of inhabitants and to ensure the ethical deployment of the
pervasive healthcare platform [36].

Furthermore, there are significant issues regard the acceptance of AI diagnostic sys-
tems in clinical settings [37]. In order to mitigate these issues, it is important to involve
the stakeholders, including caregivers and healthcare professionals, in every step of the
pervasive healthcare system design and implementation. The significance of conducting
pilot tests in diverse smart-home environments cannot be overstated; this approach helps
in identifying and addressing potential challenges, ensuring the system’s feasibility and
optimizing the user experience before embarking on widespread deployment. Also, we
believe that leveraging advanced transfer learning methods tailored for image classification
could potentially facilitate the portability of training data [38]. However, confirmation of
this aspect awaits additional experiments with diverse datasets.

Moreover, our experimental evaluation involved employing a dataset containing
a diverse group of subjects, with each individual’s behavior monitored in a controlled
environment. While this approach is valuable for controlled experiments, it has inherent
limitations in capturing the full spectrum of naturalistic behaviors [39]. Real-world indoor
movements encompass various variables, such as activity variations, ambient conditions,
and obstacles, which can significantly impact the system’s classification performance.
Additionally, a noteworthy challenge in our study was the presence of an unusually high
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number of sensors within the smart-home setting. It is important to acknowledge that such
sensor-rich environments may not be representative of the typical smart-homes found in
the real world. This unique characteristic poses an additional challenge that needs to be
considered in the interpretation and generalization of our findings.

Furthermore, detecting abnormal movements in PwDs proved challenging due to
limited data, highlighting the potential benefits of incorporating additional sensors, such
as wearable sensors. Furthermore, our study assumed that the training data matched the
older adult’s home environment. To overcome concerns related to data scarcity, we plan to
implement advanced transfer learning methods and evaluate various data augmentation
strategies. This approach will allow us to leverage training data from diverse environments,
thereby enhancing the system’s adaptability and overall performance. In conclusion, our
future endeavors focus on improving the system’s adaptability to multi-resident environ-
ments and conducting experiments in fully naturalistic settings for extended periods, all
while carefully considering ethical, privacy, and security aspects.
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