
Citation: Xie, X.; Qin, Y.; Zhang, Z.;

Yan, Z.; Jin, H.; Xu, M.; Zhang, C.

GY-SLAM: A Dense Semantic SLAM

System for Plant Factory Transport

Robots. Sensors 2024, 24, 1374.

https://doi.org/10.3390/s24051374

Academic Editor: Jesús Ureña

Received: 22 January 2024

Revised: 7 February 2024

Accepted: 10 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

GY-SLAM: A Dense Semantic SLAM System for Plant Factory
Transport Robots
Xiaolin Xie 1,2, Yibo Qin 2,* , Zhihong Zhang 2, Zixiang Yan 2, Hang Jin 2, Man Xu 2 and Cheng Zhang 2

1 Longmen Laboratory, Luoyang 471003, China; xiexiaolin@haust.edu.cn
2 College of Agricultural Equipment Engineering, Henan University of Science and Technology,

Luoyang 471003, China; lyzzh@haust.edu.cn (Z.Z.); 210321041670@stu.haust.edu.cn (Z.Y.);
220320261796@stu.haust.edu.cn (H.J.); 220320261812@stu.haust.edu.cn (M.X.);
230320261490@stu.haust.edu.cn (C.Z.)

* Correspondence: 210321041662@stu.haust.edu.cn

Abstract: Simultaneous Localization and Mapping (SLAM), as one of the core technologies in
intelligent robotics, has gained substantial attention in recent years. Addressing the limitations of
SLAM systems in dynamic environments, this research proposes a system specifically designed for
plant factory transportation environments, named GY-SLAM. GY-SLAM incorporates a lightweight
target detection network, GY, based on YOLOv5, which utilizes GhostNet as the backbone network.
This integration is further enhanced with CoordConv coordinate convolution, CARAFE up-sampling
operators, and the SE attention mechanism, leading to simultaneous improvements in detection
accuracy and model complexity reduction. While mAP@0.5 increased by 0.514% to 95.364, the model
simultaneously reduced the number of parameters by 43.976%, computational cost by 46.488%,
and model size by 41.752%. Additionally, the system constructs pure static octree maps and grid
maps. Tests conducted on the TUM dataset and a proprietary dataset demonstrate that GY-SLAM
significantly outperforms ORB-SLAM3 in dynamic scenarios in terms of system localization accuracy
and robustness. It shows a remarkable 92.59% improvement in RMSE for Absolute Trajectory Error
(ATE), along with a 93.11% improvement in RMSE for the translational drift of Relative Pose Error
(RPE) and a 92.89% improvement in RMSE for the rotational drift of RPE. Compared to YOLOv5s,
the GY model brings a 41.5944% improvement in detection speed and a 17.7975% increase in SLAM
operation speed to the system, indicating strong competitiveness and real-time capabilities. These
results validate the effectiveness of GY-SLAM in dynamic environments and provide substantial
support for the automation of logistics tasks by robots in specific contexts.

Keywords: SLAM; YOLOv5; GhostNet; octree maps; grid maps; plant factory

1. Introduction

Simultaneous Localization and Mapping (SLAM) is one of the key technologies in
the field of robotic navigation, enabling robots to accurately determine their position and
create maps of their surroundings without any prior information [1]. Particularly in the
field of mobile robotics, Visual SLAM [2] (VSLAM) has become the focus of research
and application due to its cost-effectiveness and its ability to provide rich environmental
information [3]. However, most existing VSLAM algorithms are based on the assumption of
a static environment [4]. In dynamic environments, when extracting features from dynamic
targets, especially those with strong texture information, it may lead to increased trajectory
errors or even tracking loss [5]. Therefore, in the process of transferring vegetable packages
from the stacking area to the pre-cooling area in plant factory transportation robots, the
SLAM system is affected by dynamic targets such as humans and collaborative robots. This
necessitates a SLAM system that can detect and eliminate dynamic feature points in real
time to enhance system accuracy and robustness [6].

Sensors 2024, 24, 1374. https://doi.org/10.3390/s24051374 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-0895-9502
https://doi.org/10.3390/s24051374
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051374?type=check_update&version=1


Sensors 2024, 24, 1374 2 of 20

Semantic SLAM, produced by the fusion of deep learning and SLAM, provides a promis-
ing solution. It can predict the dynamic characteristics of predefined targets and provide the
system with functional attributes and semantic information about them. This not only en-
hances the accuracy of robot localization in dynamic scenarios but also lays the foundation for
autonomous intelligent path planning and advanced handling tasks. RGB-D cameras, which
provide precise depth information through physical measurements, can also be employed for
target detection and image segmentation [7]. However, while image segmentation can reduce
the interference of dynamic targets, it comes at the cost of system real-time performance [8]. In
light of this, YOLO (You Only Look Once) single-stage target detection networks, known for
their compact size and efficient real-time performance, have become an ideal choice. With im-
provements, they can achieve positioning accuracy close to that of image segmentation SLAM
while maintaining significantly higher real-time performance, thus striking a balance between
SLAM system accuracy and real-time capabilities [9]. Currently, some advanced SLAM sys-
tems based on semantic segmentation, such as RDS-SLAM [10], build upon ORB-SLAM3 by
introducing a dedicated semantic thread and a semantics-based optimization thread. These
threads run in parallel with others, allowing the tracking thread to proceed without waiting
for semantic information, theoretically achieving real-time tracking in dynamic environments.
On the other hand, target detection-based SLAM systems, like YG-SLAM [11], incorporate a
GPU-accelerated YOLOv5 object detection module. Combining the results of object detection
with the LK optical flow method during the dynamic feature point removal stage significantly
enhances recognition speed.

In this paper, we propose a novel real-time dense semantic SLAM system named GY-
SLAM, specifically designed for plant factory transportation robots. This system integrates
deep learning techniques to assist robots in perceiving the environment from both semantic
and geometric perspectives. GY-SLAM can not only effectively identify and eliminate
feature points on predefined dynamic targets but also construct a pure static dense point
cloud and generate an octree map and a grid map for navigation, which improves the
positioning and mapping capabilities of the SLAM system in dynamic scenes. The main
contributions of this paper include the following:

1. Based on ORB-SLAM3, dense mapping, target detection threads, and a dynamic
feature elimination module have been added. A method for constructing dense point
clouds based on statistical filtering and voxel down-sampling has been proposed,
resulting in the generation of octree maps and grid maps.

2. A target detection dataset containing various robots, humans, and vegetable packages
was created. Additionally, a SLAM dataset containing RGB and depth information,
ground truth trajectories, and the aforementioned targets were collected.

3. A lightweight target detection model named GY, based on YOLOv5s, was developed
with lightweight processing by incorporating GhostNet. CoordConv coordinate
convolution, CARAFE up-sampling operators, and SE attention mechanisms were
introduced into the model.

4. The above GY model and the enhanced SLAM system are successfully integrated into
a GY-SLAM visual-dense semantic system and evaluated.

The remaining structure of this paper is as follows: Section 2 reviews relevant work by
other scholars in the field. Section 3 provides a detailed introduction to the framework and
proposed methods of GY-SLAM. Section 4 describes the materials and methods used in this
research. Section 5 reports the experimental evaluation results on our proprietary dataset and
the TUM RGB-D dataset. Section 6 discusses the major findings of this research. Section 7
summarizes the research achievements of this paper and outlines directions for future work.

2. Related Work

The robustness of SLAM systems in dynamic environments has become a focal point of
research for numerous investigators. The primary challenge is how to effectively detect and
eliminate dynamic features and avoid using feature points extracted from moving objects
for positioning and mapping [12]. As research has progressed, many excellent algorithms



Sensors 2024, 24, 1374 3 of 20

have endeavored to incorporate target detection and image segmentation techniques from
deep learning into the SLAM system, providing essential semantic priors for detecting and
eliminating dynamic feature points [13].

Li et al. [14] fused RGB-D camera and encoder information, utilizing the SegNet image
segmentation network based on Caffe to segment moving objects in images. The DS-SLAM
system proposed by Yu et al. [15] passes images with per-pixel semantic labels to the track-
ing thread through the SegNet image segmentation thread, thus separating outlier points
belonging to dynamic targets. Bescos et al. [16] proposed the DynaSLAM algorithm, which
leverages Mask R-CNN to obtain images with per-pixel image segmentation and instance
labels for dynamic target detection. Ren et al. [17] presented the VI-MID system, which
employs Mask R-CNN to extract object masks and relies on rendering masks obtained
from object-level maps for continuous tracking of targets. However, per-pixel image seg-
mentation methods such as SegNet and Mask R-CNN, while achieving high classification
accuracy, are slow in speed, which does not meet the real-time target detection requirements
for robots. Target detection methods based on bounding boxes exhibit significantly higher
efficiency compared to per-pixel image segmentation methods.

Zhang et al. [18] integrated modules for target detection and recognition using YOLO
into the RGB-D SLAM framework, building semantic octree maps based on object-level
entities. Zhang et al. [19] augmented the ORB-SLAM2 system with a YOLOv5-based object
detection and recognition module, achieving real-time and rapid detection of dynamic
features. Guan et al. [20] incorporated a YOLOv5 target detection module into the tracking
module of ORB-SLAM3 and generated static environment point cloud maps using RGB-D
cameras. Wang et al. [21] proposed YPD-SLAM, a system based on Yolo-FastestV2 target
detection and CAPE plane extraction, capable of running on the CPU while maintaining
relatively high detection accuracy. Song et al. [22] introduced YF-SLAM, which utilizes the
lightweight target detection network YOLO-FastestV2 to provide semantic information
in dynamic environments for ORB-SLAM2. Wu et al. [23] presented YOLO-SLAM, which
improved detection speed by replacing darknet-53 with darknet-19 for target detection.
Liu et al. [24] introduced Dynamic-VINS, which utilizes YOLOv3 to detect various dynamic
elements on resource-constrained mobile platforms.

When the dynamic objects in the environment are known in advance, the use of
deep learning methods can be highly effective, but these methods are heavily reliant
on the quality of the network [25]. Simple network architectures may not effectively
recognize objects in certain situations, while complex architectures may slow down system
performance. This challenge has driven researchers to seek lightweight and efficient yet
stable target detection models to enhance the quality of SLAM systems. This demand
provides clear direction and reference for our work on lightweight and improvements.

3. Improved System Description

In this section, we will provide a detailed explanation of our proposed GY-SLAM
system. This system combines lightweight deep learning techniques with advanced strate-
gies for enhancing target detection networks, effectively achieving the functionalities of
target detection and dynamic feature elimination. Furthermore, GY-SLAM possesses the
capability to construct precise, dense maps, laying a solid foundation for the accurate
localization, path planning, and transportation tasks of robots in the dynamic environment
of plant factories. We will now proceed to introduce the implementation details of each key
component, starting with the overall framework of the system.

3.1. Overview of the GY-SLAM System

The framework of the GY-SLAM system proposed in this paper is illustrated in Figure 1.
The system comprises five main threads running in parallel: Tracking, Local Mapping, Loop
and Map Merging, Target Detection, and Dense Mapping. Among these, the Target Detection
and Dense Mapping threads represent innovative extensions based on ORB-SLAM3, while
the Local Mapping and Loop and Map Merging threads remain consistent with ORB-SLAM3.



Sensors 2024, 24, 1374 4 of 20

Figure 1. GY-SLAM System Framework.

3.1.1. ORB-SLAM3

ORB-SLAM3 is the first feature-based SLAM system that supports monocular, stereo,
and RGB-D cameras. It is capable of visual, visual-inertial SLAM, and multi-map cre-
ation [26]. The system effectively utilizes short-term, medium-term, long-term, and multi-
map data association, thereby effectively suppressing drift and ensuring high-precision
localization in medium to large loop-closure scenarios. This comprehensive data associa-
tion capability significantly improves the system’s adaptability and stability, which enables
it to achieve a localization accuracy of up to 9 mm.

3.1.2. Dynamic Feature Elimination

We first collected a dataset of YOLO images containing elements relevant to the plant
factory transport robot work. Subsequently, we trained the GY target detection model
using the GY network. In GY-SLAM, the GY model serves as input to provide predefined
target information to the Target Detection Thread.

The Target Detection Thread is responsible for processing the video stream captured by
the camera frame by frame. After inferring and analyzing the images using the GY model
to identify predefined targets and generate bounding boxes for them, it outputs semantic
information, localization information, and confidence to the Dynamic Feature Elimination
Module in the Tracking Thread. Within the Tracking Thread, we have embedded a Dynamic
Feature Elimination Module that receives the output from the Target Detection Thread.
After extracting ORB feature information in the Tracking Thread, this module eliminates
feature points within the dynamic area. This ensures that only static feature points are used
for subsequent pose estimation and mapping.

3.1.3. Dense Mapping

While ORB-SLAM3 is effective, the sparse maps it generates cannot be directly used
for robot path planning and navigation. Therefore, constructing a pure static, dense map
that can be used for navigation is crucial for transport robots. In the Dense Mapping
Thread, after the system receives keyframes from the Tracking Thread, it first performs
eligibility filtering on map points to obtain a basic, pure static dense point cloud. This
process includes removing map points with significant errors based on effective camera
depth, eliminating outliers based on outlier marking, and removing dynamic feature points



Sensors 2024, 24, 1374 5 of 20

based on dynamic target localization information provided by the Target Detection Thread.
The final result is a relatively stable, pure static, dense point cloud.

In constructing the 3D octree map, statistical filtering is used to remove outlier map
points in the dense point cloud, which is achieved by calculating the average distance
between each point and the points within its surrounding neighborhood. Assuming that the
calculation results follow a Gaussian distribution, outlier points with unqualified average
distances are filtered out based on the standard deviation. Subsequently, the point cloud
density is reduced by voxel down-sampling technology. This technique divides three-
dimensional space into uniform voxels, samples only one central point in each voxel as
a representative, and assigns the points in each voxel to the octree structure. Through
recursive operations, we can obtain the octree map. The octree map not only reduces
computational load but also preserves critical geometric structures, making it suitable for
robot modeling and navigation in complex, dynamic environments.

Grid maps play a crucial role in robot collision detection, navigation, and path plan-
ning. To construct a grid map, we first analyze the robot’s obstacle clearance height and
working height. Then, we project the dense point cloud within this height range onto a
grid. After filtering and dilation processing, we obtain a two-dimensional grid map.

3.2. Overview of the GY Lightweight Target Detection Network

The YOLOv5s [27] is adopted as the foundation, and through lightweight and a series
of improvements, the lightweight GY target detection network is built, aiming to balance
accuracy and computing resources while maintaining high-speed performance.

In this article, the lightweight GhostNet network is integrated with the YOLOv5s, and
then three improvements are conducted to enhance model accuracy and generalization.
Firstly, CoordConv coordinate convolution is introduced in the FPN structure, enabling the
model to perceive the positional information of feature image pixels. Secondly, the CARAFE
up-sampling operator is introduced to expand the receptive field, allowing the network
to perform up-sampling based on the semantic information from the input feature maps.
Finally, at the end of the Backbone, the SE channel attention mechanism is introduced to
focus on global feature maps, effectively modeling the interdependence between channels.
The resulting GY network architecture is illustrated in Figure 2.

Figure 2. GY network architecture.



Sensors 2024, 24, 1374 6 of 20

3.2.1. GhostNet Neural Network

GhostNet [28] is a lightweight and efficient CNN network proposed by Huawei
Noah’s Ark Lab in 2020. Its Ghost module first generates intrinsic feature maps using fewer
convolutional kernels and then produces many ghost feature maps through a series of
cost-effective linear transformations. These ghost feature maps are capable of extracting
the desired information from the intrinsic features. In terms of efficiency and accuracy, the
lightweight GhostNet reduces model complexity, making it particularly suitable for mobile
robots with limited memory and computing resources. The computational cost of Ghost
convolution compared to regular convolution is as follows:

cost 1 = h′ × w′ × n × k × k × c (1)

cost 2 = h′ × w′ × n
s
× k × k × c + (s − 1)× h′ × w′ × n

s
× k × k (2)

where cost 1 denotes the computational cost of the regular convolution, cost 2 denotes the
computational cost of the Ghost convolution, h′ × w′ × c denotes the height, width, and
number of channels of the output feature maps, k denotes the convolution kernel size, and
s denotes the number of ghost feature maps generated by each intrinsic feature map. Since
s ≪ c, the theoretical acceleration ratio rs of using the Ghost convolution to replace the
regular convolution can be approximated as follows:

rs =
cost 1
cost 2

≈ s + c
s + c − 1

≈ s (3)

3.2.2. CoordConv Coordinate Convolution

CoordConv [29] is a coordinate convolution module proposed by Uber in 2018. Tradi-
tional convolutions only capture local information when the convolution kernel performs
local operations and do not know the spatial location of the current convolution kernel.
CoordConv adds two additional channels into the input feature map of convolution to
represent pixel coordinates, enabling the network to learn complete translation invariance
or a certain degree of translation dependency according to different task requirements.
Simultaneously, it allows the convolution to perceive feature spatial information to some
extent during learning, thereby enhancing detection accuracy and robustness.

3.2.3. CARAFE Up-Sampling Operator

CARAFE [30] is a lightweight up-sampling operator proposed by Wang et al. in
2019. It can aggregate contextual information over a large receptive field and supports
instance-specific content-aware processing, dynamically generating adaptive up-sampling
kernels. During CARAFE computation, the Kernel Prediction Module is responsible for
perceiving the content at each target location and generating a reassembled kernel. The
Content-Aware Reassembly Module uses the predicted kernel to reassemble the features,
increasing the emphasis on information from relevant feature points in local regions. The
reassembled feature map contains more semantic information compared to the original
feature map.

3.2.4. SE Attention Mechanism

SE [31] is a channel attention module proposed by Hu et al. in 2019. The SE module
models the relationship between channels by introducing a Squeeze operation and an
Excitation operation. In the Squeeze stage, it compresses the output feature map of the
convolutional layer into a feature vector through a global average pooling operation. Then,
in the Excitation stage, the weight vector of a channel is learned by using the fully connected
layer and the nonlinear activation function. This weight vector is applied to each channel
on the original feature map to weigh the features of different channels. In this way, the
SE module can adaptively learn the importance of each channel and adjust the channel
contribution in the feature map according to the needs of the task. This attention mechanism



Sensors 2024, 24, 1374 7 of 20

helps the network better focus on important feature channels, thereby improving model
performance. The structure of the SE building block is illustrated in Figure 3.

Figure 3. A Squeeze-and-Excitation block.

4. Equipment and Methods

In this research, considering the need for robots to recognize three elements: humans,
robots, and vegetable packages, a new SLAM dataset was collected. This dataset serves
as a practical platform for testing the SLAM algorithms of plant factory transport robots.
Two separate systems on a single server were used for GY deep learning model training
and SLAM algorithm testing. The experimental environment configuration is detailed in
Table 1, and the left side of the combination of the two parameters is the deep learning
configuration parameter.

Table 1. The experimental environment configurations.

Configuration Parameter Server Configuration

Hardware
CPU AMD Ryzen 9 5900X 12-Core Processor (AMD, Luoyang, China)
GPU NVIDIA GeForce RTX 3060-12 GB (NVIDIA, Santa Clara, CA, USA)
RAM 32 GB

Software
System Windows 10/Ubuntu 18.04
Python 3.9.18/2.7.17

Environment
PyTorch 1.12.1/1.9.0
CUDA 11.6/11.1

CuDNN 8.2.1/8.0.5

4.1. GY Model Training

Our YOLO image dataset primarily consists of images captured by the Intel RealSense
Depth Camera D455 with an aspect ratio of 4:3. Additionally, the dataset includes human
images from open datasets and various robot and vegetable package images downloaded
online. We carefully selected a total of 955 images, resized them proportionally to a
width of 640 pixels, and annotated them using the Labelimg tool. The classification labels
include Person, Robot, and Package. Following the principles of data augmentation, we
augmented the dataset by a factor of three, resulting in a total of 2865 images to enhance
the model’s generalization capability. Our proprietary dataset has universal adaptability
to other network models. The ratio of the training and validation datasets was set to 8:2,
while the test dataset consisted of video streams captured by the GY-SLAM system. The
hyperparameter configuration of GY network training is shown in Table 2.

Table 2. The hyperparameter configuration of GY network training.

Hyperparameter Value Hyperparameter Value

Epoch 300 Weight_decay 0.0005
Batch size 16 box 0.05

Lr0 0.01 cls 0.5
Lrf 0.1 obj 1.0

Momentum 0.937 Iou_t 0.20



Sensors 2024, 24, 1374 8 of 20

4.2. GY-SLAM Dataset Acquisition

We used the D455 camera to capture RGB and depth data and employed the NOKOV
Motion Capture System to obtain real-time trajectory ground truth for the robot. The
MR600 transport robot from ShiHe Company served as the mobile platform, with the D455
camera mounted on a bracket at the top of the robot. We incorporated the work elements
that the transport robot faced into the dataset to validate the subsequent target detection
network’s ability to recognize targets and eliminate dynamic feature points. The dataset
encompasses various scenarios, including handheld and wheeled robot shooting, fast and
slow motions, as well as normal and multi-rotational scenarios. The equipment used for
collecting the SLAM dataset is shown in Figure 4, with specific parameters provided in
Table 3.

Figure 4. Equipment for collecting the GY-SLAM dataset. (a) MR600 mobile robot, D455 camera, and
reflective markers; (b) 12 NOKOV Mars 2H cameras and motion capture system.

Table 3. Equipment parameters for collecting the SLAM dataset.

Device Parameter Value

D455 Camera
Image Resolution 640 × 480 at 30 FPS (OV9782)

FOV 86◦ × 57◦

MR600 Robot

Overall Dimension 625 × 590 × 465 mm3

Installation Heigh 350 mm
Elevation Angle 10◦

Slow Speed 0.4 m/s
Fast Speed 0.8 m/s

NOKOV Marker Φ15 mm × 10
Mars 2H Camera Number 12
Cameras 3D Accuracy ±0.15 mm

5. Experimental Results
5.1. GY Experimental Results

In this article, while ensuring model detection accuracy and FPS exceeding 30, we
prioritized reducing the complexity of the GY model to minimize computational resource
consumption during inference. We utilized metrics including the mean Average Precision
at the IoU threshold of 0.5 (mAP@0.5), the number of model parameters (Parameters),
the computational complexity measured in Giga Floating-Point Operations Per Second
(GFLOPs), and the model size (Weight) as evaluation criteria. The latter three metrics, to
some extent, reflect the model’s complexity.

5.1.1. Lightweight Network Comparative Experiment

In this experiment, we used YOLOv5s as the baseline model and integrated it with
three mainstream lightweight feature extraction networks for comparative experiments



Sensors 2024, 24, 1374 9 of 20

in order to obtain the most cost-effective lightweight network. The results are shown in
Table 4.

Table 4. Lightweight network comparative experiment.

Network mAP@0.5/% Parameters GFLOPs Weight/M

CSPDarkNet53 (YOLOv5s) 94.850 7,018,216 15.774 13.70
ShuffleNetV2—YOLOv5s 89.949 3,794,120 7.989 7.68
MobileNetV3—YOLOv5s 91.358 3,543,926 6.297 7.17

GhostNet—YOLOv5s (GY*) 94.181 3,681,120 8.046 7.49
GY*: the model in its solely lightweight form, without any enhancements.

The results presented in Table 4 reveal that substituting the original CSPDarkNet53
backbone feature extraction network in YOLOv5s with various lightweight networks signif-
icantly reduced the model’s parameters, computation, and size. However, this substantial
reduction in complexity was accompanied by varying degrees of decreased detection accu-
racy. When integrated with ShuffleNetV2, the model exhibited the smallest reduction in
complexity but underwent the largest decrease in mAP@0.5, which was 4.901%. In contrast,
integration with MobileNetV3 led to the most substantial reduction in complexity, along
with a decrease in mAP@0.5 of 3.492%. Upon combining with GhostNet, the reduction
in the model’s complexity was intermediate compared to the other two models, with the
smallest decline in mAP@0.5 recorded at 0.669%. Consequently, the network GY*, resulting
from the combination of GhostNet and YOLOv5s, was selected as the optimal original
lightweight network.

5.1.2. Ablation Experiment

To validate the contribution of the improved methods proposed in this study to
the model performance, we designed an ablation experiment based on YOLOv5s as a
benchmark, with the results presented in Table 5.

Table 5. Ablation experiment.

Test CoordConv CARAFE SENet GhostNet mAP@0.5/% Parameters GFLOPs Weight/M

1 × × × × 94.850 7,018,216 15.774 13.70
2 (GY*) × × ×

√
94.181 3,681,120 8.046 7.49

3
√

× ×
√

95.153 3,759,008 8.144 7.64
4 ×

√
×

√
95.220 3,821,224 8.315 7.77

5
√ √

×
√

95.317 3,899,112 8.414 7.92
6 × ×

√ √
94.872 3,713,888 8.073 7.56

7
√

×
√ √

95.238 3,791,776 8.171 7.70
8 (GY)

√ √ √ √
95.364 3,931,880 8.441 7.98

“×” means that the operation is not performed in the network. “
√

” means that the operation is performed in
the network.

Based on the results in Table 5 and using the GY* lightweight network from test 2 as
a reference, the following conclusions were drawn from comparative tests: In test 3, the
introduction of the CoordConv convolution module in the FPN structure of the Neck part
added 2.116% in parameters, 1.218% in computation, and 2.003% in weight, but resulted in
a 0.972% increase in mAP@0.5. In test 4, incorporating the CARAFE up-sampling operator
led to an additional 3.806% in parameters, 3.343% in computation, and 3.738% in weight,
with a 1.039% improvement in mAP@0.5. Test 5, which combined both the CoordConv and
CARAFE, resulted in an increase of 5.922% in parameters, 4.574% in computation, 5.741%
in weight, and a 1.136% enhancement in mAP@0.5. Test 6, which introduced the SE channel
attention module at the end of the Backbone part, added 0.890% to the parameters, 0.336%
to the computation, and 0.935% to the weight, while increasing the mAP@0.5 by 0.691%.
Test 7, combining both the CoordConv and SE, led to an additional 3.006% in parameters,
1.554% in computation, and 2.804% in weight, but raised the mAP@0.5 by 1.057%. In



Sensors 2024, 24, 1374 10 of 20

test 8, the GY model was developed by integrating the GhostNet lightweight network,
CoordConv convolution module, CARAFE up-sampling operator, and SE attention module.
Compared to the original GY* lightweight model, although there was a 6.812% increase in
parameters, a 4.909% increase in computation, and a 6.542% increase in weight, there was
also a noTable 1.183% improvement in mAP@0.5. In comparison with the original YOLOv5s
model, the GY model exhibited a 43.976% reduction in parameters, a 46.488% reduction in
computation, and a 41.752% reduction in weight, while simultaneously achieving a 0.514%
increase in mAP@0.5, reaching 95.364%.

The results indicate that the GY model, developed by enhancing YOLOv5s, not only
significantly reduces model complexity but also boosts average detection accuracy, conse-
quently making the model’s performance superior.

5.1.3. Attention Mechanism Comparative Experiment

To validate the superiority of the introduced SE attention module, we used the original
lightweight network GY* as the baseline and conducted comparative experiments by
replacing it with four different attention mechanisms: CBAM, CA, ECA, and EMA. The
results are presented in Table 6.

Table 6. Attention mechanism comparative experiment.

Attention mAP@0.5/% Parameters GFLOPs Weight/M

GY* 94.181 3,681,120 8.046 7.49
GY*-SE 94.872 3,713,888 8.073 7.56

GY*-CBAM 93.965 3,713,986 8.099 7.56
GY*-CA 94.645 3,706,768 8.074 7.55

GY*-ECA 94.148 3,681,123 8.048 7.49
GY*-EMA 94.230 3,722,336 8.340 7.57

The data in Table 6 clearly illustrates that the increase in model complexity is remark-
ably minimal, regardless of the type of attention module introduced. Interestingly, the
introduction of CBAM and ECA modules actually led to a decrease in the model’s mAP@0.5,
contrary to expectations of an increase. Among the attention modules that did enhance
average detection accuracy, the EMA module, despite being the most complex, ironically
resulted in the least improvement in mAP@0.5, a mere increase of 0.049%. Both the CA
and SE modules induced almost identical increments in model complexity. However, the
CA module improved the model’s mAP@0.5 by only 0.464%, which was less effective
compared to the SE module. Significantly, our results demonstrate that the SE module,
which we proposed, achieves the highest enhancement in mAP@0.5 of 0.691% among all
the models tested.

5.1.4. Algorithm Comparative Experiment

In order to verify the superior performance of our proposed GY network, we con-
ducted comparative experiments with other target detection algorithms, and the results are
shown in Table 7.

Table 7. Algorithm comparative experiment.

Algorithm mAP@0.5/% Weight/M

YOLOv3 94.456 117.00
YOLOv5n 93.366 3.74
YOLOv5s 94.850 13.70
YOLOv5m 95.881 40.20
YOLOv5l 95.813 88.50
YOLOv5x 95.996 165.00
Ours (GY) 95.364 7.98



Sensors 2024, 24, 1374 11 of 20

The results presented in Table 7 illustrate that the model developed with our innovative
GY network exhibits unparalleled cost-effectiveness. It significantly surpasses the smaller
YOLOv5n, achieving a 1.998% increase in mAP@0.5. When compared with larger models
such as YOLOv5m, l, x, and YOLOv3, the GY model makes a modest trade-off in average
detection accuracy, yet it benefits from a marked reduction in complexity—decreasing by a
factor of 5 to 20 times. The mAP@0.5 curves for various models across different experiments
are illustrated in Figure 5.

Figure 5. The graph of mAP@0.5 curve. (a) The mAP@0.5 curves for different models in the lightweight
network comparative experiment; (b) The mAP@0.5 curves for different models in the ablation
experiment; (c) The mAP@0.5 curves for different models in the attention mechanism comparative
experiment; (d) The mAP@0.5 curves for different models in the algorithm comparative experiment.

From Figure 5, it can be observed that the improvement strategies we chose at different
stages are relatively optimal. We compared the detection effectiveness of the GY model
with the YOLOv5s model. The detection results are shown in Figure 6, where the GY model
is capable of identifying small and occluded targets, and its overall detection accuracy is
also higher than that of the YOLOv5s network.



Sensors 2024, 24, 1374 12 of 20

Figure 6. Comparison graph of detection result between YOLOv5s and GY. The images (a–d) on the
left side represent the detection results of YOLOv5s in four images; The images (e–h) on the right
side represent the detection results of GY in four images same with YOLOv5s.

5.2. GY-SLAM Experimental Results

We integrated the GY model into our GY-SLAM system for target recognition tasks.
The performance of GY-SLAM was evaluated on both our proprietary dataset and the TUM
RGB-D dataset, with an assessment of the tracking time consumption. Additionally, based
on ORB-SLAM3, we evaluated the performance improvement of the GY-SLAM system
and the performance of DynaSLAM and DS-SLAM. Absolute Trajectory Error (ATE) and
Relative Pose Error (RPE) were commonly used to evaluate the quality of visual SLAM
systems, where ATE is suitable for measuring the global consistency of a trajectory, while
RPE is more appropriate for assessing drift in translation and rotation. We utilized Root
Mean Square Error (RMSE) and Mean Error (Mean) to reflect ATE and RPE as evaluation
indicators. Each algorithm was executed 10 times in the same sequence, and the average of
these 10 results was taken as the indicator’s value.

5.2.1. Performance Evaluation on the TUM RGB-D Dataset

The comparative results of different algorithms on various dynamic sequences of the
TUM RGB-D dataset are presented in Tables 8–10. Tables 8–10 clearly demonstrate that
GY-SLAM shows significant improvements in ATE and RPE compared to ORB-SLAM3. In
the ATE results of Table 8, under high-dynamic scenarios, RMSE and Mean are enhanced
by up to 92.5864% and 93.6967%, respectively. In low-dynamic scenarios, such as in the
Fr3_s_static sequence, the improvements in RMSE and Mean are 17.3077% and 19.3548%,
respectively. It is noted that in low-dynamic scenes, DynaSLAM and DS-SLAM slightly
outperform GY-SLAM. This is due to their ability to further differentiate static features
within dynamic regions, whereas GY-SLAM eliminates all features in these areas, leading to
a scarcity of features available for tracking. The translational and rotational drift results in
RPE, as shown in Tables 9 and 10, exhibit a similar trend and magnitude of error reduction
as seen with ATE.

The results indicate that the absolute trajectory error of GY-SLAM has been reduced by
approximately an order of magnitude compared to ORB-SLAM3, achieving centimeter-level
or even millimeter-level precision. This improvement is attributed to the semantic informa-
tion generated by GY, which effectively assists the system in identifying and eliminating
dynamic feature points. Compared with DynaSLAM and DS-SLAM, GY-SLAM shows better
performance on some sequences. The system performs well in high-dynamic scenarios but is
slightly constrained in low-dynamic environments. Figure 7 shows the Absolute Trajectory
Error (ATE) graphs for ORB-SLAM3, DynaSLAM, and GY-SLAM on partial sequences. As
can be seen from Figure 7, the error in GY-SLAM is significantly reduced.



Sensors 2024, 24, 1374 13 of 20

Table 8. Results of metric absolute trajectory error (ATE).

TUM RGB-D ORB-SLAM3 DynaSLAM DS-SLAM GY-SLAM (Ours) Improvements

Sequences RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%

Fr3_s_hs 0.0566 0.0531 0.0310 0.0263 - - 0.0326 0.0264 42.4028 50.2825
Fr3_s_static 0.0104 0.0093 0.0078 0.0069 0.0065 0.0055 0.0086 0.0075 17.3077 19.3548
Fr3_w_hs 0.2798 0.2376 0.0291 0.0259 0.0303 0.0258 0.0268 0.0236 90.4217 90.0673

Fr3_w_rpy 0.7203 0.6092 0.0548 0.0446 0.4442 0.3768 0.0534 0.0384 92.5864 93.6967
Fr3_w_static 0.0361 0.0284 0.0104 0.0091 0.0081 0.0073 0.0105 0.0094 70.9141 66.9014
Fr3_w_xyz 0.3725 0.3019 0.0311 0.0264 0.0247 0.0186 0.0292 0.0243 92.1611 91.9510

“-”: the symbol indicates that the set of data is missing. The bold font indicates that the indicator is the best of
all algorithms.

Table 9. Results of metric translational drift (RPE).

TUM RGB-D ORB-SLAM3 DynaSLAM DS-SLAM GY-SLAM (Ours) Improvements

Sequences RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%

Fr3_s_hs 0.0823 0.0658 0.0485 0.0419 - - 0.0486 0.0411 40.9478 37.5380
Fr3_s_static 0.0159 0.0140 0.0112 0.0100 0.0078 0.0068 0.0123 0.0107 22.6415 23.5714
Fr3_w_hs 0.4186 0.3230 0.0422 0.0379 0.0297 0.0256 0.0393 0.0350 90.6116 89.1641

Fr3_w_rpy 1.0827 0.8892 0.0777 0.0641 0.1503 0.0942 0.0746 0.0566 93.1098 93.6347
Fr3_w_static 0.0551 0.0412 0.0166 0.0146 0.0102 0.0091 0.0160 0.0142 70.9619 65.5340
Fr3_w_xyz 0.5335 0.4003 0.0443 0.0384 0.0333 0.0238 0.0415 0.0362 92.2212 90.9568

Table 10. Results of metric rotational drift (RPE).

TUM RGB-D ORB-SLAM3 DynaSLAM DS-SLAM GY-SLAM (Ours) Improvements

Sequences RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%

Fr3_s_hs 2.1441 1.8132 1.0404 0.9381 - - 1.0275 0.9218 52.0778 49.1617
Fr3_s_static 0.4062 0.3657 0.3494 0.3152 0.2735 0.2450 0.3429 0.3043 15.5835 16.7897
Fr3_w_hs 9.2855 7.1467 1.0462 0.9543 0.8142 0.7033 1.0393 0.9282 88.8073 87.0122

Fr3_w_rpy 20.0856 15.7122 1.4833 1.1780 3.0042 1.9187 1.4826 1.2572 92.6186 91.9986
Fr3_w_static 0.9887 0.7647 0.3070 0.2789 0.2690 0.2416 0.3577 0.3201 63.8212 58.1404
Fr3_w_xyz 9.8547 7.1101 0.7542 0.6201 0.8266 0.5836 0.7008 0.5635 92.8887 92.0747

Figure 7. Cont.



Sensors 2024, 24, 1374 14 of 20

Figure 7. Absolute trajectory error diagram. (a) Images (a–c), respectively, represent the ATE graphs
of ORB-SLAM3, DynaSLAM, and GY-SLAM on the Fr3_w_hs sequence; (b) Images (d–f) represent
the ATE graphs of the three algorithms on the Fr3_w_rpy sequence; (c) Images (g–i) represent the
ATE graphs of the three algorithms on the Fr3_w_xyz sequence; (d) Images (j–l) represent the ATE
graphs of the three algorithms on the Fr3_w_static sequence; (e) Images (m–o) represent the ATE
graphs of the three algorithms on the Fr3_s_hs sequence.



Sensors 2024, 24, 1374 15 of 20

5.2.2. Performance Evaluation on the Proprietary Dataset

Table 11 reveals that GY-SLAM has significantly improved the system’s performance
in terms of ATE, with the maximum improvements in RMSE and Mean reaching as high as
28.0829% and 28.4339%, respectively. Meanwhile, we noted differences in the magnitude
of improvement across various tests: test 2 demonstrated a higher increase compared
to test 3, possibly due to the sudden starts and stops of the robot in test 3, which led to
accuracy degradation. The greater improvement in test 5 over test 6 could be attributed
to the white wall in test 6, which hindered the extraction of sufficient feature points for
stable tracking. The more significant improvement in test 5 compared to test 4 is speculated
to result from the GY target detection network’s effective identification and handling of
dynamic feature points in the high-dynamic scenarios of test 5. The increase in test 5 over
test 1, and generally larger improvements in tests 4–6 compared to tests 1–3 might be due
to the rapid movement of the robot causing visual blurring, thus making it challenging to
effectively extract feature points for stable tracking. In tests 3 and 5, DynaSLAM performs
better, which may be attributed to its ability to effectively identify and process dynamic
feature points within the range of near-point extraction. In contrast, other algorithms do not
distinguish between near and far points, leading to the inclusion of unstable distant points
in tracking, thus affecting the system’s accuracy. In summary, GY-SLAM demonstrates
superior accuracy and robustness in diverse motion modes, scene textures, and dynamism
levels, consistently outperforming ORB-SLAM3 in all sequences and exceeding DynaSLAM
in most data sequences.

Table 11. Absolute trajectory error (ATE) results on Wheeled Dataset.

Test
Wheeled ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements

Sequence RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%

1 Mid_hd 0.0238 0.0193 0.0249 0.0212 0.0224 0.0178 6.0391 8.0776
2 Mid_ld_r 0.1714 0.1609 0.1919 0.1690 0.1505 0.1354 12.1878 15.8675
3 Mid_ld_rr 0.2019 0.1912 0.1671 0.1546 0.1832 0.1727 9.2641 9.6695
4 Slow_ld 0.1848 0.1548 0.1819 0.1524 0.1739 0.1429 5.8898 7.6930
5 Slow_hd 0.3166 0.3068 0.2153 0.2077 0.2277 0.2195 28.0829 28.4339
6 Slow_hd_w 0.1960 0.1875 0.1768 0.1714 0.1482 0.1432 24.4045 23.6476

According to Table 12, GY-SLAM has significantly improved the system’s RMSE
and Mean in terms of ATE, with the improvements reaching 85.1046% and 85.3191%,
respectively. In test 3, where a handheld camera was used to continuously capture fast-
moving people and robots at close range, DynaSLAM exhibited the best performance,
reaffirming its advantage in distinguishing between near and far points. However, GY-
SLAM demonstrates higher accuracy and robustness in medium to large dynamic scenes.
These results indicate that GY-SLAM is competitive with the advanced SLAM algorithms
in our dataset. The ATE graphs obtained by evaluating different algorithms using EVO on
partial sequences of our custom dataset are shown in Figure 8.

Table 12. Absolute trajectory error (ATE) results on Handheld Dataset.

Test
Handheld ORB-SLAM3 DynaSLAM GY-SLAM (Ours) Improvements

Sequence RMSE Mean RMSE Mean RMSE Mean RMSE/% Mean/%

1 Hand1 0.2203 0.2048 0.2113 0.1998 0.1272 0.1092 42.2582 46.6652
2 Hand2 0.3537 0.2943 0.2057 0.1787 0.1059 0.0983 70.0452 66.5881
3 Hand3 0.2386 0.2281 0.0367 0.0312 0.0913 0.0862 61.7216 62.2020
4 Hand4 0.2557 0.2172 0.0432 0.0319 0.0381 0.0318 85.1046 85.3191



Sensors 2024, 24, 1374 16 of 20

Figure 8. ATE graph evaluated by EVO. (a) Images (a–c), respectively, represent the ATE graphs of
ORB-SLAM3, DynaSLAM, and GY-SLAM on the Slow_hd_w sequence; (b) Images (d–f) represent
the ATE graphs of the three algorithms on the Hand2 sequence; (c) Images (g–i) represent the ATE
graphs of the three algorithms on the Hand3 sequence; (d) Images (j–l) represent the ATE graphs of
the three algorithms on the Hand4 sequence.



Sensors 2024, 24, 1374 17 of 20

5.2.3. Tracking Time Evaluation

In practical applications, time efficiency is a crucial metric for evaluating the quality
of SLAM systems. A time consumption experiment for various algorithms using the
‘Fr3_w_rpy’ sequence from the TUM RGB-D dataset is conducted. During this experiment,
the average time taken by different algorithms to track a single frame is measured, as well
as the time consumed during various key stages of the tracking process. The results are
shown in Table 13, with time units in milliseconds.

Table 13. Time consumption costs of the Tracking thread.

Phase ORB-SLAM3 DynaSLAM GY-SLAM (*) GY-SLAM (Ours)

Segmentation/Detection × 979.3763 10.1302 5.9166
Feature Extraction 8.1198 23.4962 8.9929 8.9754

Light Track × 1.2840 × ×
Geometric Correction × 116.9251 × ×

Track 5.6370 3.5474 4.1580 4.0961
Total 14.5976 1251.2515 24.2180 19.9078

GY-SLAM (*), in which YOLOv5s is used instead of the GY model for target detection. “×” indicates that the
algorithm does not have this function.

The results in Table 13 prove that GY-SLAM achieves real-time processing, with each
stage consuming less than 10 ms. Compared to GY-SLAM (*), the lightweight GY model
brings a 41.5944% increase in detection speed and a 17.7975% improvement in SLAM
operation speed. Although GY-SLAM takes an additional average of 5.3102 ms per frame
compared to ORB-SLAM3, it significantly enhances the system’s accuracy and robustness
in dynamic scenes.

5.2.4. Efficacy of Feature Extraction and Mapping

The ORB feature extraction effects of GY-SLAM on different datasets are illustrated in
Figure 9.

Figure 9. The feature extraction effects of GY-SLAM on different datasets. The green boxes represent
the ORB feature points extracted by the SLAM system.

We set the lower and upper projection limits of the occupancy grid map based on the
robot chassis obstacle-clearance height and the overall height during the transportation
of vegetable packages. To prevent any contact, we further raised the height limit by 0.1 m
above these established limits. The purely static dense point cloud, 3D octree map, and 2D
occupancy grid map constructed by GY-SLAM are illustrated in Figure 10.



Sensors 2024, 24, 1374 18 of 20

Figure 10. Efficacy of mapping. (a) The foundational purely static dense point cloud constructed by
GY-SLAM; (b) The 3D octree map generated from the dense point cloud. Color is positively correlated
with depth; (c) The 2D occupancy grid map generated from the dense point cloud.

6. Discussion

The performance of the GY-SLAM system in this study showcases the advancements
in visual SLAM technology in dynamic environments. Our research emphasizes the
importance of integrating VSLAM systems with deep learning in dynamic scenes, and
the experimental results reveal limitations of GY-SLAM compared to DynaSLAM and
DS-SLAM in processing near-field dynamic targets, targets predefined as static but actually
in motion, and targets predefined as dynamic but stationary. These findings provide crucial
directions for future research. We recommend that future studies consider integrating deep
learning with geometric information to enhance the system’s ability to judge the motion
state of targets and explore new strategies for distinguishing between near and far points
to adapt to scenes of varying scales. Both of these approaches would further improve the
accuracy and robustness of VSLAM systems.

In a broader context, this study highlights the application potential of VSLAM tech-
nology in the field of automated intelligent logistics. The improvements in the GY-SLAM
system are not only crucial for enhancing the performance of robots in plant factory trans-
portation environments, but they are also likely to have a positive impact on technological
innovation in the logistics industry. We firmly believe that by integrating target detection
technology, future VSLAM systems will be better adapted to complex and variable real-
world application environments, making significant contributions to the advancement of
automation technologies.

7. Conclusions

This study introduces a novel SLAM system, GY-SLAM, designed to enhance the
localization, target detection, and mapping capabilities of robots in dynamic plant fac-
tory transportation environments. GY-SLAM extends ORB-SLAM3 by adding a target
detection thread, a dense mapping thread, and a dynamic feature elimination module. In
the target detection thread, GY-SLAM utilizes the GY target detection network, which is
based on YOLOv5 and integrates GhostNet lightweight technology, CoordConv coordinate
convolution, the CARAFE up-sampling operator, and the SE attention mechanism. These
enhancements not only improve the model’s detection accuracy and generalization capabil-
ity but also notably reduce the model’s complexity. While improving mAP@0.5 by 0.514%,
the model simultaneously reduces parameters by 43.976%, computation by 46.488%, and



Sensors 2024, 24, 1374 19 of 20

weight by 41.752%. In the dense mapping thread, GY-SLAM utilizes dense point cloud
data collected by depth cameras. After undergoing statistical filtering for noise reduction
and voxel down-sampling, it can construct a dense point cloud for navigation, along with
the corresponding 3D octree map and 2D occupancy grid map.

Performance evaluations on the TUM RGB-D and our proprietary dataset indicate
that GY-SLAM exhibits significant improvements in dynamic environments compared to
ORB-SLAM3, especially in handling high-dynamic scenes. It shows a remarkable 92.58%
improvement in RMSE for ATE. Compared to YOLOv5s, the GY model brings a 41.5944%
improvement in detection speed and a 17.7975% increase in SLAM operation speed to the
system. In comparison with the current state-of-the-art DynaSLAM and DS-SLAM systems,
GY-SLAM demonstrates superior performance in some dynamic sequences. However, we
also noticed that GY-SLAM sometimes underperforms DynaSLAM and DS-SLAM in low-
dynamic sequences and in processing near-field targets. In the future, we plan to integrate
deep learning and geometric information to more accurately process dynamic feature
points on all targets, while simultaneously improving strategies for distinguishing near
and far points to further optimize GY-SLAM. Our long-term goal is to integrate GY-SLAM
into the plant factory transportation robot, enabling it to support advanced tasks such
as recognition, transportation, and route planning, thereby contributing to technological
innovation in the logistics industry.

Author Contributions: Conceptualization, X.X., Y.Q. and Z.Z.; methodology, Y.Q.; software, Y.Q. and
Z.Y.; validation, X.X., Y.Q., Z.Z., Z.Y., H.J., M.X. and C.Z.; formal analysis, Y.Q. and Z.Y.; investigation,
Y.Q., Z.Y., H.J. and M.X.; resources, X.X. and Z.Z.; data curation, Y.Q. and C.Z.; writing—original
draft preparation, Y.Q.; writing—review and editing, Y.Q., X.X. and Z.Z.; visualization, Y.Q., H.J.,
M.X. and C.Z.; supervision, X.X., Y.Q., Z.Z., Z.Y., H.J., M.X. and C.Z; funding acquisition, X.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Key Research and Development
Program of China Project (No. 2021YFD2000700), Henan Province Science and Technology Tacking
Project of China Project (No. 232102110294), Luoyang City Public Welfare Special Project of China
Project (No. 2302031A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this are the publicly available TUM RGB-D dataset
and the publicly available Open Images dataset. They can be downloaded at the following links:
1. TUM RGB-D dataset (https://cvg.cit.tum.de/data/datasets, accessed on 28 November 2023);
2. Open Images dataset (https://storage.googleapis.com/openimages/web/index.html, accessed on
11 September 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kazerouni, I.A.; Fitzgerald, L.; Dooly, G.; Toal, D. A survey of state-of-the-art on visual SLAM. Expert. Syst. Appl. 2022, 205,

117734. [CrossRef]
2. Yang, G.; Chen, Z.; Li, Y.; Su, Z. Rapid Relocation Method for Mobile Robot Based on Improved ORB-SLAM2 Algorithm. Remote

Sens. 2019, 11, 149. [CrossRef]
3. Barros, A.M.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A Comprehensive Survey of Visual SLAM Algorithms. Robotics 2022, 11,

24. [CrossRef]
4. Liu, Y.; Miura, J. RDMO-SLAM: Real-Time Visual SLAM for Dynamic Environments Using Semantic Label Prediction with

Optical Flow. IEEE Access 2021, 9, 106981–106997. [CrossRef]
5. Lu, X.; Wang, H.; Tang, S.; Huang, H.; Li, C. DM-SLAM: Monocular SLAM in Dynamic Environments. Appl. Sci. 2020, 10, 4252.

[CrossRef]
6. Bahnam, S.; Pfeiffer, S.; Croon, G.C.H.E. Stereo Visual Inertial Odometry for Robots with Limited Computational Resources. In

Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021.

https://cvg.cit.tum.de/data/datasets
https://storage.googleapis.com/openimages/web/index.html
https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/10.3390/rs11020149
https://doi.org/10.3390/robotics11010024
https://doi.org/10.1109/ACCESS.2021.3100426
https://doi.org/10.3390/app10124252


Sensors 2024, 24, 1374 20 of 20

7. Qin, Y.; Mei, T.; Gao, Z.; Lin, Z.; Song, W.; Zhao, X. RGB-D SLAM in Dynamic Environments with Multilevel Semantic Mapping.
J. Intell. Robot. Syst. 2022, 105, 90. [CrossRef]

8. Brasch, N.; Bozic, A.; Lallemand, J.; Tombari, F. Semantic Monocular SLAM for Highly Dynamic Environments. In Proceedings of
the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

9. Lu, Z.; Xu, H.; Yang, X.; Peng, C.; Wang, Y. RGB-D visual SLAM optimization method based on YOLOv5 in dynamic environment.
Manuf. Autom. 2023, 45, 191–195.

10. Liu, Y.; Miura, J. RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods. IEEE Access 2021, 9, 23772–23785.
[CrossRef]

11. Yu, Y.; Zhu, K.; Yu, W. YG-SLAM: GPU-Accelerated RGBD-SLAM Using YOLOv5 in a Dynamic Environment. Electronics 2023, 12,
4377. [CrossRef]

12. Saputra, M.R.U.; Markham, A.; Trigoni, N. Visual SLAM and Structure from Motion in Dynamic Environments: A Survey. ACM
Comput. Surv. 2018, 51, 1–36. [CrossRef]

13. Liu, G.; Zeng, W.; Feng, B.; Xu, F. DMS-SLAM: A General Visual SLAM System for Dynamic Scenes with Multiple Sensors. Sensors
2019, 19, 3714. [CrossRef] [PubMed]

14. Li, F.; Chen, W.; Xu, W.; Huang, L.; Li, D.; Cai, S.; Yang, M.; Xiong, X.; Liu, Y.; Li, W. A Mobile Robot Visual SLAM System with
Enhanced Semantics Segmentation. IEEE Access 2020, 8, 25442–25458. [CrossRef]

15. Yu, C.; Liu, Z.; Liu, X.J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018.

16. Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–7083. [CrossRef]

17. Ren, Y.; Xu, B.; Choi, C.L.; Leutenegger, S. Visual-Inertial Multi-Instance Dynamic SLAM with Object-level Relocalisation. In
Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27
October 2022.

18. Zhang, L.; Wei, L.; Shen, P.; Wei, W.; Zhu, G.; Song, J. Semantic SLAM Based on Object Detection and Improved Octomap. IEEE
Access 2018, 6, 75545–75559. [CrossRef]

19. Zhang, X.; Zhang, R.; Wang, X. Visual SLAM Mapping Based on YOLOv5 in Dynamic Scenes. Appl. Sci. 2022, 12, 11548.
[CrossRef]

20. Guan, H.; Qian, C.; Wu, T.; Hu, X.; Duan, F.; Ye, X. A Dynamic Scene Vision SLAM Method Incorporating Object Detection and
Object Characterization. Sustainability 2023, 15, 3048. [CrossRef]

21. Wang, Y.; Bu, H.; Zhang, X.; Cheng, J. YPD-SLAM: A Real-Time VSLAM System for Handling Dynamic Indoor Environments.
Sensors 2022, 22, 8561. [CrossRef]

22. Song, Z.; Su, W.; Chen, H.; Feng, M.; Peng, J.; Zhang, A. VSLAM Optimization Method in Dynamic Scenes Based on YOLO-Fastest.
Electronics 2023, 12, 3538. [CrossRef]

23. Wu, W.; Guo, L.; Gao, H.; You, Z.; Liu, Y.; Chen, Z. YOLO-SLAM: A semantic SLAM system towards dynamic environment with
geometric constraint. Neural Comput. Appl. 2022, 34, 6011–6026. [CrossRef]

24. Liu, J.; Li, X.; Liu, Y.; Chen, H. RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments. IEEE Robot.
Autom. Lett. 2022, 7, 9573–9580. [CrossRef]

25. Song, S.; Lim, H.; Lee, A.J.; Myung, H. DynaVINS: A Visual-Inertial SLAM for Dynamic Environments. IEEE Robot. Autom. Lett.
2022, 7, 11523–11530. [CrossRef]

26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

27. Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

28. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

29. Liu, R.; Lehman, J.; Molino, P.; Such, F.P.; Frank, E.; Sergeev, A.; Yosinski, J. An intriguing failing of convolutional neural networks
and the CoordConv solution. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
Montréal, QC, Canada, 3–8 December 2018.

30. Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE: Content-Aware ReAssembly of FEatures. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

31. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10846-022-01697-y
https://doi.org/10.1109/ACCESS.2021.3050617
https://doi.org/10.3390/electronics12204377
https://doi.org/10.1145/3177853
https://doi.org/10.3390/s19173714
https://www.ncbi.nlm.nih.gov/pubmed/31461943
https://doi.org/10.1109/ACCESS.2020.2970238
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1109/ACCESS.2018.2873617
https://doi.org/10.3390/app122211548
https://doi.org/10.3390/su15043048
https://doi.org/10.3390/s22218561
https://doi.org/10.3390/electronics12173538
https://doi.org/10.1007/s00521-021-06764-3
https://doi.org/10.1109/LRA.2022.3191193
https://doi.org/10.1109/LRA.2022.3203231
https://doi.org/10.1109/TRO.2021.3075644

	Introduction 
	Related Work 
	Improved System Description 
	Overview of the GY-SLAM System 
	ORB-SLAM3 
	Dynamic Feature Elimination 
	Dense Mapping 

	Overview of the GY Lightweight Target Detection Network 
	GhostNet Neural Network 
	CoordConv Coordinate Convolution 
	CARAFE Up-Sampling Operator 
	SE Attention Mechanism 


	Equipment and Methods 
	GY Model Training 
	GY-SLAM Dataset Acquisition 

	Experimental Results 
	GY Experimental Results 
	Lightweight Network Comparative Experiment 
	Ablation Experiment 
	Attention Mechanism Comparative Experiment 
	Algorithm Comparative Experiment 

	GY-SLAM Experimental Results 
	Performance Evaluation on the TUM RGB-D Dataset 
	Performance Evaluation on the Proprietary Dataset 
	Tracking Time Evaluation 
	Efficacy of Feature Extraction and Mapping 


	Discussion 
	Conclusions 
	References

