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Abstract: A collection of smaller, less expensive sensor nodes called wireless sensor networks
(WSNs) use their sensing range to gather environmental data. Data are sent in a multi-hop manner
from the sensing node to the base station (BS). The bulk of these sensor nodes run on batteries,
which makes replacement and maintenance somewhat difficult. Preserving the network’s energy
efficiency is essential to its longevity. In this study, we propose an energy-efficient multi-hop routing
protocol called ESO-GJO, which combines the enhanced Snake Optimizer (SO) and Golden Jackal
Optimization (GJO). The ESO-GJO method first applies the traditional SO algorithm and then
integrates the Brownian motion function in the exploitation stage. The process then integrates
multiple parameters, including the energy consumption of the cluster head (CH), node degree of
CH, and distance between node and BS to create a fitness function that is used to choose a group
of appropriate CHs. Lastly, a multi-hop routing path between CH and BS is created using the GJO
optimization technique. According to simulation results, the suggested scheme outperforms LSA,
LEACH-IACA, and LEACH-ANT in terms of lowering network energy consumption and extending
network lifetime.

Keywords: wireless sensor networks; snake optimizer; golden jackal optimization; energy efficient;
multi-hop; routing

1. Introduction

A WSN is a network made up of numerous sensor nodes dispersed within a certain
region. To enable data collection, transfer, and analysis, these nodes can be wirelessly
connected to one another [1,2]. WSNs are becoming more and more appealing for a
wide range of application fields, including military applications, emergency response and
security, environmental monitoring, health and medical, automated industrial control,
smart cities, transportation and logistics, and entertainment [3–5]. WSNs’ low cost and ease
of deployment have led to their widespread application in many different industries. But
energy is scarce and sensor node batteries are hard to replace. Therefore, it is imperative to
address the issue of the energy usage of networks and increase the network’s lifespan [6,7].

Given that the primary cause of node energy consumption is wireless communica-
tion [8], energy-efficient communication protocols are essential for drastically reducing
network energy consumption and increasing network lifetime. Of these protocols, the
clustering routing protocol is a notable example of an essential subset in the field of energy-
efficient WSN communication protocols. It has proven to be a very successful method for
energy conservation in WSNs with limited energy supplies. Organizing sensor nodes into
multiple clusters, each with a CH and additional common nodes, is the core idea behind
the cluster-based routing protocol. The common nodes in each cluster gather information
and send it to the CH. Following data collection, the regular nodes’ data packets are re-
ceived, combined, and processed by the CHs, which subsequently forward the processed
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and combined data to BS. The clustered routing protocol is essential for WSNs’ energy
conservation since it reduces energy usage and helps manage overhead traffic [9–12].

The key idea of network clustering is intimately related to how well the clustered
routing protocol affects network energy consumption. As communication distance reduces,
so does the amount of energy used for communication inside clusters. Given that CHs
use more energy to perform functions like receiving, fusing, and transferring data than
normal nodes, choosing the right CHs is essential for enhancing network load balancing.
Furthermore, the utilization of a multi-hop communication technique is efficacious in
mitigating communication energy consumption, particularly in light of the high energy
expenditure linked to long-distance communication. This work employs the SO optimiza-
tion technique to solve the NP-hard problem [13–17] of optimal CH selection, and the
best route between CHs is determined during the data transmission phase using the GJO
optimization technique. Below is a summary of this research work’s main contributions:

(1) The ESO-GJO method adds a Brownian motion function to the SO algorithm’s ex-
ploitation stage in order to avoid local optima.

(2) The proposed approach uses SO to select the optimal CHs and considers variables
such as energy and distance when building the fitness function.

(3) The suggested algorithm uses GJO to determine the route from CH to BS and initializes
the GJO population through backward learning.

The structure of the rest of the article is summarized below:

• Section 2: Summarizes previous work in related fields.
• Section 3: Introduces the energy model and network model.
• Section 4: Offers a detailed introduction to the algorithm proposed in this article.
• Section 5: Performance metrics simulation demonstration and comparison.
• Section 6: Summarizes the research work in this paper and suggests future work to be

carried out.

2. Related Works

Numerous routing methods have been developed with the goal of increasing energy
efficiency and lengthening network lifetime in order to address the problem of limited
energy in WSNs. LEACH [18] is one of the most well-known clustering routing methods
for WSNs. Each iteration of the LEACH protocol is divided into two stages: clustering
and stabilization. During the clustering phase, each node generates a random integer
between 0 and 1, which it subsequently compares to the value obtained from a threshold
calculation. The node is not elected as CH in the following round if the random number is
less than the threshold and it was not elected in the preceding 1/p (p is the proportion of
nodes that became CH in the current round) rounds. During the stabilization phase, the
sensor nodes transmit the information they have collected to the CH. After completing
data fusion on the gathered data, CH sends the information in a single hop to the aggregate
node. The CH needs more energy to run because it has a higher mission load than other
nodes, which is a major drawback of the LEACH algorithm. The energy-efficient multi-hop
routing protocol L-LEACH (Energy Balanced) [19] solely takes the distance component
into account. Like LEACH, L-LEACH is divided into two phases. Every round, the energy
load is split equally among the network nodes and new CHs are chosen. Nonetheless, a
noteworthy constraint of the algorithm is its disregard for the algorithm’s intricacy and
the corresponding network overhead. This oversight could be considered a negative in
assessing the overall performance of L-LEACH. In order to send data from orphan nodes in
the network that cannot be fully covered to the BS, Jerbi et al. [20] designed the O-LEACH
(orphan-LEACH) protocol. The protocol proposes two solutions. One method is to have
a cluster member serve as a gateway, enabling non-clustered nodes to join the cluster by
designating that gateway node as the CH, so that the data of the isolated nodes can be
sent through the gateway node aggregation to the CH of the cluster where the gateway
node is located. Another solution is that cluster members can form subclusters with orphan
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nodes, and the first orphan node to join will serve as the cluster head for that subcluster. It
is important to remember that this approach works only in situations when there is a finite
number of cluster members. The Multi-Hop LEACH (MH-LEACH) protocol was created by
Neto et al. [21] to find the best pathways to the BS via several intermediate CHs. According
to this protocol, each CH broadcasts an advertisement message in order to build its routing
table according to the strength of the signal it receives. However, they are forwarded
to the CH to be checked for possible looping or an opposite direction before employing
these routes. C Long et al. [22] and Tanushree Agarwal et al. [23] propose LEACH-ANT
and LEACH-IACA protocols, respectively, both of which are based on LEACH for cluster
head selection and utilize an ant colony algorithm to find the optimal path in the inter-
cluster transfer phase. However, the algorithm suffers from local optimization and slow
convergence speeds.

Swarm intelligence has a lot of potential for WSN routing optimization. In order to
extend the network life cycle, Gobi Natesan et al. [24] proposed a clustering algorithm
combining Mayfly and Aquila called MFA-AOA. The algorithm uses MFA for CH selection
using variables like energy and distance, among others, to build the fitness function and
choose CHs. The algorithm uses AOA to select the optimal route between CH and BS. But
the algorithm does not adequately consider the complexity. Y. Yao et al. [25] presented the
IAOAR routing protocol, which is based on the Archimedean optimization technique and
can reduce energy efficiency. The algorithm selects the optimal CH based on AOA. Based
on variables such the CH’s residual energy, the distance between clusters, and the CH’s
distance from the BS, IAOAR builds the fitness function for choosing the best CHs.To deter-
mine the shortest path between CHs, the algorithm employs an ant colony optimization
technique. However, it is important to remember that this approach does not handle net-
work heterogeneity, which could be considered in future enhancements. An energy-efficient
clustering technique, called EPOA-CHS (Enhanced Pelican Optimization Algorithm for
Selecting Optimal CH Set), was proposed by Wang, Z. et al. [26]. The algorithm uses POA
for optimal CH selection. EPOA-CHS builds the fitness function for choosing the CH set
using characteristics like node energy and inter-cluster distance. However, EPOA-CHS
is designed as a single-hop clustering protocol, which means that it can only operate
within single-hop communication. This characteristic may affect its applicability in specific
network scenarios where multi-hop communication is more advantageous. Punithavathi
et al. [27] introduced BWO-IACO, an energy-efficient clustering approach based on the
combination of Ant Colony Optimization and Black Widow Optimization. Using BWO,
the algorithm chooses a suitable set of CHs. The fitness function used to choose CHs is
composed of several criteria, including node centrality, node degree, and intra-cluster. The
algorithm uses improved ACO for inter-cluster routing. However, the technique does
not account for how data aggregation affects data transmission energy. Vinitha et al. [28]
suggested a multi-hop routing protocol with Cat Swarm Optimization (CSO) and Salp
Swarm Optimization (SSA) to lower the energy consumption and latency of wireless sensor
networks. The algorithm uses LEACH to select CHs and C-SSA to select the optimal hops.
Energy, distance, and latency are among the elements that make up the fitness function
used to choose the best hops. However, the applicability of the algorithm to large-scale
networks has not been fully considered, which may be a topic for development or further
research. To minimize network power consumption, Senthil, G.A. et al. [29] proposed
a routing protocol capable of efficient cluster head election and path optimization. The
protocol combines Lightning Search Algorithm and Particle Swarm Optimization and is
called PSO-LSA. However, the protocol focuses too much on orphan nodes, which may
lead to degradation of the performance of the protocol.

3. Preliminaries

This section furnishes details regarding the network model and energy model.
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3.1. Network Model

Figure 1 illustrates the structure of the WSNs.

Figure 1. Cluster-based WSN with CHs.

The following factors are taken into account when creating the network model:

• In WSNs, every sensor node has the same initial energy.
• Distances between nodes are calculated using Euclidean distance.
• Within the sensing area, sensor nodes are haphazardly placed and maintain a fixed

location once deployed.
• The BS can be positioned either within or outside the screening region, and it remains

stationary.
• The sensor node as a cluster member transmits the collected environmental data to

the CH.
• The aggregated data are transferred to the BS via CH.

3.2. Energy Model

The standard first-order radio model, as described in [30,31], is the foundation for this
article’s estimation of the nodes’ energy consumption. Equation (1) gives the transmitting
node’s energy usage, which is referred to as ETX(l, d). This computation is useful when
a node sends l bits of data to a receiving node that is located d away. Furthermore,
Equation (2) establishes the receiving node’s energy consumption, which is represented by
the symbol ERX(l).

ETX(l, d) =
{

lEelec + lϵ f sd2, d ≤ d0
lEelec + lϵmpd4, d > d0

(1)

ERX(l) = lEelec (2)

Here, ϵ f s and ϵmp, respectively, represent the energy consumption coefficients of
the amplifier circuit for the free-space fading model and the multipath fading model.
Furthermore, the transmission and receiving circuits’ energy consumption coefficient is
denoted by Eelec. Equation (3) establishes the threshold, which is represented as d0 and acts
as the border between the two attenuation models. The transmission uses the free-space
fading model if the distance d is less than d0, which results in an energy consumption of
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lϵ f sd2 for the amplifier circuit. On the other hand, the multipath fading model is applied
where d > d0, resulting in an energy consumption of lϵmpd4 for the amplifier circuit.

d0 =

√
ϵ f s

ϵmp
(3)

Data are received by the CH from the cluster, and it uses some energy to transfer the
aggregated data to the BS. Consequently, it becomes imperative for the CH to possess a
sufficient reservoir of energy to effectively relay data to the BS. The energy level of the CH
is represented by the letter ECH ,

ECH = l · n
k
· (Eelec + EDA) + l · εmp · d4

toBS (4)

where Eelec is the energy used by the transmitter. EDA is the energy necessary for data
aggregating, and a data packet is represented by the symbol l. When transmitting over
long distances to a base station, as shown by d4

toBS, the transmitter amplifier’s energy usage
is represented by ϵmp. The energy consumption of non-cluster heads is shown by ENCH .

ENCH = l · Eelec + l · ε f s · d4
toCH (5)

Within a specific context, the symbol l denotes a data packet, Eelec denotes the trans-
mitter’s energy consumption, ϵ f s denotes a transmitter amplifier in a free condition, d2

toBS
denotes the CH’s short distance, and d4

toBS denotes the BS’s long distance.

4. Proposed Method

We will provide a detailed introduction to the proposed ESO-GJO protocol in this
section. Each iteration of the ESO-GJO protocol encapsulates both the CH selection phase
and the subsequent data transmission stage, amalgamating these crucial processes within
every round. In the cluster head selection phase, we use the SO optimization algorithm for
cluster head selection and in the data transmission phase, we use the GJO optimization
algorithm for optimal path selection. In addition, the fitness function plays a crucial role in
the SO algorithm and GJO, which is an indicator of the degree of superiority of a solution,
and provides a search direction for the algorithm. Through the rational design of the
fitness function, we can help the algorithm to find the optimal solution of the problem
faster. The choice of fitness function should be determined according to the needs of the
specific problem, and it can be defined based on the constraints of the problem and the
objective function. Figure 2 shows the flow block diagram of the ESO-GJO algorithm.

4.1. CH Selection Stage
4.1.1. CH Selection Using SO

In this section, we describe how to use the SO [32] optimization algorithm for optimal
cluster head set selection for wireless sensor networks. The suggested algorithm’s main goal
is to carefully choose CHs from the pool of regular sensor nodes, strategically integrating
considerations for energy conservation. This overarching aim is geared towards proactively
elongating the network’s operational lifetime.

An individual in SO symbolizes a whole solution. It represents the ideal locations of the
CHs for the proposed algorithm’s CH selection. Let X = [Xi,1(t), Xi,2(t), Xi,3(t), . . . , Xi,D(t)]
represent the ith member of the population, and let X(i,D)(t) = (xid(t), yid(t)), 1 ≤ i ≤ N,
1 ≤ d ≤ D represent each component’s coordinates for the sensor nodes chosen to serve as
CH. Every single person has the same number of dimensions represented by the letter D;
this corresponds to the quantity of CH.
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Figure 2. ESO-GJO flowchart.

The snakes choose a random position during the exploration phase and adjust their
position in relation to it if Q < 0.25. The following steps are followed to mimic the
exploration phase:

Xi,m(t + 1) = Xrand,m(t)± c2 × Am × ((Xmax − Xmin)× rand + Xmin) (6)
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The ith male position is shown by Xi,m, the random male position is indicated by
Xrand,m, and the male’s ability to find food is indicated by Am. The calculation for this is
as follows:

Am = exp
(− frand,m

fi,m

)
(7)

where c2 = 0.05 is defined, the fitness of Xrand,m is denoted by frand,m, and the ith member
of the male group’s fitness is denoted by fi,m.

Xi, f = Xrand, f (t + 1)± c2 × A f × ((Xmax − Xmin)× rand + Xmin) (8)

where A f is the female’s capacity to locate food and may be computed as follows; a random
female’s position is indicated by Xrand, f ; and position of the ith female is indicated by Xi, f .

A f = exp
((
− f(rand, f )

)
/ f(i, f )

)
(9)

In this case, the fitness of Xrand, f is represented by f(rand, f ), and the ith member of the
female group’s fitness is denoted by fi, f .

The constant coefficient c3 is utilized to update the snake’s position throughout the
exploiting phase. In this study, instead of using the constant coefficient c3, we use the
Brownian motion function to keep the algorithm from reaching a local optimum. One of
many physical processes in which a quantity continuously fluctuates between tiny, random
fluctuations is called Brownian motion. It is believed that Brownian motion is a Markov
process coupled with a Gaussian process. The normal (Gaussian) equation was altered by
the algorithm’s changes to the size and number of agents, which are used to determine the
Brownian motion steps, and the Brownian motion was finalized (Equation (10))

f (δ) =
1√
2πσ

exp
(
− (δ− µ)2

2σ2

)
(10)

The following formula can be used to define the temperature Temp.

Temp = exp
(
−t
T

)
(11)

Here, t represents the current iteration, and T signifies the maximum number of iterations.
The definition of the quantity of food is Q. The following formula can be used to

determine how much food is consumed.

Q = c1 ∗ exp
(

t− T
T

)
(12)

where c1 = 0.5. If the temperature > 0.6, snakes only travel in the direction of food.

X(i,j)(t + 1) = X f ood ± f (δ)× Temp× rand×
(

X f ood − X(i,j)(t)
)

(13)

where X f ood represents the best individual’s position and Xi,j represents the individual’s
position. The snake will go into either the fighting or mating mode if the temperature is
less than 0.6.

In Fight Mode,

Xi,m(t + 1) = Xi,m(t) + f (δ)× FM× rand×
(

Q× Xbest, f − Xi,m(t)
)

(14)

where Xi,m represents the male position, FM denotes the fighting prowess of the male
agent, and Xbest, f represents the best individual’s position within the female group.

Xi, f (t + 1) = Xi, f (t) + f (δ)× FF× rand×
(

Q× Xbest,m − Xi, f (t)
)

(15)
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where FF denotes the female agent’s combat prowess, Xi, f indicates that she is the top
member of the male group, and Xbest,m represents her position.

FM is represented by Equation (16) and FF is represented by Equation (17):

FM = exp
(− fbest, f

fi

)
(16)

FF = exp
(− fbest,m

fi

)
(17)

where fi is the agent fitness, fbest,m is the best agent of the male group, and fbest, f is the best
agent of the female group. In Mating Mode,

Xi,m(t + 1) = Xi,m(t) + f (δ)×Mm × rand×
(

Q× Xi, f (t)− Xi,m(t)
)

(18)

Xi, f (t + 1) = Xi, f (t) + f (δ)×M f × rand×
(

Q× Xi,m(t)− Xi, f (t)
)

(19)

where Mm&M f denotes the ability of the male and female to mate, respectively; Xi, f and
Xi,m, respectively, denote the positions of the ith agents within the female and male groups.
These values can be calculated as follows:

Mm = exp
(− fi, f

fi,m

)
(20)

M f = exp

(
− fi,m

fi, f

)
(21)

Replacement of worst males and females selected from hatched eggs:

Xworst,m = Xmin + rand× (Xmax − Xmin) (22)

Xworst, f = Xmin + rand× (Xmax − Xmin) (23)

where Xworst,m is the worst individual in the male group; Xworst, f is the worst individual in
the female group.

Finally, the globally optimal individual vector is used as the optimal CH set.

4.1.2. Fitness Function of SO

The fitness function used by the SO algorithm to determine the ideal set of CHs is
made up of the following variables and formulas.

(1) Energy consumption of CH:
This is the first parameter of the fitness function. Our goal is to prioritize nodes with
low energy consumption as CH. Let Ec(CHi) represent the CHi’s energy consumption,
and assume that 1 ≤ i ≤ K, K is the number of CHs.
Consequently, minimizing the objective function f1 is our aim:

f1 =
1
K

K

∑
i=1

Ec(CHi) (24)

(2) Distance between node and BS:
This is the second parameter of the fitness function. Our goal is to prioritize the node
with the shortest distance to the common node and BS as the CH. Let D

(
sj, CHi

)
be the

distance from intra-cluster node sj to cluster head node CHi. Let D(CHi, BS)D(CHi, BS)
be the distance from CHi to BS where 1 ≤ i ≤ K, K represents the quantity of CHs and
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1 ≤ j ≤ M, M represents the quantity of cluster members. Consequently, minimizing
the objective function f2 is our aim:

f2 =
K

∑
i=1

1
M

(
M

∑
j=1

D
(
sj, CHi

)
+ D(CHi, BS)

)
(25)

(3) Node Degree of CH: This is the third parameter of the fitness function. High-degree
nodes are given preference to become CH in the ESO-GJO CH selection process.
Consequently, our goal is to maximize the objective function f3 as follows

f3 = Ndeg(CHi) (26)

Our suggested SO algorithm’s fitness function is to minimize the aforementioned f1,
f2, and f3 functions. As a result, the following is the fitness function for our algorithm:

f = δ1 × f1 + δ2 × f2 + δ3 × f3 (27)

where the weights for the goal function are provided by the constants δ1, δ2, and δ3. The
total of these constants ought to equal one. Minimizing the cumulative objective function
is our aim.

4.2. Data Routing Stage
4.2.1. Routing Algorithm Using GJO

The goal of the routing problem we will now solve is to reduce the maximum possible
transmission distance between CHs in a routing path. The goal of the routing problem we
will now solve is to reduce the maximum possible transmission distance between CHs in
the routing path. This section describes how to use the GJO [33] optimization algorithm for
optimal path selection for wireless sensor networks.

The starting population is generated by random initialization in the GJO method-
ology, yet this approach is vulnerable to the issue of an excessively dispersed or locally
concentrated population.

Due to this circumstance, the population diversity of the classic GJO algorithm is
inadequate, which significantly impairs the ensuing iterative optimization search.

Thus, in order to broaden the algorithm’s search space and boost population variety,
we chose to initiate the population in this study using a backward learning technique.

The following is the definition of the reverse learning strategy:
Let Xt

i =
[

xt
i,1, xt

i,2, · · · , xt
i,j, · · · , xt

i,d

]
be the ith individual of the current popula-

tion. The general inverse learning strategy produces a general inverse solution of Xt
i

as Ot
i =

[
ot

i,1, ot
i,2, · · · , ot

i,j, · · · , ot
i,d

]
.

ot
i,j = Z(k)

(
At

i + Bt
i
)
− xt

i,j (28)

Z(k) = [aZ(k− 1) + c]modM (29)

At
j = min

(
xt
(i,j)

)
,Bt

j = max
(

xt
(i,j)

)
(30)

M is an enormous positive number, a is the multiplier of the interval (0, M), and
c is incremental. Z(0) is the seed of the random number. Z(k) approximately obeys a
uniform distribution in the interval [0, M− 1]; its maximum period is M, and [Z(k)/M]
approximately obeys a uniform distribution in the interval [0, 1).

The two primary steps of the GJO algorithm are finding prey and encircling and
attacking it. These processes represent the exploration and exploitation of populations,
respectively.
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(1) The stage of exploration or hunting for prey
This section proposes GJO’s exploration plan. Jackals can sense and follow their prey
due to their innate instincts, yet sometimes the prey escapes and is hard to catch. As a
result, the females follow the males and lead the pack in search of additional prey.

Y1(t) = YM(t)− E.|YM(t)− rl.Prey(t)| (31)

Y2(t) = YFM(t)− E.|YFM(t)− rl.Prey(t)| (32)

where t is the current iteration. Prey(t) represents the prey’s position vector, while
YM(t) and YFM(t) represent the locations of the male and female jackals. The updated
positions of the male and female jackals with respect to the prey are shown by Y1(t)
and Y2(t).
E indicates the prey’s evasive energy and is represented by Equation (33):

E = E1 ∗ E0 (33)

The prey’s initial energy level is represented by E0, while its decreasing energy is
represented by E1.

E0 = 2 ∗ r− 1 (34)

where r can be any integer between 0 and 1.

E1 = c1 ∗ (1− (t/T)) (35)

where c1 = 1.5; the rounds of iteration are denoted by T and rl is calculated by
Equation (36):

rl = 0.05 ∗ LF(y) (36)

LF is calculated by Equation (37):

LF(y) = (0.01× (µ× σ))/
((∣∣∣v((1/β))

∣∣∣)) (37)

where µ and v are random numbers between 0 and 1, β = 1.5

Y(t + 1) = (Y1(t) + Y2(t))/2 (38)

(2) The stage of exploitation or encircling and leaping for prey
The mathematical model of joint roundup of male and female jackals is shown in
Equations (39) and (40):

Y1(t) = YM(t)− E.|rl.YM(t)− Prey(t)| (39)

Y2(t) = YFM(t)− E.|rl.YFM(t)− Prey(t)| (40)

Finally, the position vector Y1 is used as the optimal path.

4.2.2. Fitness Function of GJO

The GJO method builds the fitness function using the following parameters in order
to find the optimal route between CH and BS:

(1) Distance between CH and BS: The further the distance between the CH and the BS,
the more energy is required to transmit the data. Therefore, the CH close to the BS is
selected to form the best path. Consequently, minimizing the objective function f1 is
our aim:

f1 = 1/K
K

∑
(i=1)

D(CHi, BS) (41)
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(2) The ratio of the distance between CH and BS to the inter-cluster head distance:
The fitness function’s second parameter will be this ratio. Here, maximizing the
inter-cluster distance and minimizing the distance between CHi and BS are the main
objectives. Consequently, minimizing the objective function f2 is our aim:

f2 =

 K

∑
(i=1)

D(CHi, BS)

/

 K

∑
(i=1,j=1)

D
(
CHi, CH j

) (42)

(3) Residual energy of CH: This is the fitness function’s third parameter. Our goal is to
prioritize the CH with more remaining energy as the next hop. Let Eres(CHi) denote
the residual energy of CH; K denotes the number of CHs. Consequently, our goal is to
maximize the objective function f3 as follows:

f3 =
K

∑
i=1

Eres(CHi) (43)

The following three functions f1, f2, and f3, are to be minimized as the fitness function
for our suggested GJO method. As a result, the following is the fitness function for
our algorithm:

f = ω1 × f1 + ω2 × f2 + ω3 ×
1
f3

(44)

where ω1, ω2, and ω3 are constants that give the objective functions weights. The total
of these constants ought to equal 1. Minimizing the objective function is our aim.

4.3. The Pseudo-Code of the Proposed Algorithm

Algorithm 1 is a pseudo-code that uses the SO algorithm to select the best set of CHs
and Algorithm 2 is a pseudo-code that uses the GJO method to find the best route between
CH and BS.

Algorithm 1 SO-Clustering

Input: Set of sensor nodes: S = {s1, s2, s3, · · · , sn}
Output: Optimal positions of cluster heads CH = {CH1, CH2, CH3, · · · , CHm}

Step1: Initialize population X;
Step2:
for i = 1:N do

Calculate Fitness(Xi) using Equations (24)–(27);
end for
Take the minimum value of Fitness as Gbest;
Take the individual whose Fitness value is Gbest as X f ood;
/*Diving the swarm into two equal groups males and females*/
Define Nm = N

2 as the male individual numbers;
Define N f = N − Nm as the female individual numbers;
for i = 1:N do

Calculate Fitnessm(Xi,m);
end for
for i = 1:N do

Calculate Fitness f

(
Xi, f

)
;

end for
Take the minimum value of Fitnessm as fbest,m;
Take the minimum value of Fitness f as fbest, f ;
Take the male individual whose Fitnessm value is fbest,m asXbest_m;
Take the female individual whose Fitness f value is fbest, f asXbest_ f ;
Step3:
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Algorithm 1 Cont.

while t < tmax do
Define Temp using Equation (11);
Define food Quantity Q using Equation (12);
if Q < 0.25 then

/*Exploration phase (no food)*/
for i = 1:Nm do

Define Am using Equation (7);
Update position of Xnew_m using Equation (6);

end for
for i = N f :N do

Define A f using Equation (9);
Update position of Xnew_ f using Equation (8);

end for
else

/*Exploitation phase (food exists) */
if Temp > 0.6 then

for i = 1:Nm do
Using the Brownian motion function to replace the constant coefficients C3, Update
position of Xi,new_m using Equation (13);

end for
for i = N f :N do

Using the Brownian motion function to replace the constant coefficients C3, Update
position of Xi,new_ f using Equation (13);

end for
else

if rand > 0.6 then
/*Fight Mode*/
for i = 1:Nm do

Define FM using Equation (16);
Using the Brownian motion function to replace the constant coefficients C3, Up-
date position of Xnew_m using Equation (14);

end for
for i = N f :N do

Define FM using Equation (17);
Using the Brownian motion function to replace the constant coefficients C3, Up-
date position of Xnew_ f using Equation (15);

end for
else

/*Mating Mode*/
for i = 1:Nm do

Define Mm using Equation (20);
Using the Brownian motion function to replace the constant coefficients C3, Up-
date position of Xnew_m using Equation (18);

end for
for i = N f :N do

Define M f using Equation (21);
Using the Brownian motion function to replace the constant coefficients C3, Up-
date position of Xnew_ f using Equation (19);

end for
end if
Change the worst male and female Equations (22) and (23);

end if
end if
if fbest,m < fbest, f then

Gbest = f(best,m);
X f ood = Xbest_m;

else
Gbest = f(best, f );
X f ood = Xbest_ f ;

end if
t = t + 1;

end while
Step4: Repeat Step3 until it reaches the maximum number of iterations;
Step5: Return best solution X f ood /*Optimal cluster head*/
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Algorithm 2 GJO-Routing

Input: Set of cluster heads CH = {CH1, CH2, CH3, · · · , CHm}
Output: Route R

Initializing prey population Y using Equations (28)–(30);
Step2:
while t < tmax do

for i = 1:N do
Calculate Fitness(Yi) using Equations (41)–(44);

end for
Sort the Fitness;
The first value of Fitness as f1 (Male Jackal position);
Take the prey whose Fitness value is f1 as Y1;
The second value of Fitness as f2 (FeMale Jackal position);
Take the prey whose Fitness value is f2 as Y2;
for i = 1:N do

Define the Evading Energy E of prey using Equations (33)–(35);
Define rl using Equations (36) and (37);
if E > 1) then

Update the position of male jackal Y1 using Equation (31);
Update the position of female jackal Y2 using Equation (32);
Update jackal position Ynew using Equation (38);

else
Update the position of male jackal Y1 using Equation (39);
Update the position of female jackal Y2 using Equation (40);
Update jackal position Ynew using Equation (38);

end if
end for
for i = 1:N do

if Fitness
(

Y(i,new)

)
< Fitness(Yi) then

Fitness(Yi) = Fitness
(

Y(i,new)

)
;

Yi = Y(i,new);
end if

end for
Sort the Fitness;
Y1 = bestprey
t = t + 1;

end while
Step 3: Repeat Step 2 until it reaches the maximum number of iterations;
Step 4: Return Y1, R← {R + Yi,1}

5. Simulation Results
5.1. Simulation Settings

Using the 100 × 100, 200 × 200, 300 × 300 (m2) setup area range for the experiment,
compare the clustering impact of the technique proposed with the other three comparative
algorithms. The following algorithms are compared with the suggested approaches: PSO-
LSA [29], LEACH-IACA [22], and LEACH-ANT [23]. Identical sets of network input
setup parameters are used by all methods. The simulation related parameters are shown
in Table 1.
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Table 1. Simulation-related parameter.

Parameters Value

Network Area 100 × 100, 200 × 200, 300 × 300 (m2)
Number of nodes N = 100, 200, 300

Sink node location
(50 m, 150 m)
(100 m, 250 m)
(150 m, 350 m)

E0 0.5 J
Packet Size 4000 Bits

Eelec 50 nJ/bit
ϵ f s 10 nJ/bit/m2

ϵmp 0.0013 pJ/bit/m4

EDA 5 nJ/bit/signal
d0 70 m

5.2. Residual Energy

This performance metric is the sum of the remaining energy of the surviving nodes in
each round. For the length of the simulation, a fixed initial energy of 0.5 J has been used.
The ESO-GJO technique presented in this research is compared with PSO-LSA, EPOA-CHS,
LEACH-IACA, and LEACH-ANT residual energy for a scenario with 100 nodes. The
results are displayed in Figure 3a. It is noted that LEACH-IACA and LEACH-ANT lost
their remaining energy after 1500 cycles. On the other hand, PSO-LSA,EPOA-CHS, and
ESO-GJO managed to live with 15.29 J, 16.41 J, and 18.13 J, respectively. All nodes of
PSO-LSA and EPOA-CHS die after the 2400th round. However, the proposed ESO-GJO
still has 0.08 J of energy remaining. Figure 3b shows the results of comparing the residual
energy of ESO-GJO with other protocols for the scenario of 200 nodes. It is observed that at
the end of 1000 rounds, all the energies of LEACH-IACA and LEACH-ANT are exhausted.
However, PSO-LSA, EPOA-CHS, and ESO-GJO have 55.30 J, 55.01 J, and 56.79 J remaining,
respectively. With PSO-LSA, all nodes die at round 2500. However, the proposed ESO-GJO
still has 2.67 J of energy remaining. Figure 3c shows the results of comparing the residual
energy of ESO-GJO with other protocols for the scenario of 300 nodes. It is observed that at
the end of 800 rounds, all the energies of LEACH-IACA and LEACH-ANT are exhausted.
However, PSO-LSA,EPOA-CHS, and ESO-GJO have 94.14 J, 94.95 J, and 95.40 J remaining,
respectively. With PSO-LSA and EPOA-CHS, all nodes die at round 2350. However, the
proposed ESO-GJO still has 0.05 J of energy remaining. Figure 3a–c show that the proposed
ESO-GJO increases network residual energy over the compared LSA, LEACH-IACA, and
LEACH-ANT protocols.

5.3. Network Lifetime

This section compares the network lifetimes of the PSO-LSA,EPOA-CHS, LEACH-
IACA, and LEACH-ANT algorithms with the suggested ESO-GJO algorithm. The time
span from the sensor network’s inception to the death of the final node is referred to in this
study as the network lifetime. Four different metrics, FND (First Node Death), HND (Half
Nodes Death), MND (Most Nodes Death), and LND (Last Node Death), are analyzed for
different protocols. Table 2 records the number of rounds in which each indicator occurs in
different scenarios for ESO-GJO, PSO-LSA, EPOA-CHS, LEACH-IACA, and LEACH-ANT.
Figure 4a–c shows more visually the results of ESO-GJO compared to other protocols for
the four metrics in the section above for scenarios with 100 nodes, 200 nodes, and 300 nodes.
Consequently, our suggested ESO-GJO can more effectively increase the network lifetime.
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(a)

(b)

(c)
Figure 3. Residual energy in each round. Scenarios with (a) 100 nodes; (b) 200 nodes; (c) 300 nodes.
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Table 2. Round and lifetime.

No. of Rounds

Simulation Scenario Protocol FND HND MND LND

Number of nodes is 100

ESO-GJO 2080 2350 2383 2448
PSO-LSA 1805 2191 2233 2332
EPOA-CHS 1920 2249 2290 2392
LEACH-IACA 755 1060 1116 1214
LEACH-ANT 701 1023 1035 1094

Number of nodes is 200

ESO-GJO 1091 2231 2287 2863
PSO-LSA 1698 2492 2628 2402
EPOA-CHS 1322 2334 2424 2623
LEACH-IACA 775 889 913 1012
LEACH-ANT 821 925 947 1038

Number of nodes is 300

ESO-GJO 683 2333 2393 2737
PSO-LSA 1275 2230 2275 2407
EPOA-CHS 879 2268 2343 2565
LEACH-IACA 483 546 553 584
LEACH-ANT 653 901 934 1010

5.4. Live Nodes Number

The total lifespan of a WSN is indicated by the number of live nodes in the network.
The proposed ESO-GJO protocol and the other three protocols are compared for the number
of surviving nodes every round for the scenarios of 100, 200, and 300 nodes during the
course of the network lifetime in Figure 5a–c. In the case of 100 sensors, the proposed
ESO-GJO algorithm extends the network lifetime by about 8.14%, 5.24%, 119.87%, and
135.76%, respectively, compared to other routing protocols. In the case of 200 sensors, the
proposed ESO-GJO algorithm extends the network lifetime by about 22.3%, 8.46%, 192.2%,
and 180.6%, respectively, compared to other routing protocols. In the case of 300 sensors,
the proposed ESO-GJO algorithm extends the network lifetime by about 16.9%, 4.97%,
181.5%, and 363.5%, respectively, compared to the other three protocols. As a result, the
ESO-GJO protocol’s suggested approach can successfully lower energy dissipation and
increase the network’s lifespan.

5.5. Packet Delivery

The total number of packets that the BS has received is the definition of this network
performance indicator. Regarding network throughput, the ESO-GJO approach performs
better than the LSA, LEACH-IACA, and LEACH-ANT algorithms in Figure 6a (100 nodes).
Specifically, ESO-GJO’s network throughput outperformed PSO-LSA,EPOA-CHS, LEACH-
IACA, and LEACH-ANT by 7.89%, 5.44%, 119.3%, and 133.1%, respectively. The ESO-
GJO algorithm outperforms PSO-LSA,EPOA-CHS, LEACH-IACA, and LEACH-ANT in
terms of network throughput when Figure 6b (200 nodes) is considered. Specifically,
ESO-GJO’s network throughput outperformed PSO-LSA,EPOA-CHS, LEACH-IACA, and
LEACH-ANT by 6.62%, 4.70%, 167.36%, and 156.22%, respectively. Finally, the ESO-GJO
algorithm outperforms PSO-LSA, EPOA-CHS, LEACH-IACA, and LEACH-ANT in terms
of network throughput when Figure 6c (300 nodes) is considered. Specifically, ESO-GJO’s
network throughput outperformed PSO-LSA, EPOA-CHS, LEACH-IACA, and LEACH-
ANT by 1.02%, 0.58%, 308.26%, and 149.70%, respectively. These outcomes unequivocally
demonstrate the improved network throughput that the ESO-GJO algorithm achieves in
many contexts as well as its superiority over the other protocols.
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(a)

(b)

(c)
Figure 4. Network life cycle. Scenarios with (a) 100 nodes; (b) 200 nodes; (c) 300 nodes.



Sensors 2024, 24, 1348 18 of 22

(a)

(b)

(c)
Figure 5. Live nodes number in each round. Scenarios with (a) 100 nodes; (b) 200 nodes; (c) 300 nodes.
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(a)

(b)

(c)
Figure 6. Packet delivery in each round. Scenarios with (a) 100 nodes; (b) 200 nodes; (c) 300 nodes.
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5.6. Energy Consumption

This network performance metric displays the total energy utilized by all of the active
nodes in the network throughout each cycle. Based on simulation results, Figure 7a–c illustrate
that the suggested ESO-GJO model outperforms PSO-LSA,EPOA-CHS, LEACH-IACA, and
LEACH-ANT. By taking the objective function’s energy impact into account, the ESO-GJO
algorithm reduces network energy consumption and lengthens the network’s lifespan.

(a)

(b)

(c)
Figure 7. Energy consumption in each round. Scenarios with (a) 100 nodes; (b) 200 nodes; (c) 300 nodes.
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6. Conclusions

We have created a novel ESO-GJO method for energy-constrained WSNs in this study.
In order to minimize energy usage, we construct an objective function and select the set of
optimal CHs. The experimental results have been published together with a comparison of
the LSA, LEACH-IACA, and LEACH-ANT algorithms that are currently in use. In the test
scenarios with 100, 200, and 300 sensor nodes, respectively, the algorithm is run. The results
indicate that, in comparison to alternative protocols, the strategy outlined in this study
is successful in reducing network energy consumption and improving network lifetime.
However, the algorithm still has limitations; the performance metric FND falls short in
large-scale networks. With the aforementioned restrictions in mind, future research can
build on these findings to prolong the FND emergence period for large-scale WSNs.
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