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Abstract: The trajectory or moving-target tracking feature is desirable, because it can be used in
various applications where the usefulness of UAVs is already proven. Tracking moving targets can
also be applied in scenarios of cooperation between mobile ground-based and flying robots, where
mobile ground-based robots could play the role of mobile landing pads. This article presents a novel
proposition of an approach to position-tracking problems utilizing artificial potential fields (APF) for
quadcopter UAVs, which, in contrast to well-known APF-based path planning methods, is a dynamic
problem and must be carried out online while keeping the tracking error as low as possible. Also, a
new flight control is proposed, which uses roll, pitch, and yaw angle control based on the velocity
vector. This method not only allows the UAV to track a point where the potential function reaches
its minimum but also enables the alignment of the course and velocity to the direction and speed
given by the velocity vector from the APF. Simulation results present the possibilities of applying
the APF method to holonomic UAVs such as quadcopters and show that such UAVs controlled on
the basis of an APF behave as non-holonomic UAVs during 90◦ turns. This allows them and the
onboard camera to be oriented toward the tracked target. In simulations, the AR Drone 2.0 model of
the Parrot quadcopter is used, which will make it possible to easily verify the method in real flights
in future research.

Keywords: quadcopter UAV; artificial potential field; trajectory tracking; holonomic UAV

1. Introduction

Flight through a planned path and trajectory tracing is the most ordinary capability
of modern unmanned aerial vehicles. Plenty of research focuses on different approaches
to the problem of finding the optimal path planning and tracking, considering movement
among obstacles in an uncertain environment, and exploring the possibilities of swarm
flights in complex scenarios. One useful technique to achieve smooth and optimal path
routing is a method based on the idea of artificial potential fields and their variations. Their
popularity is due to their fundamental rules, which define a velocity vector field over the
considered area, derived from gradients of the potential function, which reaches minimums
at targets and maximums at obstacles. A combination of repulsive and attractive forces
and related velocity vectors push robots away from obstacles and toward targets.

There are plenty of articles dedicated to the problem of planning UAV trajectories.
The main issue to be solved during the process of path planning is the local minimum,
where a robot could be trapped while it moves towards the target. A local minimum is
usually the effect of a sum of several potential fields located around obstacles, waypoints,
and final targets. In [1], a new planning algorithm is split into local and global horizons
by applying deterministic annealing. Introducing a temperature parameter improves the
efficiency of obstacle avoidance. The annealing and tempering strategies make a robot able
to avoid local minimums. Another solution for discarding the weakness of a traditional
potential field, which involves falling into local errors, is to combine an artificial potential
field with a rapidly exploring random tree method. This kind of approach is described
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in [2], where the called PF-RRT method accelerates the process of searching through the
tree and takes full advantage of the potential field. The quality of path generation is
also improved by using the principle of triangle inequality. The drawbacks in global
optimization capacity and speed are also a barrier to implementing artificial potential
fields in practical applications. To address this, a new stimulating rotating repulsive force,
defined in a new form of potential function, with higher effectiveness and practicability,
was presented in [3]. The rotating artificial potential field (R-APF) also prevents a UAV
from becoming trapped in a local minimum. In [4], an improved artificial-potential-field
method is demonstrated. The authors introduce a collision-risk assessment mechanism and
virtual subtargets, respectively, to avoid unreasonable obstacle avoidance and solve the
problems of local minimums and unreachable targets. Artificial-potential-field methods
are also applicable in path planning of multi-UAV formations and are challenging for
non-holonomic UAVs. The main disadvantage of APFs is the lack of initial constraints on
the UAV’s heading, which can cause a fall into a local minimum or target unreachability.
Therefore, in [5], a piecewise-potential-field-based method of path planning is formulated.
A suitable design of a piecewise potential function defining a potential field vector that
meets the kinematic constraints of the UAV solves the problem of path planning in different
flight states, and an additional potential field vector protects each formation member from
getting stuck in the local minimum. A combination of attractive and repulsive forces is given
in [6] to achieve formation obstacle avoidance. Traditional artificial potential fields may also
fail in the case of fixed-wing UAVs due to a limited turn radius. Even the global minimum
can become unreachable, and applying such APF methods results in the instability of
formation flights, as proven in [7]. The presented local and asymmetrical potential field
(LA-PF) allows for its application to formation flights, since it can be considered as a
candidate for a Lyapunov function, which has a global minimum and defines the velocity
vector field in such a way that position control is achieved by speed control along the
direction of the tracked position movement and by heading control in the longitudinal
direction. Violent heading changes near the tracked position do not cause a rapid turn
with a minimal radius. The local and asymmetrical potential function is also a framework
for future research on nonlinear PID control loops [8], where the definition of LA-PF is
extended with the integral and derivative terms of PID control. Therefore, position-tracking
control becomes more resistant to disturbances like wind gusts, and steady-state tracking
errors can be minimized. Since artificial potential fields allow the creation of a spatial
distribution of repulsive vectors, they are commonly used in obstacle avoidance by UAVs,
including dynamic obstacles. Optimal path planning among static and dynamic obstacles is
presented in [9]. The method is implemented into the Parrot AR Drone 2.0 Quadcopter UAV
model. Results are obtained from a simulation in Gazebo Simulator by Robot Operating
System (ROS). Path planning in unknown environments with an aerial robot is presented
in [10]. The conventional artificial potential field is used, but flight paths are modified in
real time depending on a map of the surroundings gathered by a 3D LiDAR sensor. The
rotation-based component of the APF helps to avoid local minimums. In [11], the presented
method of path planning transforms the discrete path model into a continuous one in
order to realize path tracking control based on sliding mode control (SMC). An obstacle
avoidance strategy based on artificial potential field and considering a possible sudden
motor loss-of-effectiveness fault of the UAV can be found in [12].

Among all the research, it is difficult to find a work dedicated to the problem of tracking
a moving point, which would be solved by an artificial potential field for a quadcopter.
The problem is similar to that of formation flight but with no repulsive relations between
UAVs inside the formation. In the case of a quadcopter, the main issue to be solved is also
to design control that will guide a holonomic vehicle according to the velocity vector from
the potential field, keeping its speed, position, and course as close to those resulting from
the free movement of the reference position. Only then is it possible to track a random
unknown trajectory in real time, not only along a predefined planned path, and this is the
main significance of the work cited above in contrast to those based on path planning [13]
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(even if a short time horizon of the ground target movement prediction is available [14])
and on path optimization: particle swarm optimization and pigeon-inspired optimization.
The present work presents a method that applies an artificial-potential-field approach and
modified flight control for quadcopters to achieve the tracking of a freely moving point
with unknown dynamics. Thus, in such conditions, MPC (model predictive control) [15] or
Kalman filter [16] based methods cannot be applied, because the estimation or prediction
of the target’s movement within the time horizon is not possible, or the model of the
target is not similar to the UAV in contrast to [17], where sliding mode control is applied.
The proposed method can also be used in applications where a virtual moving point is
controlled by a ground station to achieve complex shapes of trajectories with the use of any
local positioning system. The research is performed in MATLAB by using the AR Drone
2.0 model. To present the effectiveness of tracking the control, three different reference
trajectory shapes are used in simulations, which include sharp turns as the most critical
section to be tracked. In contrast to the presented simulation results, in [18], the AR Drone
2.0 model with Gazebo software was used to plan flight paths with cubic polynomials
and Bezier curves. The presented method can also be a source of training data for neural
networks, and this will be an aim of future work, so this is another advantage. There are
four sections following the introduction in this work. The next section is about quadcopter
dynamics.

2. Quadcopter Dynamics (AR Drone)

Mathematical modeling of a quadcopter assumes that its body and propellers are rigid
and symmetric and that it has 6 degrees of freedom (6 DoF) ([19]). Equations of motion use
two reference frames, i.e., B—body frame and G—global frame, which can be considered
as inertial. Figure 1 presents a dynamic model of a quadcopter.

Figure 1. Dynamic model of quadcopter, FF, FB, FL, FR—thrusts of motors (subscripts: F—forward,
B—back, R—right, L—left), F—total thrust, mg—force of gravity, ωF, ωB, ωR, ωL—angular rates of
each motor, ϕ—roll angle, θ—pitch angle, Ψ—yaw angle, xB, yB, zB—axes of body frame, xG, yG,
zG—axes of global reference frame.

The relationship between the frames of reference is given by rotation matrix R from
Equation (1).

R =

cos(ϕ) ∗ cos(Ψ)− cos(θ) ∗ sin(ϕ) ∗ sin(Ψ) − cos(Ψ) ∗ sin(ϕ)− cos(ϕ) ∗ cos(θ) ∗ sin(Ψ) sin(θ) ∗ sin(Ψ)
cos(θ) ∗ cos(Ψ) ∗ sin(ϕ) + cos(ϕ) ∗ sin(Ψ) cos(ϕ) ∗ cos(θ) ∗ cos(Ψ)− sin(ϕ) ∗ sin(Ψ) − cos(Ψ) ∗ sin(θ)

sin(ϕ) ∗ sin(θ) cos(ϕ) ∗ sin(θ) cos(θ)

 (1)

where ϕ, θ, and Ψ are the roll, pitch, and yaw angles, respectively, i.e., the angles between
the axes of the body frame and the axes of the inertial frame.
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The equations of motion are defined in the inertial frame. The quadcopter’s accelera-
tion is the result of thrust, gravity, and linear friction. Thus, the quadcopter’s linear motion
is defined as follows:

mẍ =

 0
0

−mg

− R · TB − FD (2)

with m—mass of the quadcopter, g—acceleration of gravity, ẍ—linear acceleration of the
quadcopter, R—rotation matrix (Equation (1), TB—thrust in the body frame (Equation (3)),
and FD—drag force (Equation (5)).

Thrust in the body frame can be obtained from:

TB =

 0
0

FR + FL + FF + FB

 = k ·

 0
0

ω2
R + ω2

L + ω2
F + ω2

B

 (3)

with ωi—angular speed of the i-th motor and k—constant dependent on the use of a specific
motor and propeller.

The drag force on each axis of the inertial frame can be defined by the equation for the
frictional force taken from fluid dynamics:

Fd =
1
2
· ρ · CD · A · V2 (4)

with ρ—the fluid’s (air’s) density, A—reference area (propeller cross section), CD—dimensionless
constant, and V—linear speed.

Equation (4) can be simplified for the purpose of modeling the quadcopter. The drag
forces in the inertial frame are as follows:

FD =

−kd · ẋ
−kd · ẏ
−kd · ż

 (5)

with kd—drag coefficient, ẋ, ẏ, and ż—linear speeds on each axis of the inertial frame.
Euler’s equations for rigid body dynamics are used to derive the rotational equations

of motion.
I · ω̇ + ω × (I · ω) = τB (6)

with I—inertial matrix, ω—angular velocity vector, and τ—vector of external torques in
the body frame.

Because the symmetrical rigid body of the quadcopter can be modeled as two uniform
rods crossed at the origin of the body frame, having points of mass at each end (motors),
the inertial matrix is given by:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (7)

where Ixx, Iyy, Iyy are the inertia on each axis.
The vector of external torques is as follows:

τ =

τϕ

τθ

τΨ

 =

 k · (ω2
R · L − ω2

L · L)
k · (ω2

F · L − ω2
B · L)

b · (ω2
R + ω2

L − ω2
F − ω2

B)

 (8)

where b is an appropriately dimensioned constant (from the definition of drag-induced
torque), and k is a constant dependent on the use of a specific motor and propeller.
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Equation (6) can be rewritten as the following form:

ω̇ = I−1 · (τB − ω × (ω · I)) (9)

Substituting the inertial matrix (Equation (7)) and the vector of external torques
(Equation (8)) into Equation (9), we finally obtain a rotational equation of motion:

ω̇ =

τϕ · I−1
xx

τθ · I−1
yy

τΨ · I−1
zz

−


Iyy−Izz

Ixx
· ωy · ωz

Izz−Ixx
Iyy

· ωx · ωz
Ixx−Iyy

Izz
· ωx · ωy

 (10)

Equations (2) and (10) create a dynamic model of the quadcopter, which can be used
in numerical simulations. In our work, we applied a ready model from the AR Drone 2.0
library for MATLAB/SIMULINK R2022a.

3. Artificial Potential Field and Quadcopter Control

In trajectory-tracking flight scenarios, only an attraction artificial potential field is
required. In such cases, the minimum of the potential function is located at a target point
to be tracked by the quadcopter. The attraction potential field must be symmetrical with
respect to the minimum, and the most popular form is given by the equation [7]:

U(xR, yR, zR) =
(
(xR − xT)

2 + (yR − yT)
2 + (zR − zT)

2
)

(11)

where xR, yR, and zR are the coordinates of the robot’s (quadcopter’s) position, and xT , yT ,
and zT are the coordinates of the point to be tracked.

The potential function’s gradient (11) is as follows:

∇U(xR, yR, zR) =

2 · (xR − xT)
2 · (yR − yT)
2 · (zR − zT)

 (12)

The definition of a velocity vector field that includes a saturation of the relative
speed, i.e., the maximum length of the gradient (12) cannot be greater than the saturation
value of Vmax, is given by:

V(xR, yR, zR) =

{
−∇U(xR.yR, zR) for|∇U(xR.yR, zR)| ≤ Vmax

− Vmax
|∇U(xR .yR ,zR)|

· ∇U(xR.yR, zR) for|∇U(xR.yR, zR)| > Vmax
(13)

with Vmax—the saturation value of the∇U(xR.yR, zR) gradient’s length and |∇U(xR.yR, zR)|—the
length of the gradient from (12).

Figure 2 presents a plot of the artificial potential function in (11) for the 2D case and
a corresponding field of velocity vectors (13). The point at the center of Figure 2a is the
minimum of the potential function. In this case, the field of velocity vectors is defined in a
local coordinate frame fixed to the minimum point. Thus, the velocity vectors’ orientation
and length come from the geometrical relationship between the minimum point and points
in its surroundings. These velocity vectors guide the quadcopter toward the potential
function’s minimum point, which can be considered stationary.

But suppose the minimum is moving with a velocity vector VTR. In such case, the field
of velocity vectors that guide the quadcopter should be considered as a superposition of
the field of velocity vectors (13) and the vector VTR. This superposition can be considered
as the field of velocity vectors in the global frame, and it looks like in Figure 3.

A control velocity vector that can be applied to the controlled quadcopter’s trajectory
is as follows:

VC(xR, yR, zR) = VT + V(xR, yR, zR) (14)
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Figure 2. Plot of an artificial potential field for the 2D case (a) and the related field of velocity
vectors (b).

Figure 3. Plot of the superposition of the field of velocity vectors 13 and vector VTR.

According to Equation (14), the control velocity vector VC is a combination of two
independent control rules. In particular, the vector V based on the gradient of the potential
function is responsible for minimizing the tracking error, and vector VT is responsible for
the synchronized movement of the tracked point and the quadcopter. Vector VT can be
determined simply as a derivative of the tracked point position.

To use vector VC as a control input, it is necessary to design control laws that transform
it into typical quadcopter control inputs, i.e., roll and pitch angles, yaw rate, and vertical
velocity. A general diagram of the control system and signal flow used for quadcopter
control is shown in Figure 4.

Figure 4. A diagram of the structure of tracking control with the artificial potential field method
applied and used signals flow.
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The inputs for the artificial-potential-field block are coordinates xT , yT , and zT of the
point to be tracked, the coordinates of the actual quadcopter position, i.e., xR, yR, and
zR, and Vmax, the saturation value of the ∇U(xR.yR, zR) gradient’s length as a constant
coefficient. The subsequent block in the control diagram calculates control signals of
roll ΦC, pitch θC, rate of yaw ΨC, and vertical speed Vh based on velocity vector VC and
the quadcopter’s actual yaw (heading) Ψ. The equations implemented in this block are
given below. The block of a Parrot quadcopter’s model was taken from the AR Drone 2.0
MATLAB toolbox.

The quadcopter’s linear speeds in the forward and longitudinal directions are achieved,
respectively, by the control of pitch and roll angles. Thus, desired roll and pitch angle
values should be derived from vector VC. To do this, it is necessary to determine the bearing
to the tracked point given in the quadcopter’s body frame. Thus, vector VC must be rotated
in the z-axis of the global coordinate frame by the quadcopter’s current heading angle Ψ.
Next, the x-axis and y-axis components of rotated vector VCr can be used to determine the
required bearing. The rotation is defined by Equation (15) and the bearing by Equation (16).

VCr =

 cos(Ψ) sin(Ψ) 0
−sin(Ψ) cos(Ψ) 0

0 0 1

 · VC (15)

where Ψ is the quadcopter’s current heading angle, and VC is the velocity vector from
Equation (14).

ΨB = atan2(VCr(y), VCr(x)) (16)

where ΨB is the bearing to the tracked point, and VCr(x) and VCr(y) are the components of
vector VCr (Equation (14)).

Having vector VCr and bearing ΨB, set points for the roll and pitch control loop can be
obtained. The AR Drone 2.0 model of the Parrot quadcopter defines a range of desired roll
and pitch angles from −1 to 1, which corresponds, respectively, to a range of longitudinal
linear speed from −3.78 to 3.78 m/s and of transverse linear speed from −2.88 to 2.88 m/s.
The resultant maximum horizontal speed of the Parrot quadcopter is about 4.75 m/s. The
maximum vertical speed is about 0.88 m/s, which corresponds to control signal Vh = 1.
Calculations of desired roll and pitch angles should consider this range. The equations
defining desired roll and pitch angles are as follows:

ϕC =
|VCr(x, y)|

2.88
· sin(ΨB) (17)

θC =
|VCr(x, y)|

3.78
· cos(ΨB) (18)

where ΨB is the bearing to the tracked point, and |VCr(x, y)| is the length of the x-y plane
projection of vector VCr, limited to a range of < 0, 1.0 >.

The ratios of |VCr(x, y)| and 2.88 for ϕC and of |VCr(x, y)| and 3.78 for θC determine the
gain magnitudes of longitudinal and traverse speed control. In the case of our research, the
range of |VCr(x, y)| was < 0, 1.0 >, thus these speed values were limited to 1 m/s. These
gains can be changed relative to the maximum horizontal speed of the tracked point.

The vertical speed of the quadcopter Vh is just the z-axis component of vector VC,
limited to the range < −1.0, 1.0 >.

Vh =

{kVh · VC(z) for kVh · VC(z) ≤ 1 ∩ kVh · VC(z) ≥ −1)
1 for kVh · VC(z) > 1)

−1 for kVh · VC(z) < −1)
(19)

where kVh is the gain coefficient which regulates the climb rate.
The rate of yaw, which makes the quadcopter rotate around the z-axis of the global

frame, depends on the heading error, i.e., the difference between the quadcopter’s actual
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heading Ψ and the heading obtained from vector VC. Therefore, the equation for the yaw
rate signal is as follows:

Ψ̇C = kΨ̇ · (atan2(VC(y), VC(x))− Ψ)

π
(20)

with kΨ̇-gain coefficient, Ψ-quadcopter’s actual heading, VC(y), VC(x)-components of
vector VC, and (atan2(VC(y), VC(x))− Ψ)-heading error in range < −π, π >.

In the AR Drone 2.0 model, all control signals’ ranges (i.e., Vh, ϕC, θC, and Ψ̇C) are
from −1 to 1, thus the heading error in Equation (20) must be divided by π.

Finally, all of the quadcopter’s required control signals, which are obtained from
velocity vector VC, are given by Equations (15)–(20). The next step of research was to design
trajectories to be tracked by the quadcopter (Parrot) and to carry out simulations visualizing
the possibilities of the proposed method, which used the designed control based on the
artificial potential field.

4. Simulation Scenarios and Results

To verify the effectiveness and control quality of the designed tracking control, three
different shapes of trajectories were designed. Each of them included altitude changes
and different turn angles. The point to be tracked was moving along those trajectories
with a constant speed, which was 0.7 m/s. In each simulated flight scenario, there was a
step change in altitude of about 0.5 m to observe vertical control possibilities (at the 60th
s of simulation). The movement of the tracked point started after a take-off command
with a delay of 20 s. The delay allowed the UAV to perform the take-off phase, during
which tracking control was not active. All reference trajectories used in the simulations are
presented in Figure 5.

In all flight scenarios, the tracked point’s initial position was located in the global
frame at coordinates x = 0.5, y = 0.5, and z = 0.5, and the quadcopter’s initial position
was at x = y = x = 0.0. Therefore, the initial tracking error was the same each time and
was about 0.86 m. The parameters impacting the flight trajectories we wanted to assess
were the saturation value of the gradient’s length Vmax and gain coefficients kΨ̇ and kVh . In
simulations, we used the following values of the gradient length’s saturation Vmax = {0.7
m/s, 1.4 m/s, 2.1 m/s, 3.78 m/s}. Because Vmax can be treated as the saturation of the
relative speed, the value of 3.78 m/s was the maximum relative speed (horizontal and
vertical). The value of 4.75 was the maximum horizontal speed for the Parrot quadcopter
corresponding to maximum roll and pitch angles. Still, the horizontal speed was limited to
1 m/s in the longitudinal and transverse directions, respectively, in Equations (17) and (18)
by setting the limit of |VCr(x, y)| to < 0, 1.0 >. Thus, Vmax impacted vertical speed most of
all, and its sum with the speed of the tracked point VT was lower than the maximum speed
of the quadcopter. The values of kΨ̇ and kVh used in the investigation were 0.5, 1.0, 2.0, and
2.5 for kΨ̇ and 0.1, 0.5, 1.0, and 1.5 for kVh , respectively.

In Figure 6, there are flight trajectories for different values of Vmax, which decide
the maximum relative speed between the tracked point and the quadcopter and how
fast the tracking error is minimized. It can easily be noticed that there is no significant
difference between trajectories for Vmax values equal to 1.4, 2.1 m/s, and 3.78 m/s. Of
course, these values are greater than the speed of the tracked point, 0.7 m/s. If we consider
that the speed of a chasing vehicle should be greater than the speed of the pursued, and
the shape of the reference trajectory has 90-degree turns, it can be concluded that the
desired speed of the quadcopter from Equation (14) will always satisfy this requirement.
Only differences in vertical position tracking between trajectories for the mentioned values
of Vmax greater than 1.4 m/s can be observed, and this means that horizontal trajectory
tracking for these values is limited by Equations (17) and (18), where the |VCr(x, y)| range
was set to < 0, 1.0 >. Despite this, overshoots in longitudinal and horizontal speed control
can still be observed. To illustrate this effect, trajectories from simulations with different
upper limits of |VCr(x, y)| are presented in Figure 7.
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Figure 5. Plot of three trajectories of the point to be tracked by the quadcopter with (1)—a rectangular
horizontal projection, (2)—a triangular horizontal projection, and (3)—a circular horizontal projection.
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Figure 6. Plot of trajectories of the point (a rectangle) to be tracked and the quadcopter for different
values of Vmax. Ref. is the reference trajectory of the tracked point; values of Vmax are 0.7 m/s, 1.4 m/s,
2.1 m/s, and 3.78 m/s.

Figure 7. Plot of trajectories of the point (a rectangle) to be tracked and the quadcopter for different
values of the upper limit of |VCr(x, y)|: 0.5, 1.0, 2.0, and 3.78. The value of Vmax was 3.78.

Figure 8 presents plots of the tracking error at different maximum values of Vmax.
Maximums of the tracking error appear at the moment of 90-degree turns and then decrease
almost to zero. When the tracking error approaches zero, the length of the velocity vector
V decreases, and the quadcopter slows down, guided only by VT , and the tracking error
increments. This happens periodically; thus, it is a good idea to design a dead zone around
the tracked point to prevent a reduction in the quadcopter’s speed near the tracked point
VT . Inside the dead zone, the velocity vector VC could be equal to the velocity vector of
the tracked point. A disadvantage of the dead zone is that the quadcopter never reaches
the tracked position, and the minimum tracking error in the steady state depends on the
radius of the dead zone. Interestingly, the maximum tracking error is greater for higher
values of Vmax. This means that a higher relative speed does not guarantee lower values of
the tracking error because it can cause an overshoot in position tracking, as can be seen in
Figure 6. On the other hand, for the value of 0.7 m/s, there are higher amplitudes of tracking
error oscillations when the quadcopter almost reaches the position of the tracked point.
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Figure 8. Plot of the tracking error for the quadcopter’s flights and different values of Vmax, i.e.,
0.7 m/s, 1.4 m/s, 2.1 m/s, and 3.78 m/s (kΨ̇ = 1.0, kVh = 1.0).

Figure 9 presents plots of control signals for the flight with Vmax = 3.78 m/s.

Figure 9. Plot of the quadcopter’s control signals (Vmax = 3.78, kΨ̇ = 1.0, kVh = 1.0), i.e., phi—
desired value of roll ϕC, theta—desired value of pitch θC, yaw rate—desired value of Ψ̇C, and vertical
speed—desired value of Vh.

In turn, Figures 10 and 11 present flight trajectories for different values of kΨ̇ and kVh ,
respectively. Any value greater than 0.5, either for kΨ̇ or for kVh , results in an increment in
the displacement of the quadcopter’s position with respect to the reference trajectory. The
lowest value of kVh , i.e., 0.1, introduces inertia into the response of the vertical control.

Figure 10. Plot of trajectories of the point to be tracked (a rectangle) and the quadcopter for different
values of kΨ̇ (Vmax = 3.78, kVh = 1.0). Ref. is the reference trajectory of the tracked point; values of kΨ̇
are 0.5, 1.0, 1.5, and 2.0.
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Figure 11. Plot of trajectories of the point to be tracked (a rectangle) and the quadcopter for different
values of kVh (Vmax = 3.78, kΨ̇ = 1.0). Ref. is a reference trajectory of the tracked point; values of kVh

are 0.1, 0.5, 1.0, and 1.5.

Figures 12–21 present similar plots for the triangle and circular reference trajectories in
sequence. The impact of the gradient length’s saturation Vmax and coefficients kΨ̇ and kVh
on the tracking error is also identical. In the cases of the rectangle and triangle trajectories,
we can notice that the quadcopter flies around the initial position of the tracked point
randomly before it starts to move. It is because of that that the quadcopter’s control is
designed to track a moving point, and so that the quadcopter’s front is facing it. Hence,
the flight of a quadcopter looks like the flight of an aircraft which is only able to circle a
stationary point.

Figure 12. Plot of trajectories of the point to be tracked (a triangle) and the quadcopter for different
values of Vmax. Ref. is the reference trajectory of the tracked point; values of Vmax are 0.7 m/s, 1.4 m/s,
2.1 m/s, and 3.78 m/s.
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Figure 13. Plot of the tracking error for the quadcopter’s flights and different values of Vmax, i.e.,
0.7 m/s, 1.4 m/s, 2.1 m/s, and 3.78 m/s (kΨ̇ = 1.0, kVh = 1.0).

Figure 14. Plot of the quadcopter’s control signals (Vmax = 3.78, kΨ̇ = 1.0, kVh = 1.0), i.e., phi—
desired value of roll ϕC, theta—desired value of pitch θC, yaw rate—desired value of Ψ̇C, and vertical
speed—desired value of Vh.

Figure 15. Plot of trajectories of the point to be tracked (a triangle) and the quadcopter for different
values of kΨ̇ (Vmax = 3.78, kVh = 1.0). Ref. is the reference trajectory of the tracked point; values of kΨ̇
are 0.5, 1.0, 1.5, and 2.0.
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Figure 16. Plot of trajectories of the point to be tracked (a triangle) and the quadcopter for different
values of kVh (Vmax = 3.78, kΨ̇ = 1.0). Ref. is the reference trajectory of the tracked point; values of
kVh are 0.1, 0.5, 1.0, and 1.5.

Figure 17. Plot of trajectories of the point to be tracked (a circle) and the quadcopter for different
values of Vmax. Ref. is the reference trajectory of the tracked point; values of Vmax are 0.7 m/s, 1.4 m/s,
2.1 m/s, and 3.78 m/s.

Figure 18. Plot of the tracking error for the quadcopter’s flights and different values of Vmax, i.e.,
0.7 m/s, 1.4 m/s, 2.1 m/s, and 3.78 m/s (kΨ̇ = 1.0, kVh = 1.0).
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Figure 19. Plot of the quadcopter’s control signals (Vmax = 3.78, kΨ̇ = 1.0, kVh = 1.0), i.e., phi—
desired value of roll ϕC, theta—desired value of pitch θC, yaw rate—desired value of Ψ̇C, and vertical
speed—desired value of Vh.

Figure 20. Plot of trajectories of the point to be tracked (a circle) and the quadcopter for different
values of kΨ̇ (Vmax = 3.78, kVh = 1.0). Ref. is the reference trajectory of the tracked point; values of kΨ̇
are 0.5, 1.0, 1.5, and 2.0.

Figure 21. Plot of trajectories of the point to be tracked (a circle) and the quadcopter for different
values of kVh (Vmax = 3.78, kΨ̇ = 1.0). Ref. is the reference trajectory of the tracked point; values of
kVh are 0.1, 0.5, 1.0, and 1.5.
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The last Figure 22 visualizes trajectories of the quadcopter when the tracked trajectory
is a circle, and there is a dead zone with different radii around the tracked point. As
mentioned, the dead zone is an area inside which the relative speed derived from the
artificial potential field should be zero. Then, the quadcopter is controlled only by vector
VT , and its movement is synchronized with the tracked point. An excessively long range
of the dead zone results in the impossibility of trajectory tracking, and we can observe a
varying displacement between the reference and the quadcopter’s trajectory. When the
quadcopter is inside the dead zone, it flies with the same speed vector VT as the tracked
point. Thus, it is unable to minimize vertical displacement. If the tracking error increases,
and the quadcopter is outside the dead zone, it starts to use the sum of vectors V and VT
and climbs toward the altitude of the tracked point. That is why we can observe a few
changes in altitude made by the quadcopter instead of a single change.

Figure 22. Plot of trajectories of the point to be tracked and the quadcopter for different radii of the
dead zone around the tracked point (Vmax = 3.78, kVh = 1.0, kΨ̇ = 1.0).

Figure 23 presents plots of the tracking error for the trajectories from Figure 22. The
tracking error’s magnitude correlates with the dead zone’s radius. Still, the decrement in
the radius increases the frequency of tracking error oscillations when it approaches zero.

Figure 23. Plot of the tracking error for different radii of the dead zone around the tracked point
(Vmax = 3.78, kVh = 1.0, kΨ̇ = 1.0).

Finally, it can be tested what happens when the radius of the dead zone is infinite or
the maximum length of the gradient, i.e., Vh, is zero. These two independent cases should
be equivalent and give the same results as in Figure 24.
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Figure 24. Plot of trajectories of the point to be tracked and the quadcopter for a radius of the dead
zone around the tracked point equal to infinity (R = in f ., Vmax = 3.78 m/s), saturation of relative
speed Vmax = 0.0 (R = 0.0 m), and the case when the radius is zero (R = 0.0 m) and Vmax = 3.78
(kVh = 1.0, kΨ̇ = 1.0).

The last Figure 25 presents results of moving point tracking for a more challenging
shape of the reference trajectory, i.e., eight-shaped.

Figure 25. Plot of trajectories of the point to be tracked and the quadcopter (R = 0.0 m, Vmax = 3.78 m/s,
kVh = 1.0, kΨ̇ = 1.0).

5. Conclusions

Waypoint navigation allows unmanned aerial vehicles to perform flights along a tra-
jectory composed of lines and arcs based on predefined points. Flying through complicated
trajectory curves requires the design of specific flight controls that predetermine a flight
route using s-curves or cubic curves. These algorithms cannot be used to track a moving
object whose trajectory is unknown, even if it is possible to determine its relative position
onboard in real time, i.e., a leader–follower framework. The artificial potential field is a
simple, well-known method to guide a UAV toward a goal among obstacles whose loca-
tions are known. This method can also be applied in tasks of position tracking of other
moving objects, whose position can be determined, or to track a complicated trajectory
generated analytically as a series of points in real time. This article presented a method
that used an artificial potential field to compose a control velocity vector that made the
Parrot quadcopter able to fly through a generated trajectory. The control velocity vector VC
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was composed of two parts, i.e., velocity vector V obtained from the potential gradient and
vector VT , the velocity of the tracked point calculated as the derivative of its position.

Simulation results presented the proposed method’s capabilities and proved that the
quadcopter could track the shape of the generated trajectory with a tracking error below
0.2–0.5 m. Only during sharp turns of about 90 degrees and greater did the tracking
error exceed a value of 1 m, but the shape of the flight trajectory was slightly distorted by
overregulation. Tuning gains of vertical and yaw controls, i.e., kVh and kΨ̇, made it possible
to reduce that distortion. Based on Figures 11, 12, 15, 16, 20 and 21, it can be stated that
values of these gains equal to about 0.5 eliminate or reduce the overregulation significantly.
Observing the impact of Vmax on flight trajectories in all cases of reference trajectory shape,
it can be concluded that the maximum relative speed does not have to be greater than the
speed of the tracked point. For higher values of Vmax saturation, the overregulation (mainly
vertically) increases along with the tracking error during turns. Determining the dead zone
around the tracked point helps to reduce oscillations of the tracking error near the tracked
point but also increases the tracking error in the steady state.

Reducing the maximum relative speed defined by Vmax to zero or setting the infinite
radius of the dead zone results in a situation where the quadcopter is unable to minimize
the tracking error. Therefore, the radius of the dead zone should be a compromise between
the allowable magnitude of the tracking error and the unwanted effect of oscillations when
the quadcopter is near the tracked point.

The main limit of the proposed method is a high dependence on the knowledge of the
actual position and speed of the tracked target. Therefore, specialized vision sensors with a
wide field of view must be utilized in experiments with real drones to determine the relative
position of the tracked target independently from the drone’s relative orientation, and this
could be challenging. In indoor experiments, a local positioning system like Optitrack or
UWB-based (ultrawideband) system successfully solves the problem. Generating a virtual
point to be tracked is another possibility of verifying the algorithm in the real world.

Although the presented results are satisfactory, instead of constant values of coeffi-
cients Vmax, kVh , and kΨ̇, which are only proportional gains, it is possible to implement PID
regulators to improve response to the altitude, heading, and linear speed changes of the
tracked point’s movement. This problem and hardware-in-the-loop tests will be the next
step in our research. The next area of further research activity will be developing control
algorithms based on neural networks, AI, or deep learning, which will use simulated or
recorded signals generated by the artificial-potential-field controller for different trajectory
shapes as a learning data set. Experimental tests with the use of a local positioning system
like OptiTrack or UWB-based system and a mobile robot as a target are also planned.
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