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Abstract: Addressing inherent limitations in distinguishing metrics relying solely on Euclidean
distance, especially within the context of geo-indistinguishability (Geo-I) as a protection mechanism
for location-based service (LBS) privacy, this paper introduces an innovative and comprehensive
metric. Our proposed metric not only incorporates geographical information but also integrates
semantic, temporal, and query data, serving as a powerful tool to foster semantic diversity, ensure
high servifice similarity, and promote spatial dispersion. We extensively evaluate our technique
by constructing a comprehensive metric for Dongcheng District, Beijing, using road network data
obtained through the OSMNX package and semantic and temporal information acquired through
Gaode Map. This holistic approach proves highly effective in mitigating adversarial attacks based
on background knowledge. Compared with existing methods, our proposed protection mechanism
showcases a minimum 50% reduction in service quality and an increase of at least 0.3 times in
adversarial attack error using a real-world dataset from Geolife. The simulation results underscore
the efficacy of our protection mechanism in significantly enhancing user privacy compared to existing
methodologies in the LBS location privacy-protection framework. This adjustment more fully reflects
the authors’ preference while maintaining clarity about the role of Geo-I as a protection mechanism
within the broader framework of LBS location privacy protection.

Keywords: location-based services; location privacy; geographical information; semantic information;
temporal information; enhanced distinguishability metrics

1. Introduction

With the development of wireless communication technology and GPS, the burgeoning
use of location-based service (LBS) applications on mobile devices underscores the critical
need for robust privacy protection [1]. When interested parties obtain the user’s daily
itinerary, it is easy for them to reason about the user’s home address, work address, special
location, etc., which leads to the disclosure of user privacy to a certain extent. Another
example is a person using a map to find the nearest hospital or church, which malicious
users can largely use to deduce that the person may have recent health problems or
religious beliefs. While users enjoy the convenience of LBS applications, the associated risk
of location privacy breaches has emerged as a pressing concern. Consequently, devising
effective location privacy-protection mechanisms has become a focal point in LBS research.

Researchers have approached the challenge of location-based privacy protection from
various perspectives. Pseudonym techniques [2], dummy location methods [3], encryption
techniques [4], and anonymity techniques [5,6] have been employed to safeguard user pri-
vacy. Pseudonymous queries [7] have also been utilized to protect query privacy. However,
these methods present their own set of challenges. Pseudonym and dummy techniques,
while easy to implement, are vulnerable to inference attacks, leading to the distortion of
location data. Encryption techniques, though secure, are time-consuming. Anonymity
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techniques, while portable, face susceptibility to replay attacks when adversaries possess
background knowledge.

Because the above techniques have their problems, and most of them cannot resist
background knowledge attacks, differential privacy [8], with its stringent mathematical
definition, was introduced into location privacy protection through geo-indistinguishability
(Geo-I) [9]. The standard differential privacy employs the Hamming metric, which is suit-
able for discrete data. In contrast, Geo-I, designed for spatial data in location-based services
(LBS) applications, utilizes the Euclidean metric. This choice aligns with the nature of
spatial data, making Geo-I a specialized variant of differential privacy tailored for location
privacy. Despite its appealing aspects, Geo-I employs a Euclidean metric to define dis-
tinguishability metrics, resulting in the same protection effect for locations with identical
Euclidean distances—a limitation this paper seeks to address. In LBS applications, not only
does location privacy need to be protected, but query privacy protection is also essential.
In contrast to Geo-I, this study considers not only the location information, location se-
mantics, and time related to location privacy to participate in the measurement but also
the query content related to query privacy. That is to say, this study integrates additional
location-related information, such as semantic, temporal, and query data, culminating in
an enhanced distinguishability metric that better withstands adversarial attacks.

In Figure 1, there are four locations: 1, 2, 3, 4 and 5. Red anchor point 1 is the protected
location, and gray anchor points 2, 3, 4 and 5 are the perturbation locations. The location
representation contains location semantics and time information, with the circle represent-
ing the location semantics and the upper-left symbol indicating the time information. If the
Geo-I mechanism is used, the requirement is a random selection of location points within
radius R. Locations 2, 3, 4, and 5 in Figure 1 can all be considered perturbation locations.
Regardless of the query content, the semantic and temporal information of location 2 is
the same as that of protected location 1, making it vulnerable to background knowledge
attacks. Suppose d(1,2) = d(1,3) using the method proposed in this paper. Location 3 will
provide a stronger protection effect due to the same semantic and time information. The
road network distance of location 5 may not be within the protected R range. Using the
enhanced indistinguishability metric, location 5 will no longer be considered a perturbation
location. Location 4 is inconsistent with the semantic and temporal properties of guard
location 1; thus, 3 and 4 will be the candidate perturbation locations. If the service simi-
larity of location 3 exceeds that of location 4, the last perturbed location will be 3. Using
the enhanced indistinguishability metric, it becomes difficult for an adversary to reason
about the protected location, even if they have some background knowledge and know the
protection mechanism.
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The primary contributions of this paper are as follows:

(1) Enriched location information: Besides geographical information, semantic and tem-
poral information is incorporated to enhance resistance against background knowl-
edge attacks.

(2) Proposed comprehensive distinguishability metric: This metric effectively measures
the degree of discrimination between locations, providing a nuanced understanding
of location-based privacy.

(3) Evaluation using real datasets: The proposed solution is assessed based on qual-
ity loss, adversary error, and distinctiveness level. Experimental data demonstrate
that the scheme ensures superior privacy protection, especially in scenarios with
dense locations, close temporal information, rich semantic information, and similar
query content.

Furthermore, our investigation delves into the practical implications and potential
applications of the proposed enhanced distinguishability metric within the broader land-
scape of location-based privacy research. By addressing the multifaceted aspects of location
information, this paper contributes to the ongoing discourse on bolstering privacy measures
in the ever-expanding realm of location-based services.

2. Relates Works

Understanding the landscape of related works is pivotal for contextualizing and
advancing research in location-based privacy protection. This section reviews existing
methodologies and frameworks, highlighting prior approaches’ strengths and limitations.

2.1. Distinguishability Metric

In the realm of distinguishability metrics, Geo-I [9] only employs the Euclidean dis-
tance, which is the most common distance calculation, as the metric, marking the pioneering
use of differential privacy in the context of location privacy. While Geo-I is rooted in the
Euclidean plane, it lacks a guarantee for location privacy on the road network. Additionally,
the Euclidean metric used in Geo-I does not faithfully reflect the actual distance between
locations, GG-I [10] takes the road network perspective and utilizes the shortest path as
its distinguishability metric, representing the road network as an undirected graph, with
graph indices employed to safeguard individual current locations. Realistically, there are
one-way and two-way streets in real life, and the undirected graph still deviates from the
metric of the actual road network. According to different application scenarios, Geo-I has
been extensively explored, incorporating various aspects such as location semantics [11],
distribution of personnel directions [12], and personalized user requirements [13,14], but
the distinguishability metric remains consistent with Geo-I.

Euclidean distance typically measures the straight-line distance between two loca-
tions in a Euclidean plane. However, the Euclidean metric may not accurately reflect the
true distance between locations, leading to inconsistency with the actual geographical
environment. However, the undirected graph considers the actual situation of the road
network but ignores the directionality of roads in the road network. As shown in Figure 2,
A and B are two physical locations, and three distance metric methods, including Euclidean
distance (1), undirected graph distance (2) and geographic distance (3). The actual distance
between A and B is the length of Path 3, while the Euclidean distance is the length of Path
1 and the undirected graph is the length of Path 2. In summary, Euclidean distance and
undirected graph do not reflect the true distance between geographical locations whether
on the road network or otherwise. For LBS location privacy protection, it is necessary to
use the actual distance between two locations in the geographical environment.
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Variants based on Geo-I are also applied to other aspects. For example, Yang et al. [15]
introduced the concept of spatiotemporal event privacy to address the challenge of accu-
rately estimating user densities within the Geo-I framework. They utilized events and their
negations as indistinguishability measures, introducing a nuanced approach to enhance
location perturbation accuracy. Kim et al. [16] further advanced this field by developing
an EM algorithm and a deep-learning-based method for user density estimation. Their
approach, employing density distribution as a distinguishability metric, represents a note-
worthy contribution to the refinement of Geo-I methodologies. Additionally, recognizing
the vulnerability of the height dimension of 3D geolocation to privacy breaches, Min
et al. [17] proposed 3D geo-indistinguishability, introducing the function d3() to measure
distance and enhance privacy safeguards in mobile crowdsourcing task allocation scenarios
using longitude, latitude, and height.

2.2. Semantic Location Privacy Protection

Damiani et al. [18,19] introduced the semantic method into single-point location
privacy protection, naming it semantic-aware fuzzy technology. This technique involves
assessing whether the region is fuzzy based on a defined threshold. If it falls below the
threshold, the neighboring cells of the region are merged to ensure it remains below the
specified value. Monreale et al. [20] pointed out that the semantic features of locations can
be expressed by time and dwell time. The time used is the active time of the location, such
as a restaurant, which generally has more people at dinner time. The dwell time indicates
the length of time the user stays in the location; for example, the stay time at the workplace
is longer than the stay time at a restaurant. Arain et al. [21] proposed an algorithm to
protect the information of mobile vehicle users and use geo-indistinguishability to obtain
a set of POIs near the source location and destination location. The semantic concept is
applied within the framework of the perturbed area optimization algorithm, and a vector
represents the location semantics, where the value of row i and column j in the vector
represents the number of people who appear in the ith location semantic region in the jth
time period in Yan et al. [11]. Kuang et al. [22] point out that location semantics represents
the true meaning behind the location and takes a distinctive approach by incorporating the
values of location semantics on the road segment based on location semantic road network,
considering both user location semantics and query location semantics. Zuo et al. [23]
extend the semantic paradigm by incorporating the semantic content of a user’s query
into the privacy-protection framework, in which a temporal-association-oriented graph is
constructed, and the temporal association probability between query content semantics
and location semantics is calculated according to the out-degree situation. In general, the
more location semantic features are extracted, the more accurate the semantic classification
and the stronger the ability to protect the user’s location privacy.
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2.3. Privacy Protection for Temporal Information

Temporal information plays a crucial role in privacy protection, as Yan et al. [11]
demonstrated, who utilized working time as a temporal characteristic of the location. The
location semantic information and temporal relationship are combined to optimize the
perturbation area. Yang et al. [15], on the other hand, focused on the user’s visited time as
the temporal information of the location, contributing to a comprehensive understanding
of privacy protection in the temporal dimension.

Suppose we know the possible location of a certain user, as well as the time and length
of stay. In Figure 3, the dashed box is the area range where the user appears, and the stay
time is a consecutive week. According to the location characteristics, there is almost no
probability that primary schools and banks need to work for one week in a row. It can be
inferred that this user has a high probability of being in the hospital, and it can be further
deduced that he may have health problems.
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The above literature primarily focuses on location distance in protecting location pri-
vacy. Euclidean distance and undirected graph distance may not accurately reflect the geo-
graphical distance of a location, introducing inconsistency with the distance-measurement
method of LBS applications. When using current location semantics, many approaches
rely on the user’s historical access probability, which may not accurately represent the
current location semantics. Additionally, when considering time, it is often combined with
location semantics. In reality, the rationality between the time of the user’s location and the
time of the disturbance location should be carefully considered. In synthesizing the rich
tapestry of related works, this paper significantly contributes to the evolving discourse on
location-based privacy protection. The proposed enhanced distinguishability metric, incor-
porating geographical, semantic, temporal, and query information, represents a notable
stride towards more comprehensive and robust privacy safeguards. Exploring semantic
location privacy and the nuanced considerations for temporal information further enrich
the proposed framework. The real-world applicability and superior privacy protection
demonstrated through empirical evaluations underscore the practical significance of the
contributions made in this study. As the landscape of location-based services continues
to evolve, this research serves as a valuable foundation for advancing privacy-protection
methodologies in a nuanced and multifaceted manner.

For a comparative analysis, Table 1 synthesizes the strengths and weaknesses of
previous works alongside the distinctive contributions introduced in this paper. The table
delineates various dimensions of location privacy, including distinguishability metrics,
semantic considerations, and temporal privacy protection, in key research endeavors. The
strengths and limitations of each approach are encapsulated, providing a succinct overview
of state-of-the-art location-based privacy protection.
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Table 1. Comparative analysis of location privacy approaches: distinguishability metrics, semantic
considerations, and temporal privacy protection in previous works and contributions of this paper.

Distinguishability
Metric

Semantic Location
Privacy

Privacy Protection for
Temporal Information

Geo-I [9] Euclidean distance Limited semantic
factors

Limited consideration of
temporal aspects

GG-I [10] Shortest path - -

Yan [11] Euclidean distance POI semantics Working time as a temporal
characteristic

Yang et al. [15] Spatiotemporal events - Enhanced temporal privacy
considerations

Kim et al. [16] Density distribution - -

Min [17] 3D geo-
indistinguishability - -

Kuang [22] - location semantics -

Zuo [23] - Query content
semantics -

This Paper Enhanced metric Comprehensive
semantics

Enriched temporal
considerations

‘-’ is used where a specific aspect is not explicitly addressed or is not a primary focus in the respective work.

Our paper’s contributions are evident, showcasing the advancements to address
identified limitations. The proposed enhanced distinguishability metric integrates geo-
graphical, semantic, temporal, and query information, departing from conventional metrics
like Euclidean distance. Semantic considerations are broadened to encompass diverse ele-
ments such as POI semantics and query content, ensuring a more nuanced understanding
of location semantics and defending against attacks caused by query content. Further-
more, our framework enriches temporal privacy protection by considering the location’s
opening time (working time) to resist the leakage of location privacy caused by temporal
background knowledge.

This comprehensive analysis highlights our research’s novel and multifaceted con-
tributions, positioning it as a significant stride forward in the evolution of location-based
privacy-protection methodologies.

The “This Paper” row highlights the contributions of our research, showcasing the
enhanced distinguishability metric, comprehensive semantic considerations, and enriched
temporal privacy protection.

3. An Enhanced Distinguishability Metric

In LBS privacy protection, concealing geographical location alone often proves insuffi-
cient, as various location-related information can inadvertently unveil individuals’ privacy.
Factors such as location semantics, time, and query content, among others, are commonly
of concern and subjected to processing. The conventional use of Euclidean distance as the
distinguishability metric falls short of capturing the nuanced nature of geographical areas.
This section comprehensively analyzes location-related information to enhance location
privacy protection. It introduces an enhanced distinguishability metric, provides essential
definitions, and outlines a system architecture designed to align with this metric.

3.1. Location-Relation Information

In LBS applications, users typically initiate relevant queries at specific times and
locations, such as Mr. W inquiring about the nearest restaurant at 1:00 noon. Protecting
LBS privacy necessitates thoroughly examining the elements inherent in LBS applications.
Key information, including location, query content, and query time, can be extracted from
user queries. While query operations are evident, this discussion focuses on analyzing
location-related information. To calculate the distance between locations requires knowing
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the longitude and latitude coordinates for calculations of the distance between locations.
Hence, geographical information plays a pivotal role in LBS privacy protection.

Locations not only include geographical coordinates but also convey semantic in-
formation, often termed location semantics. This semantic layer, the most susceptible to
privacy breaches, allows for the identification of specific features within a defined area.
For instance, a radius of 2 km may signify a hospital, potentially revealing health-related
concerns of users within that vicinity. Thus, semantic information is a critical aspect of LBS
privacy protection.

Moreover, locations with city functions, such as businesses, adhere to specific operating
hours. It is inappropriate for users to be present in these locations during non-business
hours. Therefore, temporal information becomes a valuable dimension for safeguarding
location privacy.

3.2. Enhanced Distinguishability Metric (EDM)

Utilizing differential privacy for the protection of location privacy aims to render two
locations indistinguishable. It is not sufficient to use distance alone for the distinction of
locations. Based on the previous analysis, achieving indistinguishability involves not only
geographical proximity but also proximity in semantics and query content. The enhanced
distinguishability metric (EDM) considers both location-related and query information. To
elucidate the EDM, the related definitions are presented.

Let Ω denote a geographical spatial database, where p represents a spatial location:
p∈Ω, p = <G,S,T>, encapsulating geographical information (G), semantic information (S),
and temporal information (T). The LBS location information, denoted as lp = <u,t,p,q>,
signifies that user u initiated a query q at location p at time t, where q = <c,parm>, with c
being the query content and parm representing query constraints.

Definition 1. Semantic Similarity.

For every p∈Ω, let cp be the location semantic encoding of p and cq be the semantic
encoding of the query content q initiated at p. The semantic similarity between two
locations, p1 and p2, is represented as ls

(
cp1

, cp2

)
. Additionally, the query similarity

between q1 and q2, initiated by p1 and p2, respectively, is denoted as qs
(
cq1

, cq2

)
. The

formula to calculate the semantic similarity between two locations is given by Equation (1).

S(p1, p2, q1, q2) =
α× ls

(
cp1

, cp2

)
max

(∣∣cp1
|, |cp2

∣∣) +
β× qs

(
cq1

, cq2

)
max

(∣∣cq1
|, |cq2

∣∣) (1)

Here, α and β represent the weights of location semantic similarity and query content
semantic similarity, respectively, with α∈[0,1], β∈[0,1] and α + β = 1. | | represents the
length of coding, and 0 ≤ S(p1,p2,q1,q2) ≤ 1.

Assuming equal weights for location semantics similarity (ls()) and query content
semantics similarity (qs()) at 0.5 each and a fixed distance of 1 between two locations,
Figure 4 illustrates the impact of varying values for location semantics similarity and query
content semantics similarity on the distinctiveness level. The graph reveals that when both
ls() and qs() values are at 0, there is no influence on the indistinguishable value. However,
when either reaches 1, the effect on the distinctiveness level is maximized. This emphasizes
the significant role that high values in either location semantics or query content semantics
play in making locations more distinct.
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p∈Ω, p = <G,S,T>, encapsulating geographical information (G), semantic information (S), 
and temporal information (T). The LBS location information, denoted as lp = <u,t,p,q>, 
signifies that user u initiated a query q at location p at time t, where q = <c,parm>, with c 
being the query content and parm representing query constraints. 

Definition 1. Semantic Similarity 

For every p∈Ω, let cp be the location semantic encoding of p and cq be the semantic 
encoding of the query content q initiated at p. The semantic similarity between two loca-
tions, p1 and p2, is represented as ls(cp1 , cp2). Additionally, the query similarity between 
q1 and q2, initiated by p1 and p2, respectively, is denoted as qs(cq1 , cq2). The formula to 
calculate the semantic similarity between two locations is given by Equation (1). 

S(p1, p2, q1, q2) =
α × ls(cp1 , cp2)

max(|cp1|, |cp2|)
+
β × qs(cq1 , cq2)
max(|cq1|, |cq2|)

 (1) 

Here, α and β represent the weights of location semantic similarity and query content 
semantic similarity, respectively, with α∈[0,1], β∈[0,1] and α + β = 1. | | represents the 
length of coding, and 0 ≤ S(p1,p2,q1,q2) ≤ 1. 

Assuming equal weights for location semantics similarity (ls()) and query content 
semantics similarity (qs()) at 0.5 each and a fixed distance of 1 between two locations, Fig-
ure 4 illustrates the impact of varying values for location semantics similarity and query 
content semantics similarity on the distinctiveness level. The graph reveals that when both 
ls() and qs() values are at 0, there is no influence on the indistinguishable value. However, 
when either reaches 1, the effect on the distinctiveness level is maximized. This empha-
sizes the significant role that high values in either location semantics or query content 
semantics play in making locations more distinct. 
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Figure 4. The impact of semantic similarity on the overall distinctiveness level.

As the α value changes, the location semantic similarity and query content semantic
similarity values change, as shown in Figure 5. As can be seen from Figure 5, location
semantics similarity and query content semantics similarity are complementary.
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Definition 2. Temporal Similarity.

Let T represent the temporal information of location p, where T = {d,t}, with d repre-
senting the day of the week and t representing the opening hours. The temporal similarity
between two locations, p1 and p2, is given by Equation (2).
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Definition 3. Enhanced-Geo-Indistinguishability (EG-I).

For ∀ p1, p2∈Ω, let Z be the output after being perturbed by mechanism M, and the
protection range of mechanism M is d, where the distance between locations d(p,p′) ≤ d,
and z∈Z. If M satisfies the following Equation (3), then M satisfies ε-EG-I:

M(p)(z) < eεd(p1,p2)2
(S(p1,p2,q1,q2)−1)2(T(p1,p2)−1)

M(p′)(z) (3)

where M(p)(z) represents the probability that the input location p, under mechanism M’s
perturbation, with a privacy budget of εd(p1, p2)2

(S(p1,p2,q1,q2)−1)2(T(p1,p2)−1), results in
the output location z. Essentially, Geo-I is an instance of EG-I. In the Euclidean plane,
if p1 and p2 have the same semantics and time information, i.e., S(p1,p2,q1,q2) = 1 and
T(p1,p2) = 1, then EG-I is equivalent to Geo-I. On a network of two-way roads, EG-I is
equivalent to GG-I when the location semantic and temporal information agree. In general,
de() ≤ du() ≤ dg(), where de() stands for Euclidean distance, du stands for undirected
graph distance, and dg stands for geographic distance.

Definition 4. Location Distinctiveness Level.

The distinctiveness level is defined by Equation (4).

dp(p1, p2) = εd(p1, p2)2
(S(p1,p2,q1,q2)−1)2(T(p1,p2)−1) (4)

where p1, p2, q1, q2 bear the same meanings as in Definition (1), d(,), S(„,), and T(,) represent
the distance between two locations, semantic similarity (see Equation (1)), and temporal
similarity (see Equation (2)), respectively.

Based on the above definitions, EDM can be described as follows:
S1. Input: Two locations p1, p2; Queries q1, q2; Parameters α, β, ε.
S2. Compute the actual distance of two locations: d(p1,p2) using the geographical

environment.
S3 Compute Semantic Similarity: S(p1, p2, q1, q2) using ls() and qs().
S4. Compute Temporal Similarity: T(p1, p2) using day of the week and opening hours.
S5. Calculate Location Distinctiveness Level: dp(p1, p2) using ε, d(), S(), and T().
S6. Output: Location Distinctiveness Level.
In fact, the location distinctiveness level is a quantification of the enhanced distin-

guishability metric.
In the location discrimination level, if S() is 1, the semantic is completely consistent,

and the semantic information will not reduce the location discrimination level. If T() is 1,
the temporal information of the two locations coincide, and the location discrimination
level is not reduced. If S() is not 1, it indicates that the semantics similarity of the two
locations has a certain similarity, and the rank value of the location discrimination level
becomes smaller, which enhances the location privacy-protection effect. T() works the
same way.

Case Study: Enhanced Distinguishability Metric (EDM)
Scenario: Protecting User Location in a Smart City
Consider a scenario in a smart city where a user, Alice, wants to utilize a location-based

service (LBS) to find the nearest public library. Alice values her privacy and wants to protect
her location information. The LBS system employs the enhanced distinguishability metric
(EDM) for location privacy protection.

1. Semantic Similarity (Definition 1):
Geographical Information (G): The semantic encoding includes features like city

functions, landmarks, and urban characteristics. For instance, if Alice is near a hospital, the
semantic information might encode that she is in proximity to a healthcare facility.

Query Content (C): Alice’s request for the nearest public library is the query content.
The semantic similarity (ls) considers both the geographical and query content semantics.
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Example: If the system determines that the current location has a semantic encoding
suggesting it is a commercial area (e.g., city center) and Alice’s query is about a public
library, ls will reflect the semantic similarity.

2. Temporal Similarity (Definition 2):
Temporal Information (T): Temporal information involves the day of the week (DoW)

and opening hours (vTR). It ensures that the protection mechanism considers the time
context in making locations indistinguishable.

Example: If Alice queries for the nearest public library on a Sunday morning, the
temporal similarity (T) will consider the day of the week and opening hours to enhance
privacy protection.

3. Location Distinctiveness Level (Definition 3):
Privacy Parameter (ε): The distinctiveness level considers the distance (d) between

two locations, semantic similarity (S), and temporal similarity (T). The privacy parameter ε
influences the level of indistinguishability.

Example: If Alice is in a busy commercial area (high semantic similarity) on a weekend
morning (low temporal similarity), the distinctiveness level ensures her location remains
indistinguishable from similar locations.

3.3. System Architecture

The intricate interplay between the LBS privacy-protection server and the LBS server
forms the robust backbone of the proposed system architecture, as depicted in Figure 6.
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Figure 6. System architecture.

The LBS privacy-protection server is pivotal as the intermediary, orchestrating seam-
less communication between mobile terminal users and the LBS server. Its multifaceted
responsibilities encompass not only the adept handling of user queries but also the nuanced
application of a sophisticated privacy-protection scheme. This scheme is meticulously
designed to discern locations within the perturbation area, safeguarding sensitive user
information. Subsequently, the LBS privacy-protection server serves as the conduit for
delivering refined query results to mobile users, ensuring a delicate balance between
personalized service and robust privacy safeguards.

Workflow Overview:
User Query Initiation: The LBS privacy-protection server initiates the workflow by

capturing the user’s request from the mobile terminal. This pivotal step sets the stage for
subsequent privacy-preserving operations.
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Privacy-Protection Scheme Application: Leveraging the privacy-protection scheme,
the LBS privacy-protection server dynamically generates and optimizes a perturbed location
set tailored to the user. This set is carefully crafted to obfuscate sensitive location details,
fortifying the user’s privacy.

Query Dispatch to LBS Server: The perturbed location set is seamlessly communi-
cated to the LBS server, which, in turn, undertakes the query operation. This collaborative
exchange ensures that user requests are efficiently processed with due consideration for
privacy preservation.

Refined Query Result Delivery: Upon receipt of the query result set from the LBS
server, the privacy-protection scheme’s query result filter comes into play. This intri-
cate mechanism refines the results to align precisely with the user’s request, excluding
unnecessary or sensitive information.

User-Centric Result Delivery: The curated results are then disseminated to the mobile
terminal user, completing the workflow. This user-centric approach ensures that the
delivered information not only meets the query specifications but does so in a manner that
upholds the user’s privacy preferences.

Below is a simplified pseudocode to outline the key steps of the system architecture:

Privacy-Enhanced LBS Workflow.

1. Input: User request from the mobile terminal (user_query)
2. Function GeneratePerturbedSet (user_query):
00 2.1 Get road, semantic, and time data
00 2.2 Apply privacy-protection scheme to user_query
00 2.3 Generate perturbed location set (perturbed_set)
00 2.4 Optimized perturbed location set (optimized perturbed set)
0 0 2.5 Return optimized perturbed_set
3. Function QueryOperation (optimized perturbed_set):
00 3.1 Select a location with the highest service similarity from optimized_optimized_set
00 3.2 Dispatch selected location to LBS server
0 0 3.3 LBS server performs query operation, and returns result set (query_results)
00 3.4 Return query_results
4. Function FilterResults (query_results, user_query):
00 4.1 Apply query result filter to align results with the user’s request
00 4.2 Return refined results (refined_results)
5. Function DeliverResults (refined_results):
00 5.1 Deliver refined_results to mobile terminal user
6. Main Workflow:
00 6.1 Capture user_query
00 6.2 perturbed_set = GeneratePerturbedSet(user_query)
00 6.3 optimized_perturbed_set = OptimizedPerturbedSet(perturbed_set)
00 6.4 query_results = QueryOperation(optimized_perturbed_set)
0 0 6.5 refined_results = FilterResults(query_results, user_query)
0 0 6.6 DeliverResults(refined_results)

3.4. Privacy-Protection Scheme

In the realm of location privacy protection, integrating differential privacy hinges on
generating perturbed locations aligning with the EDM. This pivotal privacy-protection
scheme encompasses three key components: perturbation area generation, perturbed
location selection, and query result filtering. The intricacies of perturbation area generation,
encompassing both its creation and optimization, are detailed in Figure 7.
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In Figure 7, the input parameters include the location to be protected (p), the privacy
parameter (ε), the number of locations in the perturbed area (N), the request initiated from
p (q), the semantic database (SDB), and the temporal database (TDB). Perturbation area
generation involves utilizing the Earth distance based on p, ε, and N. The optimization of
the perturbation area primarily revolves around eliminating locations in Pa whose semantic
information or temporal information is inconsistent with the protected location p.

Perturbed Location Selection: The subsequent stage, perturbed location selection,
primarily hinges on the consistency of query information associated with locations. Loca-
tions exhibiting a high value in the location distinguishability metric and rich semantic
information are preferentially chosen. Algorithm 1 outlines this optimal selection algorithm
for perturbed locations.

Note: In step 2 of Algorithm 1, the function getQuery() is used to obtain that the
query initiated from location p, which is mainly the one with the most query records in the
history query or constructed according to q. Assuming there are 12 historical query records,
which mainly focus on 3 queries, and the queries have 6, 4, and 2 times, respectively, then
the query with 6 times will be used as the return value. In step 9, in the geographical
environment, the function getSemRichestPos() is used to obtain the location with the most
semantic types from the map, which has the same semantics as p and is in the d range.
For example, there are three locations 1, 2, and 3 on the map, the semantic type of the real
location p is A, the semantic types of all locations within the range of d for location 1 are A,
B, and C, the semantic types of all locations within the range of d for location 2 are A and B,
and the semantic types of all locations within the range of d for location 3 are B and C, the
function getSemRichestPos() will obtain location 1. In step 12, the function getRandomPos()
is used to obtain one location from the map randomly. A random number is generated
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from 1 to the length of the map, and the position of the corresponding index from the map
is selected.

Algorithm 1 Optimal selection algorithm for perturbed location.

Input: true location p, optimized perturbation area O, query content q, privacy budget ε
Output: perturbed area O′

1. for p′ in O:
2. q′←getQuery(p′);#obtain the query initiated from p′

3. de(p,p′)← ε−d(p,p′)2(S(p,p′ ,q,q′)−1)2(T(p,p′)−1);
4. map.put(p′,de(p,p′));
5. endfor
6. min←map.values().min();
7. count← sum(map.values(),min);
8. O′←null;
9. if count ≥ 1:
10. O′.add(getSemRichestPos(p,d,map));
11. else:
12. O′.add(getRandomPos(map));
13. endif
14. return O′.

Definition 5. Service Similarity of Locations [24].

For every p1, p2∈Ω, the service similarity between p1 and p2 is defined by Equation (5).

Sim(p1, p2) =|Rm(p1) ∩ Rm(p2)|/m (5)

Here, R is the query function, and Rm(x) represents the sorted result set of the top-m
POI queried at location x. The LBS server defines the query function and sorting rules, and
0 ≤ Sim(p1, p2) ≤ 1.

The filtering and processing of query results are illustrated in Figure 8. It can be
seen from Figure 8 that after the selection of perturbed locations, the query information of
the perturbed locations is obtained from the LBS Server. The filtering of query content is
essential to find the query constraints that satisfy the query initiated from the real location
p. Therefore, the query constraints initiated by p are obtained first. In order to obtain
the query results satisfying the constraints, it is necessary to modify the query constraints
initiated from the perturbed locations to expand the scope to ensure that all the query
results satisfying the constraints can be obtained; for example, suppose that the constraint
condition of the query initiated from the real location p is the surrounding 2 km. The
constraint condition of the query initiated from the perturbed location o is changed to
d(p,o) + 2 × 2 km. After the query information from the perturbed location is obtained,
the query content that satisfies the true location constraints must be filtered out. If the
query results satisfying the conditions are filtered from the query results according to the
constraints, the query results are retained. Then, the service similarity between location p
and location q is calculated as in Equation (5). Finally, the location with the highest service
similarity is selected as the perturbed location, and its query results are returned.
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3.5. Algorithm Analysis

In this section, we delve into a comprehensive analysis of the proposed algorithm,
Algorithm 1, employed in the privacy-protection scheme. The algorithm plays a pivotal
role in generating and selecting perturbed locations, ensuring a balance between privacy
preservation and service utility. Our analysis covers both time and space complexities,
shedding light on the efficiency and scalability of the algorithm. Additionally, a security
analysis is presented, scrutinizing the resilience of the algorithm against potential privacy
breaches and attacks. The thorough examination of Algorithm 1 provides valuable insights
into its practical implementation and suitability for real-world scenarios.

3.5.1. Complexity Analysis

Time Complexity:
Query Information Analysis: Linear time, as it involves analyzing query information

to determine constraints.
Location Selection Operation: Linear time (O(N)), mainly spent on calculating loca-

tion distinctiveness level by traversing positions in Pa.
Calculating Minimum Distinguishable Positions: Linear time (O(m)), assuming

constant time for calculations.
Overall Time Complexity: O(m), and since m < N, Algorithm 1’s time complexity can be

considered O(N).
Space Complexity: Algorithm 1 involves several steps. Let us conduct a space complex-

ity analysis by considering the space used by each variable, data structures, and auxiliary
memory requirements:
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Input: true location p, optimized perturbation area O, query content q, privacy budget ε
Output: perturbed location p′

00 a. Iterating over O:
0000 - For each p′ in O: O(1)

000000 - q′ ← getQuery(p′): O(1)

0000 - Calculate dg(p, p′): O(1)

0000 - Put p′ and dg(p, p′) in the map: O(1)

00 b. Find minimum value in map:
0000 - min←map.values().min(): O(m)

00 c. Calculate count and check condition:
0000 - count← sum(map.values(), min): O(m)
0000 - If count > 1: O(1)
000000 - o.add(getSemRichestPos(p, d, map)): O(1)
0000 - Else: O(1)
000000 - o.add(getRandomPos(map)): O(1)

Overall Space Complexity: O(m). The space complexity is primarily influenced by the
perturbation area (m) size. The algorithm demonstrates linear space complexity, making it
scalable concerning the perturbation area’s size.

3.5.2. Security Analysis

Protection of Geographic, Semantic, and Temporal Information: The privacy-protection
scheme ensures indistinguishability of the lowest level of geographic, semantic, and tempo-
ral information. This robust protection defends against background knowledge attacks and
semantic attacks based on road network mapping and time information.

Resistance Against Semantic Homogeneity Attack: During optimal perturbed loca-
tion selection, locations are chosen based on satisfying the distinctiveness level and the
richest semantic category within a certain radius. This strategy effectively resists semantic
homogeneity attacks.

Privacy–Utility Tradeoff: The optimized perturbed region ensures a lower level of
location distinctiveness, the perturbed location selection ensures that the output location
has the highest service similarity with the original location, and the query result filter
expands the query scope and guarantees the query results. The above operations address
the tradeoff between privacy and service utility; as seen from the complexity analysis, it
does not incur additional overhead, including communication or computational complexity.

In summary, Algorithm 1 exhibits favorable properties in terms of time complexity,
with a linear time requirement for crucial operations, ensuring efficiency in processing user
queries. The security analysis highlights the algorithm’s robustness against background
knowledge, semantic, and privacy attacks, bolstering its applicability in privacy-preserving
location-based services.

Furthermore, considering the memory requirements for variables and data structures,
the algorithm’s space complexity is assessed. A detailed breakdown of the space utilization
provides valuable insights into the algorithm’s scalability and resource demands.

The combined analyses affirm the algorithm’s practicality, efficiency, and security,
positioning it as a viable solution for LBS privacy protection, capable of meeting the
demands of real-world applications.

4. Analysis and Experimental Results

This section presents a comprehensive analysis and evaluation of the proposed EDM
through a series of experiments conducted within a well-defined experimental environ-
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ment. The methodology employed, along with the tools and datasets used, is outlined in
Section 4.1. Following this, evaluation indicators are given in Section 4.2, and experimental
results are given in Section 4.3, which offers a comparative analysis of EDM against existing
algorithms, shedding light on its effectiveness in achieving location privacy. Subsequently,
the section delves into a detailed exploration of key performance metrics, encompassing
quality loss, adversary error, distinctiveness level, and the impact of the privacy budget on
the effectiveness of privacy protection. Each subsection contributes valuable insights into
the strengths and limitations of EDM, providing a holistic view of its practical implications
in real-world scenarios.

4.1. Experimental Environment and Method

The experimentation phase leveraged the PyCharm Community Edition development
platform in conjunction with the Python programming language. Hardware specifications
included an Intel(R) Core(TM) i7-8650U CPU @ 1.90 GHz 2.11 GHz with 16.0 GB of RAM.
The road network database for Dongcheng District in Beijing was sourced through the
OSMNX package. User data, encompassing geographic and stayed time dimensions,
were drawn from the current most used GeoLife dataset [25], featuring 138 users with
4795 trajectories and 2,114,979 location entries within Dongcheng District. Crafting the
semantic database involved web-scraping techniques and GaoDe map data, yielding
18 major categories and 329 subcategories, aggregating to 3037 POI entries. The time
database consists of a Gaode map obtaining business hours according to location. In
addition to the query initiated by the user’s real location, the query information of other
locations used is generated according to the query information initiated by the true location.
To illustrate the effectiveness of this work, service quality (quality loss), the protection
effect (adversary error), and the location distinguishing effect (distinctiveness level) are
measured. Moreover, the influence of the privacy budget on the distinguishing effect is
also given.

4.2. Evaluation Index

In this paper, we compare the algorithms from three perspectives: quality loss, adver-
sary error, and distinctiveness level. The definitions of quality loss and adversary error are
given below.

Definition 6. Quality Loss.

Quality loss [10] characterizes the deviation between the location determined by the
protection mechanism and the user’s actual location. Consider the scenario where the
user’s prior belief about their location is denoted as πu(p) and the protection mechanism
as M. The quality loss is then defined as follows:

Qloss(πu, M, d) =
∑p,p′ πu(p)Pr(M(p) = p′)d(p, p′)

S(p, p′, q, q′)× T(p, p′)
(6)

Here, p, p′, q, M, and q′ have the same meanings as in Definition 5, where q′ is the
query initiated at p′. Pr() represents the probability distribution in the geographic space.
The terms S(p, p′, q, q′) and T(p, p′) represent semantic and temporal similarities intro-
duced earlier. This formulation encapsulates the interplay between user beliefs, protection
mechanisms, and the spatial, semantic, and temporal context in determining the quality
loss. Formula (6) shows that the more consistent the semantics between the true location
of the user and the generated perturbation location are, the more consistent the temporal
properties are and the less quality loss is.

Definition 7. Adversary Error.
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Adversary error [10] quantifies the deviation between the location inferred by the
adversary and the user’s actual location. Let us consider the scenario where the user’s true
location is denoted as p, q is the query initiated at p, the protected location is p′ generated
by mechanism M, and the location inferred by the adversary is p̂. Furthermore, q̂ is the
query of the user at p̂ inferred by the adversary.

Given the adversary’s prior knowledge about location p as πa(p) and the protection
mechanism as M, the adversary error is defined as follows:

AE(πa, M, h, d) =
∑p,p′ ,p̂ πa(p)Pr(M(p) = p′)Pr(h(p′) = p̂)d(p̂, p)

S(p, p̂, q, q̂)× T(p, p̂)
(7)

Here, d() represents the distance between two locations, Pr() represents the probability
distribution in the geographic space, and h represents the adversary’s inference capability
of the user’s location. The terms S(p, p̂, q, q̂) and T(p, p̂) are the semantic and temporal
similarities, respectively, introduced earlier. This formulation encapsulates the interplay
between protected locations, adversary inferences, and the spatial, semantic, and temporal
context. The Formula (7) shows that the more consistent the semantics between the user’s
real location and the location inferred by the adversary, the easier the adversary can deduce
the user’s real location and the smaller the adversary’s error is.

4.3. Algorithm Comparison

The comparative analysis of algorithms involved Geo-I [9], which utilized Euclidean
distance; GG-I [10], which employed undirected graph distance based on Geo-I; and the
work of Yan et al. [11] marked as POLS (location perturbation and optimization algorithm),
which integrated Geo-I with location semantics while still relying on Euclidean distance.
In contrast, our proposed metric incorporates semantic, temporal, and query information
alongside road network direction, aiming for enhanced location distinguishability.

4.3.1. Scenario

For public transport travelers, the location with the largest probability of appearance
is each station. The prior probability of obtaining the real-time full load passenger flow of
subway or bus is obtained using the Gaode map. We assume that a traveler who follows
the prior distribution uses LBS and an adversary knows the prior distribution.

4.3.2. Comparison

1. Quality Loss

Quality loss, representing the deviation between protection effects and user needs,
was analyzed concerning different privacy budgets (ε). Figure 9 compares quality loss for
various algorithms at ε values of 0.01, 0.02, 0.05, and 0.1. Notably, accounting for semantic
and temporal properties, the proposed method demonstrated consistently smaller quality
loss for protected locations across all scenarios. When ε is 0.01, as shown in Figure 9a,
the average quality loss of the proposed method is 65.1% lower than that of Geo-I, 66.6%
lower than GG-I, and 56.2% lower than POLS. When ε is 0.02, as shown in Figure 9b, the
average quality loss of the proposed method is 63.8% lower than that of Geo-I, 65.2% lower
than GG-I, and 54.3% lower than POLS. When ε is 0.05, as shown in Figure 9c, the average
quality loss of the proposed method is 63.8% lower than that of Geo-I, 65.2% lower than
that of GG-I, and 54.0% lower than that of POLS. When ε is 0.1, as shown in Figure 9d,
the average quality loss of the proposed method is 64.6% lower than that of Geo-I, 66.3%
lower than that of GG-I, and 54.4% lower than that of POLS,.Whether ε is 0.01, 002, 0.05, or
0.1, Figure 9 illustrates that the proposed method has a minimal impact on service quality.
In contrast, Geo-I, GG-I and POLS, which predominantly concentrate on location privacy
without incorporating query content processing, result in poorer service quality. The impact
of distance calculation on service quality varies, and the contributions of location semantics
and temporal information to service quality are also elucidated.
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The distinctiveness level considers semantic and temporal properties, query semantics,
and constraints. For example, at ε = 0.01, the proposed method exhibited significantly
lower worst-case and average quality losses compared to Geo-I, GG-I and POLS.

2. Adversary error

Adversary error, indicative of privacy preservation, was assessed using the Location
Privacy Meter [26]. Figure 10 showcases the adversary error for different algorithms at ε
values of 0.01, 0.02, 0.05, and 0.1. The proposed method consistently demonstrated higher
adversary error, implying a lower probability of user location identification. As ε increases,
all methods exhibit decreasing adversary errors, with the proposed method maintaining
a favorable position. When ε is 0.01, as shown in Figure 10a, the average adversary error
of the proposed method is 2.3 times higher than that of Geo-I, 2.1% times higher than
GG-I and 1.7 times higher than that of POLS. When ε is 0.02, as shown in Figure 10b, the
average adversary error of the proposed method is 2.6 times higher than that of Geo-I, 2.6%
times higher than that of GG-I, and 1.3 times higher than that of POLS. When ε is 0.05,
as shown in Figure 10c, the average adversary error of the proposed method is 2.3 times
higher than that of Geo-I, 2.3% times higher than that of GG-I, and 1.4 times higher than
that of POLS. When ε is 0.1, as shown in Figure 10d, the average adversary error of the
proposed method is 2.7 times higher than that of Geo-I, 2.6% times higher than that of
GG-I, and 1.4 times higher than that of POLS. Whether ε is set to 0.01, 002, 0.05, or 0.1.
Figure 10 highlights that the proposed method effectively misleads the adversary, posing a
greater challenge in deducing the user’s actual location. In contrast, Geo-I solely focuses on
distance, making it vulnerable to inference if the adversary possesses sufficient background
knowledge about the protection mechanism. Although GG-I alters the distance-calculation
method, it still shares the vulnerability observed in Geo-I. POLS incorporates factors such
as location, semantics, and time; however, since each factor is considered independently,
there is a higher likelihood that the adversary can deduce the true position compared to
Geo-I and GG-I. Nevertheless, the proposed method in this paper outperforms POLS in
terms of effectiveness.
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3. Distinctiveness Level

Figure 11 depicts the distinctiveness level of different algorithms with increasing
distance. While all methods show increased distinctiveness with distance, the proposed
metric yields relatively small values, emphasizing the importance of semantic and tempo-
ral information. Based on the metric proposed in this paper, the average distinctiveness
level is 0.60 times that of Geo-I, 0.67 times that of GG-I, and 0.76 times that of POLS. The
objective of the protection method based on differential privacy is to render the perturbed
location indistinguishable from the actual location. Figure 11 illustrates that the method
proposed in this paper aligns better with the goal of the protection method. As the distance
increases, the distinctiveness level rises, signifying the significant impact of distance on the
distinguishability level. The distinctiveness levels observed in Geo-I and GG-I underscore
that the choice of distance calculation method profoundly influences location indistin-
guishability. POLS outperforms Geo-I and GG-I, emphasizing the importance of semantic
and temporal attributes. Notably, the method presented in this paper demonstrates that
location, semantics, and time are interconnected, forming a cohesive unit that represents
information reflecting the same location characteristics.
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4. Privacy Budget

In differential privacy, the privacy budget determines the privacy-protection effect.
The smaller the privacy budget is, the better the privacy-protection effect is, usually 0.1.
Figure 12 provides an overview of quality loss under different ε, and Figure 13 provides an
overview of adversary errors under different ε. It can be seen from Figures 13 and 14 that
e still has some influence on service quality loss and adversary error, but it is not strictly
absolute. The smaller ε is, the smaller the service quality loss and the larger the adversary
error. Together, both figures illustrate the stability of the proposed method.
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The analysis of the distinctiveness level under different privacy budgets, illustrated
in Figure 14, reveals a nuanced relationship. As spatial separation increases, the distinc-
tiveness level generally rises, emphasizing the pivotal role of geographic information.
However, the increase is not strictly proportional, owing to the intricate interplay of ge-
ographic, semantic, and temporal factors and query constraints. Larger privacy budget
values contribute to higher distinctiveness levels, but the specific relationship is intricately
linked to the unique characteristics of each location. Importantly, when spatial locations
are significantly distant, the impact of ε weakens, and the changes in distinctiveness level
become more pronounced. This nuanced understanding enhances our insights into the
adaptability and effectiveness of the proposed privacy-protection scheme across diverse
spatial contexts, offering valuable considerations for optimizing location privacy strategies
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in practical applications. Simultaneously, it emphasizes that LBS’s geographical location,
semantics, and temporal information cannot be overlooked.
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5. Conclusions

In this study, we introduce an innovative privacy-protection metric, the EDM, designed
to assess the efficacy of privacy-protection mechanisms. Unlike conventional approaches
focusing solely on geographic information, EDM incorporates various auxiliary factors,
such as location semantics, temporal information, and query details. This comprehensive
integration enhances the metric’s capacity to discern locations effectively, thereby fortifying
defense mechanisms against potential adversary attacks fueled by incomplete location
information. The proposed metric demonstrates superior privacy-protection efficacy, par-
ticularly when safeguarding locations with distinct semantic and temporal characteristics
within a specified radius (R). This underscores the importance of integrating geographical
information, location semantics, and temporal information in LBS positions, emphasizing
their collective consideration to resist adversary attacks.

While EDM excels in scenarios where the protected location exhibits isolated semantic
and temporal features, its advantages become less conspicuous when it shares similari-
ties with its surroundings within the specified radius. Future endeavors should explore
strategies, such as encryption mechanisms, to enhance privacy protection for such isolated
“island” locations. Additionally, dynamic privacy budget allocation for personalized LBS
privacy protection presents an intriguing avenue for further research, promising adaptive
and personalized privacy solutions in dynamic and evolving contexts. This work lays the
groundwork for advancing location privacy strategies, contributing to the evolution of
privacy-preserving technologies in LBS applications.
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