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Abstract: Multi-view stereo methods utilize image sequences from different views to generate a 3D
point cloud model of the scene. However, existing approaches often overlook coarse-stage features,
impacting the final reconstruction accuracy. Moreover, using a fixed range for all the pixels during
inverse depth sampling can adversely affect depth estimation. To address these challenges, we
present a novel learning-based multi-view stereo method incorporating attention mechanisms and
an adaptive depth sampling strategy. Firstly, we propose a lightweight, coarse-feature-enhanced
feature pyramid network in the feature extraction stage, augmented by a coarse-feature-enhanced
module. This module integrates features with channel and spatial attention, enriching the contextual
features that are crucial for the initial depth estimation. Secondly, we introduce a novel patch-
uncertainty-based depth sampling strategy for depth refinement, dynamically configuring depth
sampling ranges within the GRU-based optimization process. Furthermore, we incorporate an
edge detection operator to extract edge features from the reference image’s feature map. These
edge features are additionally integrated into the iterative cost volume construction, enhancing
the reconstruction accuracy. Lastly, our method is rigorously evaluated on the DTU and Tanks
and Temples benchmark datasets, revealing its low GPU memory consumption and competitive
reconstruction quality compared to other learning-based MVS methods.

Keywords: multi-view stereo; attention mechanism; cost volume; depth learning

1. Introduction

Multi-view stereo (MVS), as a 3D reconstruction method, plays a crucial role in 3D
computer vision, with various applications such as in virtual reality, augmented reality,
and autonomous driving. Taking a sequence of images from different viewpoints and the
corresponding camera parameters as the input, multi-view stereo can estimate each pixel’s
depth information and generate the corresponding 3D representation of the observed
scene. As a pivotal issue in 3D computer vision, multi-view stereo has garnered extensive
research attention [1–4].

With the rapid development of deep learning technologies in computer vision, learning-
based multi-view stereo methods have produced advanced results [4–6] in recent years.
Learning-based multi-view stereo algorithms generally consist of several components,
including feature extraction, depth sampling, cost volume construction, cost volume regu-
larization, and depth regression. However, significant GPU memory requirements not only
limit image processing to low resolutions but also hamper the adoption of multi-view stereo
on various edge computing devices. In practical applications of 3D vision, the devices
deployed often possess limited computational resources. For instance, in autonomous
driving scenarios, Lidar data are typically processed using three-dimensional point cloud
compression techniques to mitigate storage and transmission costs [7]. Unlike Lidar data
processing, the primary computational challenge for multi-view stereo lies in generating

Sensors 2024, 24, 1293. https://doi.org/10.3390/s24041293 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041293
https://doi.org/10.3390/s24041293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24041293
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041293?type=check_update&version=2


Sensors 2024, 24, 1293 2 of 19

point clouds from two-dimensional images and camera parameters given an input source.
Therefore, reducing the algorithm’s memory consumption could substantially enhance
the practicality of this technology. Recently, many researchers have proposed improved
approaches to deal with the problem of the high computation of learning-based multi-view
stereo methods. In particular, a coarse-to-fine architecture has been widely used to design
efficient multi-view stereo networks [6,8–12]. Generally, in these methods, an initial cost
volume is usually constructed at a low resolution rather than at a fixed resolution, then
a new cost volume is built at a higher resolution iteratively with the last stage result and
finally, a depth map is obtained. Progressively narrowing the hypothesis of the depth
plane in different stages [6,8–12] is also a key strategy to reduce the amount of computation.
Despite the significance of the coarse-stage outputs as an input in the fine-stage cost volume
construction, having an influence on the final results, these existing approaches need to
pay more attention to the feature information at the coarse stage. If the feature extraction
phase in the coarse stage is inadequate, the poor initial result may adversely impact the
final results in subsequent stages and the final outputs. However, an intensive feature
extraction step always increases the computational load and GPU consumption, and it
remains a challenge to balance accuracy and computational efficiency.

Furthermore, another existing challenge in cascade-based multi-view stereo is adapt-
ing the depth hypothesis range. In the initial stage, plane sweeping covers the entire
conceivable depth range. Simultaneously, during depth hypothesis generation for finer
stages in many cascade-based algorithms [6,8,10,12], the estimated depth values from the
previous stage are used as the sampling interval’s center, with a fixed sampling distance for
each pixel within its respective stage. Nevertheless, setting a uniform sampling distance
for each pixel is not an ideal approach because the optimization in the depth refinement
stage varies across different pixels in the same depth map, where some pixels may have
stabilized depths and others may exhibit significant variations. Considering this challenge,
Cheng [11] utilized the probability distribution at each pixel to set the sampling distance;
however, this approach demonstrates a poor performance in GPU memory usage and
running time, while its training time is also huge.

In this paper, we present a lightweight multi-view stereo method that incorporates a
patch-uncertainty-based depth sampling strategy. The overall framework of our proposed
method is shown in Figure 1. In the feature extraction step, we introduce a light coarse-
feature-enhanced feature pyramid network (LCFE-FPN). This network mitigates GPU
memory consumption and improves the final reconstruction accuracy. The LCFE-FPN
is structured as a feature pyramid network [13], with a novel coarse-feature-enhanced
module (CFE) integrating both channel and spatial attention mechanisms designed for
the lowest-resolution stage. We also replace the original batch normalization layers with
Inplace-ABN [14] layers, thereby further reducing GPU memory usage in the classical
FPN. In the subsequent depth refinement step, we propose a patch-uncertainty-based
depth sampling strategy (PUDS). The PUDS utilizes the patch depth variations in the
estimated depth map during depth refinement to adaptively modify the inverse depth
sampling distance for each pixel at the patch level. With each iteration of the GRU-based
optimization, this inverse depth sampling strategy allocates a broader depth sampling
range for regions with significant depth variations and a narrower range for regions with
minor variations. Furthermore, during the GRU-based optimization, we construct an
edge-aware iterative cost volume that contains four different types of features: content
features, edge features, geometric features, and depth features. The incorporation of an
edge detection operator [15] to extract supplementary edge information and integrate it into
the iterative cost volume [16] further improves the quality of the final 3D point cloud. To
evaluate our introduced method, we choose two challenging benchmark datasets: the DTU
dataset [17] and the Tanks and Temples dataset [18]. Our proposed method demonstrates a
reduced GPU memory usage and competitive reconstruction quality when compared to
various other learning-based MVS methods [1,4–6,8–11,19–24].
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Figure 1. Overview of our method. In this figure, we take the t-th optimization at the k-th resolution
stage as an example. We first utilize LCFE-FPN to extract multi-scale features from input images and
enhance features at the initial stage. Taking the last depth estimation Dk−1

t as the input, we construct
an iterative cost volume and employ GRUs to optimize it. After the t-th optimization at k-th stage,
the depth offset ∆Dk

t for refinement is calculated, and the next sampling range Hk
t is also configured

adaptively. If the optimization time t equals the pre-configured T, the updated depth estimation Dk
t

will be upsampled to Dk+1
1 for GRU optimization in the next (k + 1-th) stage.

In summary, our main contributions are as follows:

• We design a network (LCFE-FPN) based on a novel coarse-feature-enhanced module
(CFE) for the feature extraction step, which not only improves the accuracy of the final
reconstruction result but also reduces the GPU memory consumption.

• We propose a patch-uncertainty-based depth sampling strategy (PUDS) for the depth
refinement step. This sampling strategy calculates patch-wise variation based on each
pixel’s depth variation and assigns different sampling ranges adaptively for each pixel.
Specifically, we aggregate edge information extracted by an edge-detection operator
into the iterative cost volume construction, enhancing the model’s performance.

• We perform extensive experiments on two challenging datasets (the DTU dataset [17]
and the Tanks and Temples dataset [18]), our approach achieves a competitive perfor-
mance in both GPU consumption and reconstruction quality.

2. Related Work
2.1. Traditional Multi-View Stereo Methods

Multi-view stereo (MVS), as a fundamental problem in the field of 3D reconstruction
in computer vision, addresses the spatial geometry recovery of scenes from photographs.
It had garnered significant attention and made substantial progress before the advent of
deep learning. Traditional multi-view stereo methods can be broadly categorized into the
following four types: voxel-based method [25–29], mesh-based methods [30,31], surfel-
based methods [19,32,33] and depth-map-based methods [1,20,21,34,35]. Among these four
methods, the voxel-based method partitions the space into a group of voxels, requiring
extremely high memory consumption. The mesh-based method is less robust, as its final
reconstruction performance relies on its initialization. Meanwhile, the surfel-based method
represents surfaces as a set of surfels, and is simple but efficient. However, the surfel-
based method entails additional cumbersome post-processing steps to generate the final
3D model. Depth-map-based methods compute depth values for each pixel from each
image, reproject the pixel into the 3D space, and fuse these points to generate a point cloud
model. Of these four methods, the depth-map-based approach is the most flexible and
is most extensively applied in the field. Over recent years, depth-map-based methods
have achieved significant success, and there are great algorithmic frameworks in use,
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such as Furu [19], Gipuma [21], Tola [20], and COLMAP [1]. Despite the commendable
performance of traditional multi-view stereo, the following drawbacks still needs to be
improved: high computational requirements, slow processing speeds, and suboptimal
handling of scenarios with weak textures or highly reflective patches.

2.2. Learning-Based Multi-View Stereo Methods

Recently, with the integration of deep learning, the learning-based multi-view stereo
method has experienced rapid development and achieved outstanding performance.
Yao [4] introduced MVSNet, the first end-to-end learning-based multi-view stereo net-
work, laying the foundation for fast growth in the coming years. MVSNet [4] employs
a shared-weight 2D-CNN network to extract feature maps from input images. The dif-
ferential homography transformation [36] is then applied to warp these feature maps to
the reference perspective. This method utilizes a series of depth hypothesis planes to
construct a cost volume, representing the correlation between the source and reference
images. Subsequently, a 3D-CNN network is employed for cost volume regularization. In
the end, the output is obtained as the estimated depth map of the reference image through
depth regression. In DTU benchmark datasets [17], MVSNet [4] not only outperforms
previous traditional MVS methods [1,19,20], but also has a much faster runtime. However,
due to the high GPU memory consumption, only low-resolution images can be used as
the input images in MVSNet. Many learning-based MVS methods have been proposed
to deal with the problem of GPU memory consumption. Yao [22] proposed the improved
approach R-MVSNet [22], which replaces the 3D-CNN network in depth refinement with a
sequence of GRU convolutions. This improvement reduces the GPU memory consumption
and makes it feasible for 3D reconstruction at a high resolution. Gu [6] proposed the
CasMVSNet model, which constructs cascade cost volumes based on a feature pyramid
network (FPN) [13]. Benefiting from its novel coarse-to-fine architecture, CasMVSNet can
deal with the input images from the DTU dataset [17] at raw resolutions. Similar to Cas-
MVSNet [6], CVP-MVSNet [8] and Fast-MVS [23] also contain a coarse-to-fine framework,
and both have demonstrated a great performance on benchmark datasets [17,18]. Based on
the coarse-to-fine cascade framework, UCS-Net [11] further introduces a depth sampling
strategy that utilizes uncertainty estimations to adaptively produce spatially varying depth
hypotheses. Uncertainty is also used by Vis-MVSNet [9] to explicitly infer and integrate the
pixel-wise occlusion information in multi-view cost volume fusion. PatchMatch [2], as a
classical and traditional stereo-matching algorithm, was also integrated into the learning-
based MVS framework, and the resulting model was named PatchmatchNet [2]. Recently,
Effi-MVS [10] was proposed, demonstrating a novel way to construct dynamical cost vol-
umes in depth refinement. In addition, TransMVSNet [37] is the first learning-based MVS
method that leverages the Transformer [38] to realize robust, long-range global context
aggregation within and across images. Compared with these existing learning-based MVS
methods [4–6,8–11,22–24], our proposed method not only demonstrates a lower GPU mem-
ory consumption and a faster running time, but also delivers a competitive performance in
terms of the reconstruction quality.

3. Methodology

In the context of our learning-based multi-view stereo (MVS) framework, we leverage
the reference image I0 and its adjacent source images {Ii}i=1,2...N−1, along with their
corresponding camera intrinsic and extrinsic parameters. Our method enables the rapid
prediction of an accurate depth map for I0. As illustrated in Figure 1, our method consists
of a three steps: multi-scale feature extraction, depth estimation, and depth refinement.
During the feature extraction step, we introduce a light coarse-feature-enhanced feature
pyramid network (LCFE-FPN), designed to reduce GPU memory consumption and enhance
the feature map at the coarse stage, thereby improving the overall performance. In the
subsequent depth estimation step, we propose a patch-uncertainty-based depth sampling
strategy (PUDS), allowing for adaptive and dynamic adjustments of the depth sampling
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range. In addition, we employ gated recurrent unit (GRU)-based optimization in the depth
refinement step and integrate the extra edge features into the construction of the edge-
aware iterative cost volume, ensuring a better reconstruction quality. Below, we provide a
detailed explanation of our proposed method.

3.1. Preliminaries

Before introducing our method, let us review the general workflow of learning-based
multi-view stereo methods. The input image set {Ii}i=0,1...N−1 initially undergoes fea-
ture extraction to obtain the corresponding feature maps {Fi}i=0,1...N−1 through a fea-
ture extraction network. Then, the differential homography transformation is applied
to warp extracted feature maps {Fi}i=0,1...N−1 from the viewpoint of each source image
Ii(i = 1, 2 . . . N − 1) to the perspective of a reference image I0 pixel-wise and to subse-
quently construct a cost volume to quantify the correlation and similarity between the
source image set {Ii}i=1,2...N−1 and the reference image I0. In the first depth estimation, we
configure the sampling depth hypothesis {dj}j=1,2...M at equal intervals within the depth
range of the reference image, where M represents the total number of hypothetical depth
planes. Let the pixel of the reference image be p0 and dj be the jth hypothetical depth in
the sampling depth hypothesis. Then, each pixel coordinate pi in ith source image can be
calculated as follows:

pi = KiRi(RT
0 K−1

0 p0dj + (RT
i Ti − RT

0 T0)), (1)

where Ki, Ri, and Ti mean, respectively, the intrinsic matrix, the rotation matrix, and the
translation vector under the world coordinates of the ith source image. Similarly, K0, R0,
and T0 denote the intrinsic matrix, the rotation matrix, and the translation vector under
the world coordinates of the reference image. After warping the feature maps to the
reference perspective, the correlation of the feature map can measure the probability and
the reliability of the dj depth hypothesis. For each reference image I0, we construct a feature
volume {Vi}i=1,2...N . In the depth hypothesis dj, the cost volume Cdj

can be calculated by
the variance of the N views as follows:

Cdj
=

∑N
n=1(Vn − Vn)2

N
, (2)

where Vn is the average volume:

Vn =
∑N

n=1 Vn

N
, (3)

Because the raw cost volume usually contains a lot of noise, 3D-UNet is applied for
cost volume regularization. In contrast to existing learning-based MVS methods [4,6,8,12],
we simplify the four-scale architecture to the light three-scale structure, which helps us
to reduce the computation amount and GPU memory consumption. Next, the softmax
operation is applied along the depth dimension to normalize the probability volume.
Finally, the depth estimation D0 can be calculated by multiplying each probability map pdj

by the corresponding hypothetical depth value dj as follows:

D =
M

∑
j=1

dj × pdj
. (4)

3.2. Light Coarse-Feature-Enhanced Feature Pyramid Network

In recent years, the majority of learning-based multi-view stereo methods [6,24,37,39]
have employed the feature pyramid network (FPN) [13] for image feature extraction. This
FPN structure effectively captures multi-scale features, making it suitable for a cascaded
network architecture [6]. However, the classical FPN module still faces challenges such
as a high GPU memory consumption and insufficient feature extraction. To address these
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issues, we propose a light coarse-feature-enhanced feature pyramid network (LCFE-FPN)
for feature extraction. This novel design not only achieves a more lightweight network but
also ensures the preservation of the final reconstruction quality.

As shown in Figure 1, the backbone of our LCFE-FPN is primarily based on the
classical FPN architecture [13]. The input image is composed of a reference image, I0, and
N − 1 images {Ii}i=1,2...N−1 with the size of W × H. We obtain feature maps at K different
resolution stages through multi-scale feature extraction. These extracted multi-scale feature

maps are represented as {Fk
i ∈ R

C
2k−1 ×

H
2(L−k) ×

W
2(L−k) |i = 1, 2 . . . N, k = 1, 2 . . . L}, where L

denotes the total number of resolution stages and C represents the number of feature
channels. In our experiments, following a similar approach to [6], we set the total number
of resolution stages L to 3. Specifically, the batch normalization layers in the classic FPN [13]
are replaced with in-place-activated batch normalization layers (Inplace-ABN) [14]. Using
Inplace-ABN layers [14], which cleverly drop or recompute intermediate buffers as needed,
results in a 29% reduction in GPU memory consumption, making our feature extraction
module lightweight.

To enhance feature extraction at the coarse stage and to improve the model perfor-
mance, we introduce a novel coarse-feature-enhanced (CFE) module designed to fortify
the feature maps in the first stage with the lowest resolution. As depicted in Figure 2, the
CFE module employs light atrous spatial pyramid pooling [40] to achieve a larger receptive
field for better contextual feature extraction. More specifically, modified lightweight atrous
spatial pyramid pooling consists of the following steps: the input feature map passes
through a 2D-CNN layer, and then undergoes parallel operations involving three 2D-CNN
layers with three different dilation rates (3,6,9) and one average pooling layer. Subsequently,
the results are concatenated along the channel dimension and processed through a 1x1
CNN. Later, our coarse-feature-enhanced module (CFE) fuses the enhanced features via
channel attention [41] and spatial attention [42] at the lowest-resolution stage. The addition
of our CFE module aims to bolster contextual features within the coarse stage and ensures
well-initialized depth estimation in the cascade architecture.

Figure 2. The architecture of the proposed coarse-feature-enhanced (CFE) module. For these feature
maps at the coarse stage, we employ dilated convolutions with three different dilation rates (3, 6, and
9) for atrous spatial pyramid pooling. Subsequently, we further enhance these feature maps through
the combination of spatial attention and channel attention and, finally, calculate the average as the
final enhanced feature map.
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3.3. Patch-Uncertainty-Based Depth Sampling Strategy

As articulated in related work, uncertainty-based depth sampling strategies have
been employed to adjust the sampling distance dynamically during depth refinement.
However, learning-based MVS methods with a cascade architecture generally adopt an
approach where each stage corresponds to a fixed sampling range. This process overlooks
the differences between individual pixels, thereby affecting the final reconstruction quality.
At the same time, methods [11,24,43] utilizing uncertainty-based sampling strategies also
neglect the influence of its neighborhood on the sampling range for a given pixel, thus
disregarding nearby semantic information. We propose a patch-uncertainty-based depth
sampling strategy (PUDS) to address these issues above.

As shown in Figure 3, during each GRU optimization, we utilize the PUDS to adap-
tively adjust the sampling inverse depth hypothesis range. More specifically, for the t-th
optimization at k-th scale stage, we calculate the variation map of the inverse depth uk

t using

uk
t =

∆Dk
t

Dk
t−1

, (5)

followed by min-max pixel-wise normalization:

ûk
t (p) =

uk
t (p)− umin

umax − umin
. (6)

Subsequently, considering the impact of the neighborhood of each pixel p in the
normalized variation map, we calculate the coefficient patch uncertainty S, serving as a
scaling factor to adjust the inverse depth sampling range. As shown in Figure 4, for each
pixel p, the k-th stage patch uncertainty S(p) in the t-th optimization is defined by:

Sk
t (p) = ∑

p′∈P(p)
µp′ û

k
t (p′), (7)

where P represents the neighboring patch of the pixel p and µp′ denotes the corresponding
weight of the pixel p′ within the neighboring patch P(p). For each pixel p′ in the neighbor-
ing patch P, the weight µp′ attenuates as the distance ∥pp′∥ increases, and the sum of all
weights µp′ within the neighbored patch is equal to 1 ∑p′∈P(p) µp′ = 1. After that, for each
pixel p, we define the k-th stage inverse depth sampling range Hk

t at the t-th optimization
as follows:

Hk
t (p) =

[
1

Dk
t−1(p)

− Sk
t (p)δk,

1
Dk

t−1(p)
+ Sk

t (p)δk

]
, (8)

where δk is a pre-configured sampling distance based on the current stage k. The definition
of δk is as follows:

δk =
2k−1( 1

dmin
− 1

dmax
)

G
, (9)

where dmin, dmax, and G are all constant numbers based on the corresponding datasets; we
will introduce these parameters more specifically in the following experimental section.
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Figure 3. Visualization of the sampling range setting. In this figure, we take two pixels p1, p2 and
their patches as the example. The circle is the current estimation Dk

t , and the triangle is the last
estimation Dk

t−1. After the t-th optimization, red exhibits the pixel p1 with a small patch uncertainty
Sk

t (p1), thereby setting a smaller sampling range Hk
t+1(p1) for the next GRU optimization. In contrast,

blue represents the pixel p2 with significant patch uncertainty Sk
t (p2), necessitating a larger sampling

range Hk
t (p2) in this case.

Figure 4. Visualization of patch selection. In this figure, we take a 5 × 5 size patch as an example. In
the neighborhood P(p0) of the central pixel p0, the small dots indicate the magnitude of weights µp′ ,
with darker colors indicating higher weights and lighter colors indicating lower weights.

3.4. Edge-Aware Iterative Cost Volume

Inspired by [10,16,22,24], we construct an edge-aware iterative cost volume and then
utilize GRU-based optimization to refine the depth map. As illustrated in Figure 5, our
edge-aware iterative cost volume mainly involves four different types of features: content
features, edge features, geometric features, and depth features. From the preceding steps, it
can be inferred that we have obtained the cost volume and the depth estimation after multi-
scale feature extraction and differential warping. Then, we apply two convolution layers on
the cost volume and the depth map, respectively, to extract the content and depth features.
Subsequently, we concatenate the content and depth features in the channel dimensions.
We then merge them with the geometric features derived from the reference image. A
lightweight, classic edge detection operator is employed to extract the edge features from
the content features, which are further concatenated along the channel dimensions. This
process collectively forms our proposed iterative cost volume.

Next, as shown in Figure 1, we utilize a GRU-based optimizer to process the iterative
cost volume and to refine the depth map. Similar to [10], we build a multi-stage architecture
to use the multi-scale information further. The GRU optimizer refines the depth map T
times for each stage k, and the output of each GRU optimization is ∆Dk

t , where t denotes
the tth GRU optimization. Let the kth stage input depth map be Dk

t−1. The refined depth
after one optimization can be calculated as follows:

Dk
t = Dk

t−1 + ∆Dk
t . (10)
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Suppose the optimization amount t equals the pre-configured optimization limit T. In
that case, the output-refined depth map will be upsampled to next stage k + 1 with the size
changing from H

2(L−k) × W
2(L−k) to H

2(L−k−1) × W
2(L−k−1) , serving as the initial input depth map

for stage k + 1.

Figure 5. Construction of our edge-aware iterative cost volume. We utilize 2D-CNN layers to
extract geometric features from the sparse cost volume and depth features from the previous depth
estimation. Additionally, we capture edge features using an edge detection operator. Subsequently,
we fuse these four types of features to construct the edge-aware iterative cost volume.

3.5. Loss Function

We consider both the loss of initial depth estimation and the loss of refined depth
estimation at each stage after each optimization. L1-normal represents the distance between
each depth estimation and the corresponding ground truth depth map during training.
Similar to other learning-based multi-view stereo methods [4–6], we consider pixels with a
valid label in the ground truth depth map to avoid the potential negative impact from the
fact that not every pixel in the ground truth depth map is valid. Thus, each loss Lk

t can be
calculated as follows:

Lk
t = ∑

p∈Pvalid

∥∥∥Dk(p)− Dk
t (p)

∥∥∥
1
, (11)

where Dk(p) represents the pixel in ground truth depth map at the k-th resolution stage.
Subsequently, the final loss Loss f inal can be calculated as follows:

L f inal = L0 +
3

∑
k=1

T

∑
t=1

λt−T Lk
t . (12)

Here, L0 represents the loss of our first estimated depth map without GRU optimiza-
tion, and λt−T is a coefficient that exponentially decays with each optimization. We set the
constant λ to 0.9 in our experiments.
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4. Experiments

We have evaluated our approach on established multi-view stereo benchmark datasets,
namely the DTU dataset [17] and the Tanks and Temples dataset [18]. A series of experi-
ments were conducted to verify the efficacy of our approach proposed in this paper.

4.1. Datasets
4.1.1. DTU

The DTU dataset [17] is an indoor dataset aimed at multi-view stereo evaluation.
This dataset consists of 124 scenes captured by a structured light scanner mounted on an
industrial robot arm under various lighting conditions. In the DTU dataset, each scene
contains 49 views from distinct camera poses along the same camera motion, and each
view contains an RGB photo and the corresponding ground truth depth map. The DTU
dataset also provides ground truth 3D point clouds for evaluation.

4.1.2. Tanks and Temples

The Tanks and Temples dataset [18] is an outside-lab dataset including outdoor and
indoor scenes. Each scene is a video sequence captured under realistic conditions by a
moving industrial laser scanner. The Tanks and Temples dataset is divided into intermediate
and advanced subsets. The intermediate subset features sculptures, large vehicles, and
house-scale buildings with exterior-looking camera trajectories. The advanced subset
includes expansive indoor and outdoor scenes with complex geometries and diverse
camera paths.

4.1.3. BlendedMVS

The BlendedMVS dataset [44] is a recently released large-scale dataset for learning-
based multi-view stereo which contains over 17 k high-resolution images in various scenes.

4.2. Evaluation Metrics

We utilized metrics based on accuracy and completeness to evaluate the quality of the
final reconstruction results. Accuracy represents the distance between each estimated point
cloud and the corresponding ground truth point cloud, while completeness is measured
from the ground truth point cloud to the estimated point cloud. Meanwhile, we also
calculate the F1 score, considering both completeness and accuracy, as the evaluation
metric in the experiments on the Tanks and Temples dataset [18].

4.3. Implementation Details

Following general practice like other learning-based multi-view stereo
methods [5,6,8,10,12], we trained our model on the DTU [17] training set and evaluated it
on the evaluation set with the same parameter configuration. We also fine-tuned our model
on the BlendedMVS [44] dataset and evaluated the results on the Tanks and Temples [18]
dataset. In the calculation of pixel weights µp within the patch P(p0) for the PUDS, we
used the Chebyshev distance as metric of the distance ∥pp0∥ from pixel p to the center
pixel p0 in the patch P(p0). In the experiment on patch size, for the 3 × 3, 5 × 5, and 7 × 7
patch sizes, the pixel weight µp in each patch P(p0) was set in ascending order according
to the distance ∥pp0∥. It was, respectively, set to ( 1

2 , 1
16 ), ( 1

3 , 1
24 , 1

48 ) and ( 1
4 , 1

32 , 1
64 , 1

96 ). In all
experiments conducted in this paper, the intrinsic and extrinsic camera parameters used
were obtained from the datasets [17,18,44] directly.

4.3.1. Training

The resolution of the input images was 640 × 512, and the number of input images was
N = 5. We set 48 evenly spaced planes for depth hypotheses in the first depth estimation.
Subsequently, we set the number of depth hypotheses to 4 for iterative cost volume con-
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struction during depth refinement. In the first depth refinement in each stage, we defined
the minimum sampling distance δ0 for the inverse depth as:

δ0 =
(1/dmin − 1/dmax)

G
, (13)

where dmin = 425 mm, dmax = 935 mm, and G = 384 for the DTU dataset [17]. We configured
the optimization number T for GRU-based optimization as 3 for each stage. We imple-
mented our method in PyTorch [45] and trained the model using the AdamW optimizer
with a OneCycleLR schedule and a maximum learning rate of 0.001. We trained our model
on a single NVIDIA GeForce RTX 3090 GPU sourced from NVIDIA Corporation in Santa
Clara, California, United States, with a batch size 8.

4.3.2. Evaluation

For the evaluation on the DTU dataset [17], we utilized the provided MATLAB eval-
uation program and the ground truth point cloud. The resolution of input images was
1600 × 1184, and the number of input images was N = 5. For the evaluation on the Tanks
and Temples dataset [18], we uploaded the final reconstruction result to the Tanks and
Temple [18] official website and published the online evaluation results on the leaderboard.
The resolution of input images was 1920 × 1056, and the number of input images was
N = 7. Like other learning-based multi-view stereo methods, we leveraged the photometric
and geometric consistency to generate filters for the depth map output and then fused
these to obtain the final point cloud results.

4.3.3. Fine-Tuning

Before the evaluation on the Tanks and Temples dataset [18], we trained the model
on the BlendedMVS dataset [44] for 16 epochs. During fine-tuning, the resolution of input
images was set to 768 × 576, and the number of input images was set to N = 5. Unlike
training on the DTU dataset [17], we assigned 96 evenly spaced planes for depth hypotheses
in the first depth estimation. Meanwhile, we set G = 768 for fine-tuning.

4.4. Results

We conducted a comparative analysis of our method with other existing multi-view
stereo methods [1,4–6,8–11,19–24], focusing on criteria such as the reconstruction quality,
GPU memory consumption, and the running time. For the sake of ensuring a fair com-
parison, we used the same experimental configurations across all methods. We uniformly
employed original-resolution images and set the input view number to 5 for the DTU
dataset [17] evaluation and 7 for the Tanks and Temples dataset [18] evaluation.

4.4.1. Performance on the DTU Benchmark

For a comparison using the DTU dataset [17], we compared our results with some
traditional methods [1,19–21] and learning-based methods [4–6,8–11,22–24]. For a quantita-
tive evaluation, we use official MATLAB codes to calculate the accuracy and completeness.
As the quantitative results show in Table 1, our method not only excels in efficiency, as
demonstrated by the lower GPU memory consumption and faster running time, but also
delivers a competitive performance in terms of the reconstruction quality. In addition,
we present quality comparisons using the DTU dataset [17] in Figure 6. Compared to
PatchmatchNet [5] and CasMVSNet [6], it is evident that the point clouds generated by our
method exhibit a superior performance in capturing finer details.
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Table 1. Quantitative comparison on the DTU dataset (the lower, the better). The bold indicates the
best, while the underlined indicates the second best.

Method Acc. (mm) Comp. (mm) Overall (mm) Mem. (GB) Time (s)

COLMAP [1] 0.400 0.664 0.532 - -
Tola [20] 0.342 1.190 0.766 - -
Furu [19] 0.613 0.941 0.777 - -

Gipuma [21] 0.283 0.873 0.578 - -

MVSNet [4] 0.396 0.527 0.462 - -
R-MVSNet [22] 0.385 0.459 0.417 - -

Fast-MVSNet [23] 0.336 0.403 0.370 7.0 0.52
Vis-MVSNet [9] 0.369 0.361 0.365 5.6 0.61

CVP-MVSNet [8] 0.296 0.406 0.351 8.8 1.51
CasMVSNet [6] 0.346 0.351 0.348 5.3 0.55
UCS-Net [11] 0.338 0.349 0.344 6.6 0.54

PatchmatchNet [5] 0.427 0.277 0.352 3.6 0.29
Effi-MVSNet [10] 0.321 0.313 0.317 3.1 0.19

IterMVS [24] 0.373 0.354 0.363 4.7 0.20
TransMVSNet [37] 0.321 0.289 0.305 3.0 0.71

Ours 0.320 0.307 0.314 2.2 0.27

Figure 6. The point cloud quality comparison. From top to bottom, each row represents scan33,
scan13, and scan23 in the DTU dataset [17]. From left to right, the point cloud results correspond to
PatchmatchNet [5], CasMVSNet [6], our method, and the ground truth.

4.4.2. Performance on Tanks and Temples Benchmark

For a comparison using Tanks and Temples dataset, we compared our results with
the widely used open-source reconstruction software COLMAP [1] and well-known estab-
lished learning-based MVS methods [4–6,8–11,22–24,37]. For quantitative evaluations, we
submitted our reconstruction results to the Tanks and Temples [18] website, publishing
the mean F-score on its leaderboard. As indicated in Table 2, in the qualitative evaluation,
our method achieved a commendable overall performance. Notably, it ranks first on the
advanced subset compared to other methods, demonstrating our model’s robustness and
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generalization capabilities. Figure 7 presents qualitative visualizations showcasing the
robust reconstructive capabilities of our algorithm, particularly emphasizing its effective-
ness in handling large-scale outdoor scenes. In addition, we further compare our method
with the state-of-the-art TransMVSNet [37] method. Taking the temple scene from the
Tanks and Temples advanced dataset as the example, as depicted in Figure 8, it can be
observed that our method exhibits a superior performance in reconstruction completeness.

Table 2. Quantitative comparison on the Tanks and Temples dataset (the higher, the better). The bold
indicates the best, while the underlined indicates the second best.

Method
Intermediate Advanced

Mean Fam. Fran. Hor. L.H. M60 Pan. P.G. Tra. Mean Aud. Ball. Cou. Mus. Pal. Tem.

COLMAP [1] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
MVSNet [4] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - - - - - - -

Fast-MVS [23] 47.39 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91 - - - - - - -
R-MVSNet [22] 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 24.91 12.55 29.09 25.06 38.68 19.14 24.96
Vis-MVSNet [9] 60.03 77.40 60.2 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70

CVP-MVSNet [8] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - -
CasMVSNet [6] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
UCS-Net [11] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - -

PatchmatchNet [5] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
Effi-MVSNet [10] 56.88 72.21 51.02 51.78 58.63 58.71 56.21 57.07 49.38 34.39 20.22 42.39 33.73 45.08 29.81 35.09

IterMVS [24] 56.22 73.57 54.39 50.16 54.70 58.50 52.54 54.51 51.38 33.24 22.95 38.74 30.64 43.44 28.39 35.27
TransMVSNet [37] 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62

Ours 60.01 77.97 62.26 52.77 60.24 58.32 55.80 58.36 54.38 37.67 28.70 42.65 35.47 47.80 31.29 40.12

(a) Intermediate datasets.

(b) Advanced datasets.

Figure 7. Reconstruction results on the Tanks and Temples dataset.
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Figure 8. Error visualization comparison on the temple scene of the Tanks and Temples dataset. The
upper row shows the results of Transmvsnet [37], while the lower row displays our results.

4.5. Ablation Study
4.5.1. Effect of Each Component

Table 3 presents the ablation results of our proposed method. The evaluation results
of the baseline method [10] are reproduced with the same parameter configuration as the
others. The LCFE-FPN model enhances features at the coarse stage, resulting in a 3.6%
improvement in accuracy. Notably, the lightweight structure of LCFE-FPN significantly
reduces GPU memory consumption from 3.1 GB to 2.2 GB, approximately 29%. Mean-
while, using the proposed patch-uncertainty-based sampling (PUDS) strategy enables the
adaptive setting of a more accurate sampling range, leading to a 7.4% improvement in
completeness. Additionally, incorporating additional edge features (EFs) in iterative cost
volume construction leads to more attention to detail, thereby improving the model’s
performance in terms of completeness and overall performance.

Table 3. Ablation evaluation results on the DTU dataset. The bold indicates the best.

Methods Acc. (mm) Comp. (mm) Overall. (mm)

baseline 0.326 0.324 0.325

+ LCFE 0.314 0.329 0.322
+ PUDS 0.337 0.300 0.319
+ LCFE + PUDS 0.319 0.315 0.317

+ LCFE + PUDS + EF (Ours) 0.320 0.307 0.314

4.5.2. Ablation in Feature Extraction

In this section, we conduct ablation experiments on the feature extraction step of
our method in this study, comparing our light, coarse-feature-enhanced feature pyramid
network (LCFE-FPN) with the traditional FPN. During this experiment, we only modified
the feature extraction step without altering the other steps of the algorithm. As shown in
Table 4, utilizing the LCFE-FPN in the feature extraction step enhances the reconstruction
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quality of the model while reducing the memory consumption. Moreover, it should be
noted that the resulting increase in algorithm runtime is also slight and acceptable.

Table 4. Effect of the LCFE-FPN on the DTU dataset. The bold indicates the best.

Methods Acc. (mm) Comp. (mm) Overall (mm) Mem. (GB) Time (s)

FPN 0.345 0.301 0.323 3.6 0.25
LCFE-FPN 0.320 0.307 0.314 2.2 0.27

4.5.3. Ablation in Sampling Strategy

This section compares the proposed patch-uncertainty-based depth sampling strategy
(PUDS) with the commonly used uniform sampling strategy (US). As demonstrated in
Table 5, the utilization of the PUDS significantly enhances the quality of the final point
cloud during the GRU optimization process. Furthermore, in terms of GPU consumption
and algorithm runtime, the PUDS also exhibits a comparable performance.

Table 5. Effect of the PUDS on the DTU dataset. The bold indicates the best.

Methods Acc. (mm) Comp. (mm) Overall (mm) Mem. (GB) Time (s)

US 0.326 0.324 0.325 2.2 0.26
PUDS 0.320 0.307 0.314 2.2 0.27

4.5.4. Ablation in Iterative Cost Volume Construction

During iterative cost volume construction in the depth refinement step, we also tested
the effect of edge features (EFs). Table 6 presents the results. Note that the utilization
of EFs can notably enhance the overall performance regarding the reconstruction quality,
particularly in completeness. At the same time, it is worth noting that incorporating edge
features will also lead to a slight increase in algorithmic runtime and memory consumption.

Table 6. Comparison of the impact of edge features on the DTU dataset. The bold indicates the best.

Methods Acc. (mm) Comp. (mm) Overall (mm) Mem. (GB) Time (s)

No EF 0.319 0.315 0.317 2.1 0.24
EF 0.320 0.307 0.314 2.2 0.27

4.5.5. Edge Extraction Operator Selection

In this section, we conduct additional experiments to evaluate the individual impact
of each component in our approach. Moreover, we explore the effects of patch size in
depth sampling and the selection of operators in edge feature extraction. All ablation
experiments were conducted using the DTU dataset [17]. In this experiment, we selected
four well-known operators [15,46–48] in edge detection as alternatives. Keeping the same
experimental configuration, we evaluated the final reconstruction results on the DTU
dataset [17]. As depicted in Table 7, the Sobel [15] operator emerges as the ultimate winner,
closely followed by the Prewitt [46] operator in second position.

Table 7. Different operators in edge feature extraction. The bold indicates the best.

Operator Acc. (mm) Comp. (mm) Overall (mm)

Prewitt [46] 0.341 0.297 0.319
Scharr [47] 0.333 0.318 0.326
Roberts [48] 0.326 0.412 0.369
Sobel (Ours) [15] 0.320 0.307 0.314
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4.5.6. Size of the Patch

Furthermore, to evaluate the impact of the patch size in PUDS, we tested four different
sizes: 1 × 1, 3 × 3, 5 × 5, and 7 × 7. The 1 × 1 patch size implies that PUDS does not
consider uncertainty at the patch level but focuses on each pixel individually. As shown
in Table 8, a patch size 3 × 3 demonstrates improved evaluation performance in the DTU
dataset [17].

Table 8. Different patch sizes in PUDS. The bold indicates the best.

Patch Size Acc. (mm) Comp. (mm) Overall (mm)

1 × 1 0.331 0.348 0.330
3 × 3 (Ours) 0.320 0.307 0.314
5 × 5 0.319 0.314 0.317
7 × 7 0.323 0.419 0.371

5. Conclusions

In this paper, we introduce a novel learning-based multi-view stereo method, presenting
significant contributions to address the key challenges in the field. Our main accomplishments
can be summarized as follows: Firstly, we propose a novel, light, coarse-feature-enhanced
feature pyramid network designed to effectively balance the GPU memory consumption and
the final reconstruction quality. Secondly, in the depth refinement phase, we put forward a
novel patch-uncertainty-based sampling strategy that can calculate the patch-wise uncertainty
based on each pixel’s depth variation and adaptively adjust the inverse depth sampling range.
This strategy ensures adaptive and dynamic assignment of different sampling ranges for
each pixel. In addition, we integrate edge information extracted by the Sobel operator into
iterative cost volume construction, further enhancing our model’s performance. Furthermore,
through comparative evaluations against other learning-based multi-view stereo methods,
our approach demonstrates a competitive performance, excelling not only in terms of GPU
consumption but also in terms of producing high-quality reconstructions of benchmark
datasets such as the DTU dataset and the Tanks and Temples dataset.

The method proposed in this paper also has some limitations and deficiencies. In the
feature extraction step, compared to transformer-based methods, our LCFE-FPN benefits from
a relatively simple structure, which gives it advantages in terms of memory usage and runtime
speeds. However, our final reconstruction quality is lower overall than that of transformer-
based methods. In the future, we can explore using a lightweight transformer for feature
extraction to achieve better results. On the other hand, in outdoor scenes, learning-based MVS
methods struggle to estimate the depth of the sky and its boundaries, which affects the final
reconstruction quality. If we remove the sky from images before feature extraction, this might
enhance the model’s performance in outdoor scenarios and the generalization capability.

In the future, we aim to integrate the proposed method with the SLAM system, further
refining its efficiency. This integration will facilitate its deployment within automated
production environments, enabling real-time dense reconstruction of three-dimensional
scenes close to visual robotic arms. This advancement will enhance automatic positioning,
obstacle avoidance, and gripping operation capabilities.
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