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Abstract: In this paper, we present and evaluate a calibration-free mobile eye-traking system. The
system’s mobile device consists of three cameras: an IR eye camera, an RGB eye camera, and a
front-scene RGB camera. The three cameras build a reliable corneal imaging system that is used to
estimate the user’s point of gaze continuously and reliably. The system auto-calibrates the device
unobtrusively. Since the user is not required to follow any special instructions to calibrate the system,
they can simply put on the eye tracker and start moving around using it. Deep learning algorithms
together with 3D geometric computations were used to auto-calibrate the system per user. Once the
model is built, a point-to-point transformation from the eye camera to the front camera is computed
automatically by matching corneal and scene images, which allows the gaze point in the scene image
to be estimated. The system was evaluated by users in real-life scenarios, indoors and outdoors. The
average gaze error was 1.6◦ indoors and 1.69◦ outdoors, which is considered very good compared to
state-of-the-art approaches.
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1. Introduction

In daily life, vision is a crucial human faculty. As we move or look around, the ability to
see allows us to gather information, some trivial but some essential, about our environment.
We use vision to identify objects, recognize individuals, and find our way around. Vision,
however, even though three-dimensional, only gives us surface information. If we want more
knowledge about what we are looking at, we must stop and seek the information through
other media than our eyes. Despite the vast amounts of information available online today, we
cannot seamlessly access the data. We must take pictures or submit queries and wait for results.
This usually entails interacting with our mobile devices. With all of today’s technological
advancements, why should we not be able to do this just by looking at objects of interest?

To enable this technology, we must be able to track an eye’s point of gaze (PoG)
as an indicator of human visual attention. Given that eye gaze can indicate the user’s
object of interest by identifying the user’s fixation point and translating this into an object
in the scene, it is becoming an important input modality. Eye tracking is the process
of determining and measuring a user’s line of sight to the object they are observing.
It is an active area of research and has many applications in multiple areas including
clinical applications [1], surgical training [2], visual systems such as shopping research [3],
navigation [4], psychology [5], emotion recognition [6], museum visits [7], and more.

Mobile eye tracking devices have begun moving from the pages of science fiction
novels into the marketplace. They have improved in quality, their cost is declining, and
several companies such as Pupil Labs [8] and Tobii (www.tobii.com—accessed on 3 January
2024) produce them. Eye gaze is becoming an important input modality since it can convey
the object of interest of the user by detecting the user’s fixation point and translating it to
an object in the scene. Such devices can be used in varied indoors and outdoors settings.
Examples for the potential use of mobile eye tracking as a natural human–computer
interaction vary greatly. It can be used to trigger information delivery to users in shopping
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malls and supermarkets (and in fact in any indoors setting), it can trigger information
delivery to tourists in cultural heritage sites and cities (e.g., pedestrians in outdoors urban
places), and it can be used in cars safety systems to monitor drivers/pilots awareness, it
can be used to guide surveillance drones to areas of interest—to get a better picture of an
area observed remotely—whether outdoors or indoors. Knowing the user’s interest, it can
easily trigger augmented reality presentation using smart glasses, enhancing what the user
is viewing with additional information.

Camera-based eye-tracking systems use infrared (IR) eye cameras and object detection
methods to extract eye features (i.e., the center of the pupil) from the captured eye images.
The features (points) are transformed afterwards into a front-scene camera’s points that
enable the PoG to be estimated. For this to be done accurately, in most tracking systems,
users are asked to perform an annoying calibration procedure that makes eye trackers less
than user friendly. The most common calibration procedure is to track a screen marker, but
other methods also exist [9]. Nevertheless, even if it is calibrated before being used, it is
hard to keep a device calibrated in a mobile setting. Whenever a user touches the mobile
eye tracker or simply scratches their nose, the device must be re-calibrated because the eye
tracker has moved from its initial position.

Numerous studies have employed diverse methods to address the calibration require-
ment. Alnajar et al. [10] proposed utilizing the gaze patterns of individuals who had
previously observed a specific scene as an indication of where a new user might focus when
viewing the same scene. They managed to achieve a gaze error exceeding 4◦. Another
investigation [11] introduced an online learning algorithm that leveraged mouse-clicked
positions to deduce the user’s gaze location on the screen. Each mouse click triggered the
acquisition of a learning sample, but the calibration points were obtained using a cursor
and its positions. The authors attained an average accuracy of 2.9◦. In a separate study [12],
users’ hands and fingertips served as calibration samples, with users simply pointing at
various locations in the scene. Although the proposed approach demonstrated accuracy
comparable to marker-based calibration techniques, it still necessitated users to direct
their gaze to specific points in the scene, achieving an average accuracy of 2.68◦. A more
recent investigation [13] utilized an RGBD front camera and saliency-based methods for
auto-calibrating a head-mounted binocular eye-tracking system. The reported accuracy
was 3.7◦ indoors and 4.0◦ outdoors.

To eliminate the cumbersome calibration procedure, we explored a new method for
gaze estimation which is based on corneal imaging [14]. The system we developed uses
three cameras, a scene camera and two eye cameras: an IR camera and an RGB camera [15],
which enable a 3D perspective. To understand corneal imaging, we must remember that
the visible parts of the human eye are the white sclera continuous with the cornea, the
iris, and the black pupil, which are all protected by tear fluid. The tear fluid on the cornea
turns it into a reflecting surface. To attain a corneal image, the pupil is tracked via the scene
camera and then its boundary region is computed. Using the result, the corneal image
together with its center (the pupil’s center), we can track the user’s gaze in that image.
Nevertheless, since the corneal image is a cropped image of the reflection of the world in
the gazer’s eye, it is usually blurred and low resolution. This necessitates the placement
of an additional camera, the IR camera, to capture more accurate world scene images (the
scenes being reflected but that may be blurry/indistinct). Another challenge is having the
RGB eye camera track the pupil continuously, reliably, and accurately. This is a difficult
task, especially in harsh lighting conditions and outdoors, where part of the pupil may be
occluded as a result of the reflection of the scene.

Deep-learning algorithms undergo training to identify the pupil in both infrared (IR)
and RGB images, facilitating the real-time generation of an individualized 3D model of
the eye. Following the construction of the 3D model, the algorithm calculates the 3D gaze
direction by originating from the center of the eyeball and passing through the pupil center
to the external environment. Additionally, this model serves to map the pupil’s position
detected in the IR image to its corresponding location in the RGB image and enables the
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detection of gaze direction in the corneal image. This approach effectively addresses the
challenge associated with pupil detection in RGB images, as mentioned earlier.

The present work extends our previous work [15]. Here, we use the device offered
in [15], along with the computed 3D model and the 3D-mapping transformation between
IR and RGB eye cameras, integrating the per-user point-to-point transformation from the
RGB eye camera to the front-scene camera to build a complete calibration-free mobile
eye-tracking system. These system components (modeling, 3D-mapping transformation,
and integration) and the system as a whole comprise the main contribution of this paper.
The system was evaluated in real-life scenarios, indoors and outdoors, and achieved highly
accurate and very encouraging results.

2. Wearable Eye-Tracking Headset

Our wearable eye-tracking device consists of three cameras assembled on a mobile
headset: two eye cameras, one IR camera (800 × 600) and one RGB camera (1280 × 960), and
a front RGB scene camera (1280 × 960) (see Figure 1). The IR camera is used to track the
pupil continuously and reliably, the RGB eye camera is used to extract and acquire corneal
images, and the front RGB scene camera is used to capture the world scene. Detecting and
tracking the pupil in the RGB eye camera is challenging, as real-world light reflections can
affect the visibility of the pupil in the image drastically (see Figure 2 for an example). Figure 3
presents a snapshot of a user’s eye and the scene in front of the user captured by the three
cameras—a bulletin board. The left-most image (Figure 3a) was captured using the IR camera,
the center image (Figure 3b) was captured using the RGB eye camera, and the right-most
image (Figure 3c) was captured using the front-scene camera. On the one hand, the eye is
seen very clearly in the IR image, permitting the deep-learning algorithm to easily detect the
pupil with high accuracy. On the other hand, the pupil boundaries are not salient in the RGB
image because of the light reflection. This case illustrates the need to use two eye cameras: an
IR one for pupil detection and an RGB one for acquiring corneal images.

Figure 1. Front view of the eye-tracker headset with key components.

Figure 2. RGB eye camera snapshot with light reflection. The boundary of the pupil is invisible.
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(a) (b) (c)

Figure 3. (a) IR camera image of the eye. (b) RGB camera image of the eye. (c) Image as seen by user.

The mobile headset can be adjusted to fit every person’s height and face shape. The eye
cameras (IR and RGB) are placed on a mount with an arm that can be moved forward and
backward. The view angle can also be adjusted relative to the user’s eye. The front camera
can be adjusted upwards and downwards to fit the world scene view to the user’s height.

Calibrating the device, i.e., the three cameras, is a necessary step to track the eye and
to compute the gaze points. The calibration procedure should be carried out before the eye
tracker is used, especially when we allow device adjustments that add more degrees of
freedom, which is a challenging task that is discussed in Section 4.

3. 3D Gaze Estimation

The human eye exhibits two primary axes, namely the visual and optical axes, as
depicted in Figure 4. The visual axis is characterized by the line extending from the fovea
through the pupil center to the external environment. It is synonymous with the line
of sight (LoS) and dictates the true gaze direction. The optical axis, on the other hand,
is delineated by the line connecting the eyeball center and the pupil center, extending
outward. The angle kappa represents the angular deviation between the visual axis and
the optical axis, varying among individuals. During eye tracking, the estimated 3D gaze
vector is determined using the optical axis.

Appearance-based methods [16] directly detect and track eye gaze from images,
eliminating the necessity for a complete 3D model of the head and eyeball. Instead, these
methods develop a mapping function from eye images to gaze directions. They exhibit the
ability to handle changes in lighting conditions. Given their typical utilization of the entire
eye image as a high-dimensional input feature, they map this feature to a low-dimensional
gaze position space. This characteristic makes them potentially effective even with low-
resolution images [17]. The pupil center is used as a good approximation indicator for the
actual gaze point in the real world (Pupil Core [8], for example). Hence, detecting and
tracking the pupil, more specifically, the pupil center, is a crucial step toward estimating
the 3D gaze vector.

In our approach, we are interested in tracking the pupil using the RGB eye camera,
where the corneal image together with its center (the pupil center) indicate the real gaze
point in the world. Then, the pupil center’s image plane, as captured by the RGB eye
camera, is transformed into the front-scene camera’s image plane, which generate the gaze
points in the scene images.

To estimate the 3D gaze and then build a complete eye-tracking system we need to
find and compute the relationship between the three cameras. More specifically, we must
transform each point from one camera to the other, moving from the IR eye camera to
the RGB eye camera, and from the RGB eye camera to the front-scene camera. Hence, the
process of estimating the 3D gaze is divided into several stages:

• Capturing the pupil using the IR eye camera.
• Transforming the pupil center’s points from the IR eye camera to the RGB eye camera

using a 3D-mapping transformation.
• Transforming the pupil center’s points from the RGB eye camera to the front-scene camera.
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Since the headset must be adjusted for each user, the latter’s face shape must be taken
into consideration. The view angle, the distance between the eye cameras, and the user’s
eye shape will also vary between users. Hence, each stage of the 3D gaze estimation
computation comprises several steps that enable calculation of the relationships according
to how the headset is adjusted.

Figure 4. Human eye visual axes. Both visual and optical axes pass through the pupil center. Only
the optical axis can be computed.

The paper by Mokatren et al. [15] introduces a method for 3D gaze estimation through
RGB-IR cameras, eliminating the requirement for calibration. The hardware setup involves
a headset equipped with two cameras—an IR camera for pupil detection and an RGB cam-
era for capturing corneal images. The technology is designed to estimate 3D gaze direction
without the necessity of individualized calibration procedures. In the auto-calibration
process, the software calculates the 3D model of the eye and subsequently determines the
3D gaze direction. Importantly, this process is non-intrusive, and users remain unaware
that the system is undergoing self-calibration. In order to create a customized 3D model of
the eyeball, it is necessary to gather sample points from both cameras. For this purpose,
both cameras capture images of the eye simultaneously. Points are then gathered from the
detected pupil boundaries using a deep-learning algorithm. With a set of corresponding
points in the two image planes, examining the intersections of the projected rays from
the corresponding pair yields a collection of 3D points. These points, known to lie on
the surface of the eyeball, allow for the determination of the eyeball’s center, given the
known radius of 12 mm, provided a sufficient number of 3D points are available. This
study builds upon prior research, utilizing the 3D gaze estimation framework to compute
the 3D transformation between eye camera images without the need for calibration. The
intricate details of the transformation between RGB eye camera and front-scene camera
images are expounded upon in Section 4.3.

Our approach employs a deep-learning algorithm in conjunction with the IR camera
to detect the center of the pupil. Subsequently, geometric computation is applied to derive
the 3D-mapping transformation. The primary purpose of this transformation is to convert
a point in the IR eye camera image plane into a corresponding point in the RGB eye camera
image plane. The RGB eye camera serves as the key function of capturing corneal images
around the specified point, facilitating their alignment with points in the front scene image
and identification of the user’s point of interest.

In contrast to conventional setups utilizing only an eye camera and a scene camera,
our method incorporates three cameras. This includes two eye cameras, enabling stereo
vision for modeling the eyeball. The computation of the 3D gaze direction initiates from
the center of the user’s eyeball and extends through it to the external environment (refer to
Figure 5 for an illustration of the concept). Stereo vision is instrumental in modeling the
eyeball, and subsequently, the 3D gaze direction is calculated using the eye cameras. The
outcome is then transformed into a point within the scene camera’s image.

It is important to note that our system does not necessitate a 3D gaze direction but
focuses solely on obtaining a gaze point in the front-scene camera. As a result, we utilize
the 3D transformation exclusively for mapping points between eye cameras. In Section 4.3,
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we elaborate on how we accomplish this transformation between planes, specifically from
the eye camera to the front camera, using image matching.

Points sampled from the detected pupil center in both types of images are employed
to construct a 3D model of the user’s eyeball. Subsequently, this model plays a crucial role
in calculating the 3D transformation between the two eye cameras and determining the 3D
gaze direction. Consequently, when a pupil is detected in an IR image, its corresponding
position in the RGB image is computed. Following this, the corneal image is extracted
around the detected pupil, essentially delineating its bounding box.

Figure 5. Illustration of 3D gaze direction mapping using a 3D model of the eye. The green ray is the
3D gaze direction.

4. Calibration-Free Mobile Eye Tracking

In this section, we detail our innovative calibration-free mobile eye-tracking technology.
The primary objective is to continuously, reliably, and, most importantly, unobtrusively
track the user’s eye and compute gaze points. This involves the user wearing the headset
while the device autonomously calibrates, eliminating the need for users to focus on target
points or engage in specific tasks. Our primary focus is on calibrating the headset’s front
camera, enabling the inconspicuous computation of a transformation between the RGB eye
camera and the front-scene camera.

Illustrated in Figure 6, our calibration-free mobile eye-tracking system initiates by
employing a deep-learning algorithm to track the pupil in the IR eye camera. The algorithm
computes the pupil center along with the pupil’s bounding box, representing the corneal
image. The points derived from the pupil center and its bounding box undergo trans-
formation to the RGB eye camera image plane through the 3D-mapping transformation.
Subsequently, the 3D gaze vector is computed based on the user’s unique eyeball model.
This results in having, at every moment, a corneal image with a corresponding gaze point
and a 3D gaze vector extending from the eyeball center through the pupil center to the
external environment. The 3D gaze vector translates to an actual gaze point in the world,
representing the user’s point of interest.

Figure 6. Illustration of gaze computation. The green dashed ray is the 3D gaze direction. The green
point is the gaze point in the world. The green ray is the reflected vector of the gaze point into the
front-scene camera.
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Ultimately, the point of interest in the world undergoes transformation into the front
scene image via a matching points-based transformation (refer to Section 4.3 for details).
This comprehensive process ensures continuous and unobtrusive eye tracking with the
ability to compute gaze points in real time.

4.1. One-Time Offline Calibration

Our stereo system consists of both IR and RGB cameras. The goal is to seamlessly
convert a point located in the IR camera image plane to its corresponding position in the RGB
camera image plane. Typically, conventional 2D transformations, like the fundamental matrix,
transform a point into a line. However, in our specific scenario, we employ the eyeball model,
which enables us to transform a point directly into another point. The proposed 3D-mapping
transformation, as detailed in [15], precisely accomplishes this task. Our approach relies
solely on the 3D-mapping transformation between the IR and RGB cameras. Gaze estimation,
outlined in Section 3, follows a distinct methodology. For the computation of point-to-point
transformation, essential information is required, including the internal parameters of the
cameras and details about the focused object (the eyeball). The average human eyeball radius,
drawn from the existing literature, is approximately 12 mm [18].

Moreover, to compute a 3D transformation between the cameras in a stereo system,
knowledge of the relative pose between the eye cameras and the relative pose between
the eye cameras and the human eye is essential. The relative pose between the cameras
is determined through stereo camera calibration, which is a one-time offline process and
is independent of user-specific features. In our system, calibration was executed using a
chessboard pattern with 2 mm sized cells, following the technique proposed in [19].

For the evaluation purposes discussed in Section 5.2, the front-scene camera underwent
an additional offline calibration procedure—in addition to using the chessboard. The camera’s
internal parameters (calibration output) are used mainly for measuring the distance between
target points in the real world. We used the front-scene camera parameters to compute, compare,
and measure differences between computed gaze points and ground truth points.

4.2. Corneal Images Acquisition

Our main goal is to track the user’s gaze. To do this, following the appearance-based
method for gaze estimation, we track the pupil and compute the pupil’s center. We are
interested in detecting the pupil in the RGB eye camera where the scene of the world is
reflected onto the cornea. Since this is challenging, as the detection is affected by lighting
conditions, especially outdoors and in harsh lighting conditions, we detect the pupil using
the IR eye camera. The camera provides a reliable image of the pupil whose bounding
box is then transformed to the RGB eye camera’s image plane using the 3D-mapping
transformation [15] (see Figure 7, left). We can extract the corneal image by cropping the
RGB eye image around the pupil using the transformed bounding box. Since the eye acts
as a mirror, we flip the corneal image to match the world scene (see Figure 7 center—the
red dot is the gaze point).

Because image resolution is very limited in corneal imaging systems, we should track and
compute the user’s gaze via the front camera. For this, we need to transform the gaze point
(from the RGB eye camera) to the front-scene camera to detect gaze points over high-resolution
images of the world scene, as discussed earlier (Section 3) and illustrated in Figure 6.

4.3. Gaze Transformation to the Front-Scene Camera

To build a complete mobile eye-tracking system, we need to compute gaze points
in the front-scene camera image plane. In this section, we present our 2D point-to-point
transformation method. The aim is to transform a point from an image taken by the RGB
eye camera to a point in an image taken by the front-scene camera.
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Figure 7. Corneal images acquisition process. The left-most image illustrates the pupil detection in
the RGB eye camera (bounding box and gaze point). The center image is the acquired corneal image
(flipped) with a red gaze point. The right-most image is the front-scene camera image with the gaze
point (point of interest).

Since the RGB eye camera and the front-scene camera are placed opposite each other,
they do not face the same scene. The RGB eye camera faces the eye and the front-scene
camera faces the world. Hence, our challenge is to compute a transformation (relationship)
between two cameras that are facing different views. Several works tried to calibrate
omnidirectional camera systems by using different approaches such as calibrating using
mirrors [20,21]. Still, these approaches require special setups and are limited in the way the
cameras should be fixed in their relative positions. Our headset allows camera adjustments,
so current methods for calibrating the cameras do not align with our needs.

In our approach, we exploit the fact that the world is reflected onto the eye’s surface
(cornea). Looking at the corneal images, we can see the world scene (as seen by the front
camera also) reflected in the eye (see Figure 7 for an example). Hence, at every moment we
have two images of the world scene; one is captured normally by the front-scene camera
and another (corneal image) acquired by the RGB eye camera, as described in Section 3.

Our goal is to consistently transform the gaze point from the RGB eye camera into a
corresponding point in the front-scene camera image in real time. In essence, we aim to
calculate a point-to-point transformation between the corneal image and the scene image
captured by the front-scene camera. To achieve this, we employ a 2D transformation by
aligning and matching the two images. During the image-matching process, we leverage
local image features that remain robust in the presence of nearby clutter or partial occlusion.
These features exhibit at least partial invariance to factors such as changes in illumination, 3D
projective transforms, and common object variations. The utilization of such features ensures
a reliable and accurate point-to-point transformation between the corneal and scene images.

Various types of local image features have been developed, with SIFT (Scale-Invariant
Feature Transform) being the most popular [22]. Other types include SURF (Sped-Up
Robust Features) [23] and ORB (Oriented FAST and Rotated BRIEF) [24]. SIFT features are
known for their invariance to image scaling, translation, and rotation, as well as partial
invariance to illumination changes and affine or 3D projection.

When the SIFT algorithm is applied to an image, it generates a set of features along
with their descriptors. Matching these descriptors between images allows the computation
of a set of potential matches between corresponding features. However, in cases like ours,
where we are dealing with a low-resolution image (the corneal image) containing a limited
number of descriptors, matched scenes may still be prone to errors.

To address this challenge, we leverage the geometric relationships between the posi-
tions of matched features in the two images using a homography matrix. The homography
matrix is computed using a robust estimation procedure from the RANSAC (Random
Sample Consensus) family [25]. Through the application of a homography matrix, we can
effectively transform points from one image plane to another, providing a solution to the
matching problem and contributing to the accuracy of our point-to-point transformation.
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In this work, we compute the point-to-point 2D transformation between the corneal im-
ages and the front-scene camera by matching SIFT [22] features computed from both corneal
images and the front-scene camera and computing the homography matrix. Figures 8 and 9
show matched SIFT features in two different scenes between the RGB eye image and front
scene image. In our method, to compute the homography matrix, we take into consider-
ation only features placed in the corneal image (around the pupil). We repeat the SIFT
feature extraction procedure using a lot of pairs of images and take into consideration only
the correct ones using RANSAC.

Figure 8. Matching the SIFT features of the RGB eye image and the front scene image while looking
at a table with a coffee machine.

Figure 9. Matching the SIFT features of the RGB eye image and the front-scene image while looking
at a bulletin board.

The gaze point in the world scene is the matched point of the pupil’s center in the
corneal image. Hence, to compute the gaze point, we want to transform the pupil center
to the front camera using the homography matrix that matches points to points in the
two images planes. Let H to be the homography matrix, and let (u,v) be the pupil center
coordinates in the corneal image. The relationship between the point and its corresponding
point (u′,v′) up to factor S is

S ∗

u′

v′

1

 = H ∗

u
v
1

.

The matched point of the pupil center in the front camera (u′,v′) is computed as follows:u′

v′

1

 = (H ×

u
v
1

)/S.
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5. Experimentation

The experiment was intended to evaluate our calibration-free mobile eye-tracking technol-
ogy in different real-world scenarios, indoors and outdoors. We were interested in evaluating
the efficiency of the auto-calibration procedure and the accuracy of the gaze estimation.

We reiterate that our proposed system does not require any action on the part of the
user for device calibration. The user simply puts on the device and behaves and gazes
normally. For the experimentation, we asked the participants to perform normal, everyday
activities (such as looking at objects or screen markers or watching a video).

5.1. Tools and Methods

We have successfully developed a prototype that autonomously calibrates the headset
based on the user’s individual characteristics, specifically adjusting to the user’s head.
As depicted in Figure 1, the user wears the device, and the prototype systematically
constructs a 3D model of each user’s eye. Subsequently, it computes robust and reliable 3D
transformations between the eye cameras. Finally, the gaze point is seamlessly transformed
to the front-scene camera.

The entire process of building the 3D eye model is carried out automatically, requiring
no active participation from the user other than wearing the device. This ensures a user-
friendly and unobtrusive calibration procedure, where the technology adapts to each user’s
unique characteristics effortlessly.

The development of the prototype involved utilizing both MATLAB and Python
running on a laptop (Core i7-5600U-16 GB). The training procedure for the deep learning
pupil detection, as described in [15], was conducted using Python, specifically leveraging
the TensorFlow API for object detection [26]. The process of capturing images from the
cameras and implementing the overall framework was executed in MATLAB, which also
involved the integration of the trained deep learning pupil detection model.

The cameras’ capture tool was designed to run two parallel processes, capturing
images simultaneously from both the infrared (IR) and RGB cameras, maintaining a frame
rate of 20 frames per second (fps). To avoid an excess of duplicate eye images within a short
timeframe, a capture rate of 1 fps was employed. Notably, to ensure synchronization, a pair
of eye images (from the IR and RGB cameras) with the nearest timestamps was selected
every second. This synchronization approach enhances the accuracy and reliability of the
captured eye image pairs. The whole prototype system achieves an 8 fps computation time.

5.2. Participants and Experimental Procedure

The experiments were conducted in a realistic setting in two different scenarios, indoors
and outdoors. The experiment had 12 participants (5 females, 7 males). Each participant took
part in 2 sessions, which meant that the experiment comprised 24 sessions. The experiment
was intended to evaluate the feasibility and accuracy of our system under different conditions.
The experiment took about 30 min and was divided into 3 sections: (1) data collection indoors,
which was used for auto-calibrating the system; (2) tracking screen markers shown on a PC
screen indoors; and (3) looking at objects outdoors. Participants, monitored by a researcher,
wore the mobile headset connected via a wire to a laptop and used the system. They were
instructed to behave normally and gaze naturally during each session.

5.2.1. Data Collection for Auto-Calibration

The aim of this part of the indoor session was to collect data from the three cameras to
auto-calibrate the system (Task 1). The data collection enabled us to compute the 3D-mapping
transformation between the eye cameras and to compute the point-to-point transformation
from the RGB eye camera to the front-scene camera. During this part of the session, par-
ticipants performed two tasks: (1) they walked freely in an indoor environment and gazed
naturally at objects and (2) sat normally and watched a 2-min video presented on a 24” PC
screen. Corneal images were captured by the cameras’ capture process.
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A total of 100 triads of images from the 3 cameras were collected during the first task
(walking freely indoors). Pairs from the IR eye camera and the RGB eye camera were
utilized to build the 3D eyeball model used for computing the 3D-mapping transformation
between the IR and RGB eye cameras, as described in [15]. Figure 3 shows a sample of
collected images when a participant walked freely in an indoor environment while looking
at a bulletin board.

A total of 120 triads of images from the 3 cameras were collected during the second task
(watching a video). A total of 100 pairs from the RGB eye camera and from the front-scene
camera, together with the 100 pairs (220 in total) of RGB eye images and the front-scene
camera that were collected in the first task (walking freely indoors), were used to compute
the transformation (homography) between the RGB eye camera and the front-scene camera.
From each pair (see Figure 10 for an example), SIFT descriptors were computed and stored.
All SIFT descriptors from the 220 pairs of images were used to compute the mapping
transformation between the RGB eye camera and the front-scene camera.

Figure 10. Snapshot from RGB eye camera (left) and front-scene camera (right) while watching a
video on a PC screen.

5.2.2. Eye-Tracking Screen Markers

The aim of this section of the indoor session was to collect data from the three cameras
while participants tracked screen markers on a computer screen (see Figures 11 and 12).
This method is widely used to evaluate eye-tracking techniques [10–13]. The participants
were asked to sit normally in front of the screen and track the screen marker. The screen
markers changed their position in the grid randomly. Each marker remained in a grid cell
for three seconds while flashing to attract the participant’s attention and make them look
at it. A total of 80 triads of images from the 3 cameras were used for evaluation purposes.
From each triad, we computed the gaze point (point on the front scene image plane), which
was used later to compute gaze errors.

Figure 11. Two screenshots of the screen markers in different positions shown on a PC screen.
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Figure 12. Sample of triad of images captured by the three cameras while tracking a screen marker.

5.2.3. Eye Tracking Outdoors

The aim of this session, a test of the system’s feasibility, was to collect data from the
three cameras while participants who were outside looked at objects. This was considered a
challenging undertaking. Participants were asked to look at both nearby objects (1 to 3 m),
such as a sign, and far objects that the accompanying researcher pointed at (20 m and more),
such as a house or university campus building. See Figures 13 and 14 for examples. For far
objects, the researcher stated loudly which object he/she was indicating, mainly to ensure
that the participant looked at the object. A total of 100 triads of images from the 3 cameras
were used for evaluation purposes. From each triad, we computed the gaze point (point on
the front scene image plane), which was used later to compute gaze errors.

Figure 13. Snapshot of triad of images while the participant looked at a nearby object (a flower). We can
also see the researcher pointing at the desired object of interest.

Figure 14. Snapshot of triad of images while the participant looked at a far away object (a house). We
can also see the researcher pointing at the desired object of interest.

5.3. Evaluation

The main parts of the evaluation assess the accuracy of the proposed calibration-free mo-
bile eye-tracking technology under different conditions. As noted in Sections 5.2.2 and 5.2.3,
each participant took part in two experimental sessions: (1) indoors during auto-calibration
and tracking of markers on screen, and (2) looking at objects outdoors.

Triads of images of the eye and the world view were collected during the two sessions.
A total of 180 triads—80 triads of images while tracking screen markers and 100 triads of
images while looking at objects outdoors—were documented. For each triad, we computed
the gaze point in the front scene image automatically using our system prototype and using
the mapping transformation to the front camera described in Section 4.3.

To compare the gaze accuracy, we tagged the point of interest (screen marker center
and outdoor object center) in each front scene image in every test triad manually, which is
the best way possible to reach the ground truth. We used the gaze angle error between the
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computed gaze point and the manually acquired gaze point as a metric for comparison.
The angle error between the two gaze points was computed using the front-scene camera’s
internal parameters (described earlier in Section 4.1) and multi-view geometry.

5.4. Results

A total of 2160 triads of images were used in the evaluation (from 12 participants,
each with 180 triads from two sessions). For each triad of test images (IR eye image,
RGB eye image, and front scene image), we declared triad a valid test triad if the gaze was
manually tagged. The resulting metric is the angle error in degrees. For each participant, we
calculated the median of gaze errors to filter out outlier measurements. Table 1 summarizes
the results of the indoor session and Table 2 summarizes the results of the outdoor session.
On average, the gaze error in degrees was 1.67◦ indoors and 1.69◦ outdoors.

Table 1. Summary of the gaze errors in degrees for indoors session per participant.

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12

Mean 2.01 2.18 1.63 1.68 1.02 1.75 1.66 1.58 1.50 1.59 1.71 1.68

STD 1.21 0.97 0.80 1.03 0.71 0.73 0.80 1.10 0.65 0.70 0.71 1.05

Median 1.80 2.03 1.49 1.33 0.78 1.54 1.47 1.19 1.24 1.60 1.53 1.34

Table 2. Summary of the gaze errors in degrees for outdoors session per participant.

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12

Mean 2.27 1.42 1.95 2.14 1.08 1.78 1.84 2.11 1.93 1.39 1.71 1.96

STD 0.69 0.74 0.76 0.57 0.65 0.64 0.92 0.60 0.75 0.70 0.61 0.75

Median 2.31 1.24 1.84 2.17 1.00 1.66 1.59 2.00 1.71 1.32 1.65 1.73

6. Discussion

We propose a novel calibration-free mobile eye-tracking approach. Our approach was
implemented and evaluated in two different realistic scenarios, indoors and outdoors. The
system auto-calibrates the device unobtrusively and without involving the user in the process.

The system achieved an average gaze error of 1.67◦ (SD = 0.87) indoors and 1.69◦ (SD = 0.7)
outdoors. The accuracy is considered very good compared to the state-of-the-art methods that
try to compute gaze without needing calibration under similar conditions and with a similar
number of participants. Moreover, our system uses a more accurate ground truth comparison
(manually labeled points) method than other systems. Table 3 presents a comparative analysis
with state-of-the-art methods. Our system’s versatility was showcased through successful
operation in various real-world environments, both indoors and outdoors. Additionally, our
automatic and non-obtrusive calibration technique eliminates the need for users to undertake
specific actions. This is in contrast to existing methods that necessitate user participation in the
calibration process, including the use of screen or board markers.

In the development of the proposed system, we used the existing framework for
computing the 3D eye model and the 3D-mapping transformation between the IR eye
camera and the RGB eye camera [15]. The framework suffers from technical limitations,
mainly the effect of harsh light when attempting to detect the pupil in RGB eye cameras for
computing the model and dealing with special cases such as dark irises. These challenges
may still occur in our system but can be dealt with as discussed in [15].

The main limitation of the proposed system is the need for the data collection used for
building the eye model and computing the mapping transformation to the front camera. In our
approach, we do this unobtrusively without asking the user to look or track objects. In situations
where the mobile eye tracker is used on a daily basis, individually, the need for modeling the
user’s eye may be eliminated, as the model will be created once and used continuously.
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Table 3. Summary of comparison with state-of-the-art methods.

Work Our Work [12] [11] [13] [10]

Average error
(deg) 1.67–1.79 2.68 2.9 3.7–4.0 4.2

SD 0.87–0.7 0.67 2.1 N/A 1.3

#Participants 12 12 10 10 10

Target
Screen markers

and outdoor
objects

Screen markers Screen markers Board with
markers Screen markers

Ground truth Manually hand
labeled Pupil eye tracker Tobii TX300

Similar RGB-D
methods Tobii T60XL

The main limitation of the user study was finding a world scene where we could
detect a large number of features in the corneal images used for computing the mapping
transformation to the front camera. For that, we presented a cartoon video on a screen
where a lot of image features were reflected onto the eye. In a real system, the same
approach for computing the mapping transformation can be used, but it may take a bit
longer until sufficient features have been collected.

The experiment included only 12 participants, which is considered a limitation. On
the one hand, it was hard to recruit participants and collect data in the wild. On the other
hand, the scope of our experiment is in line with previous works in the literature (please
see Table 3). We will consider expanding the experiment in the future.

The experimental scenario, in realistic settings (not in the lab), is considered a limi-
tation as well. We chose a scenario where we could easily recruit participants. Given the
limitations, we asked the participants to look at different objects from different distances (a
flower, a window, a building, and more).

The advancement made in mobile eye-tracking technology may help many studies
that use eye gaze as an indicator of human visual attention. Still, current technology suffers
from two main limitations: the need for calibration and the unavailability of a reliable
system for outdoor eye gaze tracking. In this work, we provide a calibration-free mobile
device that detects the human gaze and can be used in different scenarios, indoors and
outdoors. The device can also be used in different disciplines: interaction with real or
virtual environments, the metaverse, cockpit control, and more.

7. Conclusions

In this work, we presented and evaluated a calibration-free mobile eye-tracking sys-
tem. The system uses a mobile device consisting of three cameras, an IR eye camera, an
RGB eye camera, and a front-scene camera. The system auto-calibrates the device unob-
trusively and without involving the user in the process. The user is not required to follow
special instructions to calibrate the system. The IR eye camera is used to track the pupil
continuously and reliably and to compute the gaze point. The RGB eye camera is used to
acquire corneal images and the front-scene camera is used to capture high-resolution scene
images. A per-user 3D model of the eye is built to compute the 3D transformation between
the IR and RGB eye cameras, and a point-to-point transformation between the RGB eye
camera and the front-scene camera, unique to the user, is computed.

The proposed system does not require any initial calibration procedure. The user can
simply put the eye tracker on and start moving around and using it, as the calibration
procedure is automatic and unobtrusive. The system was evaluated in an experiment in
real-environment scenarios, indoors and outdoors, and the results are promising. The system
achieves very low gaze errors: on average 1.67◦ indoors and 1.69◦ outdoors. The system can
be used in a variety of mobile scenarios, indoors and outdoors with high accuracy. Future
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work will focus on integrating the proposed calibration-free mobile eye-tracking system into
information delivery systems, where gaze is used as an intuitive pointing device.
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