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Abstract: In vehicle navigation, it is quite common that the dynamic system is subject to various
constraints, which increases the difficulty in nonlinear filtering. To address this issue, this paper
presents a new constrained cubature particle filter (CCPF) for vehicle navigation. Firstly, state
constraints are incorporated in the importance sampling process of the traditional cubature particle
filter to enhance the accuracy of the importance density function. Subsequently, the Euclidean
distance is employed to optimize the resampling process by adjusting particle weights to avoid
particle degradation. Further, the convergence of the proposed CCPF is also rigorously proved,
showing that the posterior probability function is converged when the particle number N → ∞.
Our experimental results and the results of a comparative analysis regarding GNSS/DR (Global
Navigation Satellite System/Dead Reckoning)-integrated vehicle navigation demonstrate that the
proposed CCPF can effectively estimate system state under constrained conditions, leading to higher
estimation accuracy than the traditional particle filter and cubature particle filter.

Keywords: vehicle navigation; constraints; nonlinear filtering; particle filter; constrained cubature
particle filter

1. Introduction

As the “eye” of a vehicle, the navigation system provides navigation information
for vehicle maneuvers to reach their target. Since navigation systems commonly involve
nonlinear structural characteristics and dynamics, nonlinear filtering is an important means
for navigation computations [1–3]. In practice, vehicle navigation systems are subject to
constraints and non-Gaussian uncertainties, making nonlinear filter even more challeng-
ing [4–6].

Currently, the extended Kalman filter (EKF), polynomial filter, unscented Kalman
filter (UKF), and cubature Kalman filter (CKF) are commonly used for nonlinear state
estimation. The extended Kalman filter involves a system linearization error and requires
the calculation of the Jacobian matrix [7,8]. The polynomial filter is sensitive to outliers
and requires a large amount of computing for large-scale signal processing [9]. The UKF
and CKF select typical sampling points according to prior state estimation to apply the
unscented transformation [10,11] and cubature rules [12,13] to obtain sample points, respec-
tively. Subsequently, the obtained sampling points are weighted to acquire system state
estimations. Compared to the UKF, the CKF is superior in both estimation accuracy and
stability for high-dimensional systems, since the Gaussian-weighted integrals are calculated
through third-degree spherical-radial cubature [12–14]. In general, these improved nonlin-
ear Kalman filters are subject to the condition that system noises are Gaussian. However,
in practical applications (such as multi-sensor integrated systems for vehicle navigation),
non-Gaussian noises are commonly involved in nonlinear systems, and thus the direct use
of these improved Kalman filters will lead to divergent solutions.

The particle filter (PF) is a typical method used to handle nonlinear systems with non-
Gaussian noises [15–17]. Instead of integral calculation, PF uses sample mean to implement
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the Bayesian estimation under nonlinear dynamics. When the particle number is sufficiently
large, the posterior probability density function of particles will be sufficiently accurate
to guarantee the accuracy of the state mean and variance. However, the particle filter
suffers from particle degradation, and there can be difficulty in selecting an appropriate
importance density function for importance sampling [18–20]. Research efforts have been
dedicated to improving the PF. Pitt et al. used auxiliary samples to adjust the resampling
order to improve the PF’s performance [21]. D. Liu et al. studied an adaptive partial
resampling method to prevent particle degradation [22]. T.H. Liu et al. proposed an
adaptive processing scheme to lower particle weights based on a genetic algorithm [23].
However, these improvements cannot guarantee an optimal resultant particle distribution.

The cubature rules provide an effective way to improve sampling accuracy, and thus
have been used in the PF to obtain the importance density function, leading to the cubature
particle filter (CPF). Xia et al. studied a CPF in the context of system state estimation,
where the second-order resistor–capacitor equivalent circuit model was used to verify
the filter accuracy [24]. Shi et al. proposed a robust CPF by introducing Huber’s M-
estimation theory to handle poor observation data [25]. Feng et al. studied a CPF based on
the artificial bee colony for target tracking via underwater wireless sensor networks [26].
Zhang et al. combined a CPF with truncation adaptation to generate recommendation
distributions for strong nonlinear systems [27]. Liu et al. investigated a hybrid CPF
for stable-state estimation in harsh charging or discharging schedules [28]. Xing et al.
constructed an adaptive CPF to estimate navigation parameters for high-dimensional
nonlinear vehicle systems [29]. In general, the existing CPFs still suffer from the problem of
particle degradation in the PF.

Further, the existing CPFs do not consider constraints. In practical applications (such as
multi-sensor integrated systems for vehicle navigation), it is quite common that a nonlinear
system is subject to various conditions. Considering these conditions as state constraints
in the CPF filter process can effectively improve the estimation accuracy. However, since
the existence of state constraints changes the probability structure of a dynamic system,
which increases the difficulty of filtering estimation, the related research is still limited.
Gao et al. proposed a constrained unscented particle filter for SINS/GNSS/ADS-integrated
airship navigation in the presence of wind field disturbances [30]. Seifzadeh et al. studied
a constrained particle filter based on soft data to improve filtering performance for target
tracking [31]. In complex and highly dynamic environments, Xu et al. presented a particle
filter based on spatial–temporal constraints for cooperative target tracking [32]. Zhang et al.
presented a constrained multiple model based on a PF for target tracking [33]. However, the
above studies are not based on the advanced cubature rules. They also focus on particular
applications with specific constraints rather than on general constraint problems.

This paper presents a novel constrained cubature particle filter (CCPF) to improve
the CPF’s performance for vehicle navigation. This method incorporates constraints in
the cubature transformation to improve the CPF’s importance sampling, resulting in an
improved importance density distribution. It also improves the CPF resampling process
by using the Euclidean distance of the measurement residual to adjust particle weights to
ensure the diversity of particles, thus avoiding particle degradation. The convergence of
the proposed CCPF has been rigorously proved. Experiments and a comparative analysis
with the traditional PF and CPF were conducted to evaluate the CCPF’s efficiency for
GNSS/DR-integrated vehicle navigation.

2. Cubature Particle Filter

Consider the nonlinear dynamic system

xk = f (xk−1) + vk
yk = h(xk) + nk

(1)

where xk ∈ Rn is the n-dimensional system state vector at time point k, yk ∈ Rn is the
m-dimensional system measurement vector, vk ∈ Rn is the process noise with covariance
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R, nk ∈ Rm is the measurement noise with covariance Q, and f (·) and h(·) represent the
nonlinear system and measurement functions. Obviously, the system described by (1) does
not involve the assumption of Gaussian noises.

Like the unscented transform, CPF uses the third-order spherical radial cubature
rules to approximate the nonlinear system functions. According to the prior mean and
covariance of the system state, CPF selects the cubature points via the cubature rules and
further approximates the state mean and covariance by the weighting sum of the cubature
points [34–36]. Consider the dynamic system described by (1), the CPF procedure is given
as below [37,38]:

Step 1: Initialization
Set the initial state estimate together with its covariance and weights as follows:

x̂j
0 = E[xj

0]

Pj
0 = E[(xj

0 − x̂j
0)(x

j
0 − x̂j

0)]
T

wj
0 = 1

N

(j = 1, 2, · · · , N ) (2)

where N is the number of particles, x̂j
0 ∼ p(x0) denotes the initial state estimate of the jth

particle, and p(x0) denotes the initial state distribution.
For k = 1, 2, · · · , M, execute Steps 2–3.
Step 2: Importance sampling
For j = 1, 2, · · · , N, execute Steps (a)–(c).
(a) Calculate the cubature points as follows:

xj
i,k−1 = Sj

k−1ςi + x̂j
k−1 (3)

Pj
k−1 = Sj

k−1(S
j
k−1)

T
(4)

where i = 1, 2, · · · , 2n, Pj
k−1 is the state covariance at k − 1, Sj

k−1 is the lower triangular

matrix obtained via the Cholesky decomposition of Pj
k−1, xj

i,k−1 is the ith cubature point of

the jth particle at k − 1, x̂j
k−1 is the state estimation, and ςi is defined as follows:

ςi =

{ √
nIi i = 1, 2, · · · , n

−
√

nIi−n i = n + 1, n + 2, · · · , 2n
(5)

where Ii denotes the ith column vector of the n × n identity matrix.
(b) Time update
Calculate the state prediction covariance and one-step measurement prediction via

the cubature points
xj

i,k|k−1 = f(xj
i,k−1) (6)

x̂j
i,k|k−1 =

1
2n

2n

∑
i=1

xj
i,k|k−1 (7)

Pj
k|k−1 =

1
2n

2n

∑
i=1

[(
xj

i,k|k−1 − x̂j
i,k|k−1

)(
xj

i,k|k−1 − x̂j
i,k|k−1

)T
]
+ R (8)

yj
k|k−1 = h(x̂j

k|k−1) (9)

ŷj
k|k−1 =

1
2n

2n

∑
i=1

yj
k|k−1 (10)

where x̂j
k|k−1, ŷj

k|k−1 and Pj
k|k−1, denote the predicted state mean, measurement mean, and

measurement covariance of the jth cubature point, respectively.
(c) Measurement update
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Calculate the cubature point auto-correlation covariance and cross-correlation covariance

Pj
ykyk =

1
2n

2n
∑

i=1

[(
yj

i,k|k−1 − ŷj
k|k−1

)(
yj

i,k|k−1 − ŷj
k|k−1

)T
]
+ Q

Pj
xkyk =

1
2n

2n
∑

i=1

[(
xj

i,k|k−1 − x̂j
k|k−1

)(
yj

i,k|k−1 − ŷj
k|k−1

)T
] (11)

Calculate the cubature point estimates

x̂j
k = x̂i

k|k−1 + Kj
k(yk − ŷj

k|k−1)

P̂j
k = Pj

k|k−1 − Kj
kPj

ykyk (K
j
k)

T

Kj
k = Pj

xkyk (P
j
ykyk )

−1

(12)

where Kj
k denotes the filter gain at k of the jth particle, and x̂j

k and P̂j
k denote the estimate

and its covariance of the jth cubature point after cubature transformation.
The particle importance density function is calculated using (x̂j

k, P̂j
k), and the par-

ticles are sampled by xj
k ∼ q(xj

k

∣∣∣xj
0:k−1, y1:k) = N(x̂j

k, P̂j
k) , xj

0:k ≜ (xj
0:k−1, xj

k), and P̂j
0:k ≜

(Pj
0:k−1, P̂j

k).
Calculate the particle weights and normalize them as follows:

wj
k = wj

k−1

p(yk

∣∣∣xj
k)p(xj

k

∣∣∣xj
k−1)

q(xj
k

∣∣∣xj
k−1, yk)

(13)

w̃i
k = wi

k/
n

∑
i=1

wi
k (14)

Step 3: Resampling
According to the approximately distributed pxj

0:k

∣∣∣y1:k (j = 1, 2, · · · N), generate N new
particles by duplicating the particles of high weights and further assigning the same weight
1
N to them.

Calculate the state estimate and its covariance

x̂k =
N
∑

j=1
w̃j

kxj
k

Pk =
N
∑

j=1
w̃j

k[(x
j
k − xk)(x

j
k − xk)

T
]

(15)

As mentioned previously, the existence of state constraints changes the probability
structure of a dynamic system. In the importance sampling step, if the system state is
subject to constraints, (7) will be biased. The bias in (7) will be propagated through (8)–(14),
and eventually, the state estimate from (15) will be biased. Therefore, it is necessary to
incorporate the state changes caused by constraints in the importance sampling step. In
addition, in the resampling process, the duplication of the particles with high weights
from (13) will lose the particle diversity. Since the useful particle samples are reduced, the
filtering solution will deteriorate. A straightforward solution is to adjust the weights of
useful particles to increase their contributions to the state estimation. This paper addresses
the above two issues in CPF, leading to a new CCPF for state estimation under constraints.

3. Constrained Cubature Particle Filter

The proposed CCPF combines Euclidean distance-based resampling and constraints
to improve the CPF’s performance. In the importance sampling process, the proposed
CCPF improves the CPF importance sampling density function with state constraints.
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In the resampling process, the proposed CCPF optimizes the CPF weights by adopting
the Euclidean distance to adjust the particle weights to ensure the diversity of particles,
preventing particle degradation while enabling the easy acquisition of an importance
density function which is close to the true density function.

3.1. Importance Sampling

In the importance sampling process of CCPF, we perform constrained projection
calculations on the cubature point estimates obtained by (12). Suppose the system described
by (1) is subject to the following constraint:

Dxk ≤ d (16)

where D represents the constrained matrix, and d represents the constrained vector [39,40].
The estimation problem of the constrained state can be transformed into the following

optimization problem:

minJ(x̃j
k) = (x̃j

k − x̂j
k)

T
W(x̃j

k − x̂j
k) (17)

Dx̃j
k = dj

k (18)

where x̃j
k represents the state estimation under the constraint, W represents an arbitrary

symmetric positive definite matrix for constructing the Lagrange function, and x̂j
k represents

the state estimation without the constraint.
Using the Lagrange multiplier to solve (17) and (18), we can obtain the following:

J(x̃j
k, λ) = (x̃j

k − x̂j
k)

T
W(x̃j

k − x̂j
k) + 2λT(Dx̃j

k − dj
k) (19)

where λ represents a vector for constructing the Lagrange function.
Finding the partial derivative of (19), we obtain

x̃j
k = x̂j

k − W−1DT(DW−1DT)
−1

(Dx̂j
k − dj

k) (20)

Using (20), the cubature point estimate described by (12) becomes

x̂j
k = x̂i

k|k−1 + Kj
k(yk − ŷj

k|k−1)

P̂j
k = Pj

k|k−1 − Kj
kPj

ykyk (K
j
k)

T

Kj
k = Pj

xkyk (P
j
xkyk )

−1

x̃j
k = x̂j

k − W−1DT(DW−1DT)
−1

(Dx̂j
k − dj

k)

(21)

From (21), we can obtain the importance sampling density function under constraints,
i.e., xj

k ∼ N(x̃j
k, P̂∗j

k ), where P̂∗j
k denotes the covariance under constraints.

3.2. Resampling

Calculate the Euclidean distance of the measurement residual. Using (13), record the
maximum weights wjmax

k and minimum weights wjmin
k

Lmax = (rjmin
k − rjmax

k )
T
· (rjmin

k − rjmax
k ) (22)

Lj = (rj
k − rjmax

k )
T
· (rj

k − rjmax
k ) (23)



Sensors 2024, 24, 1228 6 of 16

where Lmax and Lj denote the Euclidean distances with the subscripts “jmax” and “jmin”,
representing the index numbers of the particles with the maximum and minimum weights,
and r denotes the measurement residual, i.e.,

rjmax
k = yk − h(xjmax

k )

rjmin
k = yk − h(xjmin

k )
(24)

Accordingly, the weights are calculated as

wj∗

k = wj
k + (

wjmax
k
N

)· sin(
Lj

Lmax
·π

2
)·β (25)

where β ≥ 0 is a coefficient related to measurement characteristics [41]. The larger β is, the
larger the adjustment to the weight will be. When β = 0, there will be no adjustment to the
weight. The CCPF procedure is shown in Figure 1.
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3.3. Convergence Analysis

In this section, we will study the convergence of the proposed CCPF when the sample
size N is sufficiently large. Since the posterior density of the system state corresponds to
the empirical measure of particle samples, we conduct a convergence analysis based on an
empirical measure which is defined by a probability measure.
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Similar to the PF, assuming that the transfer kernel function ϕ satisfies the Feller
process and the state likelihood function g is a continuous bounded positive definite
function (i.e., ∥g∥ < ∞), for k ≥ 0, when N → ∞ , we can have [42]

lim
N→∞

πN
k|k = lim

N→∞
ϕN

1:k(η
N) = ϕ1:k(η) = πk|k (26)

where πk|k denotes the ideal distribution of the system state, η represents the initial distri-
bution, and πN

k|k is the posterior probability density, which is expressed as

πN
k|k(dxk) =

1
N

N

∑
i=1

δxi
k
(dxk) (27)

where δ denotes the Dirichlet function.
The time and measurement updates of CCPF can be represented as follows [43]:

πk|k−1 =
∫

Rnx

πk−1|k−1(dxk−1)ϕ(dxk

∣∣∣xk−1) (28)

πk|k(dxk) =
g(yk

∣∣∣xk)πk|k−1(dxk)∫
Rnx

g(yk

∣∣∣xk)πk|k−1(dxk)
(29)

Equations (28) and (29) can be rewritten as

(πk|k−1, φ) = (πk−1|k−1, ϕφ) (30)

(πk|k, φ) = (πk|k−1, g)−1(πk|k−1, φg) (31)

where φ ⊂ B(Rnx ) can be any bounded function, and (πk|k−1, g) > 0.
As shown in Section 3.1, the CCPF involves three key steps: the initialization, im-

portance sampling, and resampling. Therefore, the convergence analysis of CCPF will be
applied to each step. Denote the posterior probability density in the importance sampling
process using πN

k|k and that in the resampling process using π̃N
k|k.

Theorem 1. For any bounded function φ ⊂ B(Rnx ); if ∥g∥ is bounded, then

E[((πN
k−1|k−1, φ)− (πk−1|k−1, φ))2] ≤ cN

k−1|k−1
∥φ∥2

N
(32)

Proof. Using (31), we obtain

(πN
k−1|k−1, φ)− (πk−1|k−1, φ) =

(πN
k−1|k−2,gφ)

(π̃N
k−1|k−2,g)

− (πk−1|k−2,gφ)

(πk−1|k−2,g)

=
(πN

k−1|k−1,gφ)

(πN
k−1|k−1,g)

− (πk−1|k−2,gφ)

(πN
k−1|k−2,g)

+
(πk−1|k−2,gφ)

(πN
k−1|k−2,g)

−− (πk−1|k−2,gφ)

(πN
k−1|k−2,g)

=
(πN

k−1|k−2,gφ)−(πk−1|k−2,gφ)

(πN
k−1|k−2,g)

+
(πk−1|k−2,gφ)((πk−1|k−2,gφ)−(πN

k−1|k−2,g))

(πN
k−1|k−2,g)(πk−1|k−2,g)

(33)

According to the Minkowski inequality, we have
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E
[(

(πN
k−1|k−2,gφ)−(πk−1|k−2,gφ)

(πN
k−1|k−2,g)

+
(πk−1|k−2,gφ)((πk−1|k−2,gφ)−(πN

k−1|k−2,g))

(πN
k−1|k−2,g)(πk−1|k−2,g)

)2]
1
2

≤ E[(
(πN

k−1|k−2,gφ)−(πk−1|k−2,gφ)

(πN
k−1|k−2,g)

)2]
1
2 + E[(

(πk−1|k−2,gφ)((πk−1|k−2,gφ)−(πN
k−1|k−2,g))

(πN
k−1|k−2,g)(πk−1|k−2,g)

)2]
1
2

≤
E[((πN

k−1|k−2,gφ)−(πk−1|k−2,gφ))2]
1
2

(πN
k−1|k−2,g)

+
(πk−1|k−2,gφ)E[((πk−1|k−2,gφ)−(πN

k−1|k−2,gφ))2]
1
2

(πN
k−1|k−2,g)(πk−1|k−2,g)

≤
√ck−1|k−2∥gφ∥

(π̃N
k−1|k−2,g)

√
N
+

E[((πN
k−1|k−2,gφ)−(πk−1|k−2,gφ))2]

1
2

(πN
k−1|k−2,g)

(34)

Since ∥g∥ < ∞, we have

√ck−1|k−2∥gφ∥

(π̃N
k−1|k−2,g)

√
N
+

E[((πN
k−1|k−2,gφ)−(πk−1|k−2,gφ))2]

1
2

(πN
k−1|k−2,g)

≤
√ck−1|k−2∥gφ∥

(πN
k−1|k−2,g)

√
N
+

√ck−1|k−2∥gφ∥

(πN
k−1|k−2,g)

√
N

≤
2√ck−1|k−2∥gφ∥

(πN
k−1|k−2,g)

√
N

=
√

cN
k−1|k−1

∥φ∥√
N

(35)

where
√

cN
k−1|k−1 =

2√ck−1|k−2∥g∥
(πN

k−1|k−2,g)
.

Equation (32) follows by substituting (35) into (34) and further applying the square
operation. Thus, the proof of (32) is completed.

Theorem 1 shows that the initialization process of the CCPF is converged when
N → ∞ . □

Theorem 2. If ∥ϕφ∥ ≤ ∥φ∥ holds, the importance sampling process of the CCPF yields

E[((πN
k|k−1, φ)− (πk|k−1, φ))2] ≤ cN

k|k−1
∥φ∥2

N
(36)

Proof. Using (30), we can obtain

E[((πN
k|k−1, φ)− (πk|k−1, φ))2]

1
2

= E[((πN
k|k−1, φ)− (πN

k−1|k−1, ϕφ) + (πN
k−1|k−1, ϕφ)− (πk|k−1, φ))2]

1
2

≤ E[((πN
k|k−1, φ)− (πN

k−1|k−1, ϕφ))2]
1
2 + E[(πN

k−1|k−1, ϕφ)− (πk−1|k−1, ϕφ))2]
1
2

= E[((πN
k−1|k−1, ϕφ2)− (πN

k−1|k−1, ϕφ))2]
1
2 + E[(πN

k−1|k−1, ϕφ)− (πk−1|k−1, ϕφ))2]
1
2

(37)

According to Theorem 1 and letting (1 +√ck−1|k−1)
2 = cN

k|k−1, and when ∥ϕφ∥ ≤ ∥φ∥
holds, we can have

E[((πN
k−1|k−1, ϕφ2)− (πN

k−1|k−1, ϕφ))2]
1
2 + E[(πN

k−1|k−1, ϕφ)− (πk−1|k−1, ϕφ))2]
1
2

≤ √
N
+

√ck−1|k−1
∥φ∥√

N

= (1 +√ck−1|k−1)
∥φ∥√

N

(38)

Equation (36) follows by substituting (38) into (37) and further applying the square
operation. Thus, the proof of Theorem 2 is completed.

Theorem 2 shows that the importance sampling process of the CCPF is converged
when N → ∞ . □

The resampling process of the CCPF involves the adjustment of the particle weights.
In theory, the prior distribution should be close to the importance sampling distribution.
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Then, using (13), we have wj
k ∝ g. From (25) and

∣∣∣∣(wjmax
k
N ) · sin( Lj

Lmax
· π

2 )

∣∣∣∣ < 1, it is readily

known that the particle weights are bounded. By normalization, we can readily have the
particle weights within [0, 1]. Without the loss of generality and for the concise description
purpose, we write g → Fg , where F is a linear transformation, and Fg is bounded. Thus,
we can derive the following theorem.

Theorem 3. For the resampling process of the CCPF, we have

E[((π̃N
k|k, φ)− (πk|k, φ))2] ≤ cN

k|k
∥φ∥2

N
(39)

Proof. Using (31) and g → Fg , we can obtain the following:

E[((π̃N
k|k, φ)− (πk|k, φ))2]

1
2

= E[((π̃N
k|k, φ)− (π̃N

k|k, φ) + (π̃N
k|k, φ)− (πk|k, φ))2]

1
2

= E[(
(π̃N

k|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

−
(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

+
(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

− (πk|k−1,(Fg)φ)

(πk|k−1,Fg) )2]
1
2

= E[((
(π̃N

k|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

− (πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

) + (
(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

− (πk|k−1,(Fg)φ)

(πk|k−1,Fg) ))2]
1
2

≤ E[(
(π̃N

k|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

−
(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

)2]
1
2 + E[(

(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

−
(πk|k−1,(Fg)φ)

(πk|k−1,Fg) )2]
1
2

(40)

According to Theorem 2 and the letting constant cN
k|k =

2
√

ck|k−1∥Fg∥
(π̃N

k|k−1,Fg)
, we have

E[(
(π̃N

k|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

−
(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

)2]
1
2 + E[(

(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

−
(πk|k−1,(Fg)φ)

(πk|k−1,Fg) )2]
1
2

= E[(
(π̃N

k|k−1,(Fg)φ)−(πk|k−1,(Fg)φ)

(π̃N
k|k−1,Fg)

)2]
1
2 + E[(

(πk|k−1,(Fg)φ)((πk|k−1,Fg)−(π̃N
k|k−1,Fg)

(π̃N
k|k−1,Fg)(πk|k−1,Fg)

)2]
1
2

≤
√ck|k−1∥Fg∥·∥φ∥

(π̃N
k|k−1,g)

√
N

+
∥φ∥·E[((πk|k−1,Fg)−(π̃N

k|k−1,Fg))2]
1
2

(π̃N
k|k−1,g)

≤
2√ck|k−1∥Fg∥·∥φ∥

(π̃N
k|k−1,Fg)

√
N

=
√

cN
k|k

∥φ∥√
N

(41)

Since ∥Fg∥ < ∞, (39) follows by substituting (41) into (40) and further applying the
square operation. Thus, the proof of (39) is completed.

Theorem 3 shows that the resampling process of the CCPF is converged when N → ∞ .
□

From Theorems 1–3, it can be inferred that the posterior probability function of CCPF
will be converged when N → ∞ , which indicates the convergence of the proposed CCPF.

4. Experimental Results
4.1. GNSS/DR Vehicle Navigation System

Experiments on a GNSS/DR-integrated navigation system of a sports car were con-
ducted to evaluate the performance of the proposed CCPF. The state vector of the GNSS/DR-
integrated navigation system is defined as follows:

x(t) =
[
pE vE aE pN vN aN ε ψ

]T (42)

where pE, vE, and aE are the position, velocity, and acceleration in east; pN , vN , and aN are
the position, velocity, and acceleration in the north; ε is the gyro drift error; and ψ is the DR
calibration coefficient.
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The system state equation is as follows [44,45]:

.
x =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 − 1

τaE
0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 − 1

τaN
0 0

0 0 0 0 0 0 1
τε

0
0 0 0 0 0 0 0 0


x(t)+u + v (43)

where v is the process noise with covariance R; τaE and τaN are the correlation time constants
for the variation rates of the accelerations in the east and north; τε is the correlation time
constant for the first-order Markov process in the gyro drift; and u is the control input,
defined as

u =
[
0 0 aE

τaE
0 0 aN

τaN
0 0

]T
(44)

where aE and aN are the means of the accelerations in the east and north at the current time.
The measurement vector y is defined as

y =
[
pE pN ω s

]T (45)

where pE and pN represent the positions in the east and north from the GNSS receiver, ω is
the angular rate from the gyroscope, and s is the output distance from the DR.

The system measurement equation is described as follows:

y = h(x)+n (46)

where h(·) is the nonlinear measurement function, and n is the measurement noise with
covariance Q.

h(x) =


pE
pN

vN aE−vEaN
v2

E+v2
N

+ ε

ψT
√

v2
E + v2

N

(47)

where ε is the first-order Markov process component of the gyro drift error, and T is the
sampling period.

According to the road conditions restricting the system state, the car travelling di-
rection was constrained on the road to the east by the angle θ. The constraint equation is
expressed as follows:

Dx = d = 0

D =

[
−tgθ 0 0 1 0 0 0 0

0 −tgθ 0 0 1 0 0 0

]
(48)

4.2. Experimental Setup

The experimental setup is shown in Figure 2. The high-precision differential GNSS
receiver UT-206 with the positioning accuracy less than 10 cm was used to obtain the actual
vehicle position as the reference to calculate the estimation error.
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The GNSS data update rate was 1 Hz. The GNSS single-point L1/L2 accuracy was
1.5 m in the vertical direction and 1 m in the horizontal direction. The GNSS receiver
accuracy was 0.5 m in the vertical direction and 0.3 m in the horizontal direction. The GNSS
velocity accuracy was 0.05 m/s. During the test, at least seven navigation satellite signals
were available for the GNSS measurement. The experimental data were collected from the car,
which was travelling within a continuous time of 1000 s. After initialization for 1 min, the car
moved stably at an average velocity of 40 km/h. The car travelling direction was constrained
to the east by θ = 65◦. The calibration coefficient of DR was ψ = 0.5. The drift error of the
gyroscope was 0.1◦/h, and τE = τN = 300 s. The car’s initial position, velocity, and accelera-
tion were (0 m, 0 m), (5 m/s, 5 m/s), and (0 m/s2, 0 m/s2). The total mileage was 15 km. R =

diag[(10 m)2 (1 m/s)2 (0.1 m/s2)
2

(10 m)2 (1 m/s)2 (0.1 m/s2)
2

(0.1◦/h)2 (1 m)2],
and Q = diag[(20 m)2 (20 m)2 (4 m/s)2 (4 m/s)2].

For comparison purposes, experiments were conducted using the PF, CPF, and CCPF
to estimate the car’s position and velocity errors. The root mean squared error (RMSE) was
used as the metric for accuracy evaluation. The RMSE is defined as follows:

RMSE =

√√√√ 1
F

F

∑
i=1

(x̂i − xre f ) (49)

where F is the number of Monte Carlo runs, and xre f is the reference value. For the
experimental analysis, 1000 Monte Carlo runs were conducted for the RMSE calculation.
The overall RMSE is defined as follows:

RMSEoverall =
√

RMSE2
E + RMSE2

N (50)

where RMSEE and RMSEN denote the RMSEs in the east and north.
Figures 3–5 show the position errors obtained by the PF, CPF, and CCPF. It can be seen

that the position error curves of all the three methods involve large fluctuations within the
initial 100 s due to the system initialization. After the initial 100 s, the PF curves of position
error still fluctuate greatly, leading to a position error of (−13.1 m, 14.0 m) in the north
and a position error of (−14.5 m, 16.1 m) in the east. The CPF improves the PF with the
cubature rules for particle sampling, leading to the position errors within (−13.0 m, 11.1 m)
the north and (−13.0 m, 12.1 m) east. However, since the CPF still suffers from particle
degradation and does not involve constraints in the state estimation, its improvement is
limited. In contrast, since the CCPF optimizes the CPF sampling procedures, its position
error is (−8.1 m, 9.6 m) in the north and (−7.0 m, 7.1 m) in the east. Table 1 lists the
position RMSEs of the PF, CPF, and CCPF. The position RMSEs of the PF, CPF, and CCPF
are 4.1719 m, 3.7231 m, and 2.7061 m in the north and 4.7618 m, 3.7504 m, and 2.5168 m in
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the east. The overall position RMSEs of the PF, CPF, and CCPF are 6.3308 m, 5.2846 m, and
3.6956 m, showing that the accuracy of the CCPF is 41.6% higher than that of the PF and
30.1% higher than that of the CPF.

Figures 6–8 illustrate the velocity errors obtained by the PF, CPF, and CCPF. The
velocity errors of the three methods have a similar trend to their position errors shown in
Figures 3–5. The velocity errors of the PF, which are (−0.24 m/s, 0.22 m/s) in the north
and (−0.25 m/s, 0.21 m/s) in the east, is the largest. The CPF slightly improves the PF,
leading to velocity errors of (−0.11 m/s, 0.16 m/s) in the north and (−0.18 m/s, 0.19 m/s)
in the east. In contrast, the velocity errors of the CCPF, which are (−0.14 m/s, 0.15 m/s)
(north) and (−0.10 m/s, 0.15 m/s) (east), are the smallest. Table 2 summarizes the velocity
RMSEs of the three methods. The velocity RMSEs of the PF, CPF, and CCPF are 0.0912 m/s,
0.0892 m/s, and 0.0769 m/s in the north and 0.1023 m/s, 0.0887 m/s, and 0.0674 m/s in
the east. The overall velocity RMSEs of the PF, CPF, and CCPF are 0.1371 m/s, 0.1258 m/s,
and 0.1022 m/s, showing that the accuracy of the CCPF is 25.5% higher than that of the PF
and 18.8% higher than that of the CPF.
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Figure 3. Position error obtained using the PF.

Sensors 2024, 24, 1228 13 of 17 
 

 

to velocity errors of (−0.11 m/s, 0.16 m/s) in the north and (−0.18 m/s, 0.19 m/s) in the east. 

In contrast, the velocity errors of the CCPF, which are (−0.14 m/s, 0.15 m/s) (north) and 

(−0.10 m/s, 0.15 m/s) (east), are the smallest. Table 2 summarizes the velocity RMSEs of the 

three methods. The velocity RMSEs of the PF, CPF, and CCPF are 0.0912 m/s, 0.0892 m/s, 

and 0.0769 m/s in the north and 0.1023 m/s, 0.0887 m/s, and 0.0674 m/s in the east. The 

overall velocity RMSEs of the PF, CPF, and CCPF are 0.1371 m/s, 0.1258 m/s, and 0.1022 

m/s, showing that the accuracy of the CCPF is 25.5% higher than that of the PF and 18.8% 

higher than that of the CPF. 

 

Figure 3. Position error obtained using the PF. 

 

Figure 4. Position error obtained using the CPF. 

 

t(s) 

E
−

P
o

si
ti

o
n

 e
rr

o
r 

(m
) 

  
N
−

P
o

si
ti

o
n

 e
rr

o
r 

(m
) 

 

t(s) 

E
−

P
o

si
ti

o
n

 e
rr

o
r 

(m
) 

  
N
−

P
o

si
ti

o
n

 e
rr

o
r 

(m
) 

 

t(s) 

E
−

P
o

si
ti

o
n

 e
rr

o
r 

(m
) 

  
N
−

P
o

si
ti

o
n

 e
rr

o
r 

(m
) 

 

Figure 4. Position error obtained using the CPF.
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Figure 5. Position error obtained using the CCPF.
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Figure 6. Velocity error obtained using the PF.
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Figure 7. Velocity error obtained using the CPF.
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Figure 8. Velocity error obtained using the CCPF.

Table 1. Position RMSEs of the PF, CPF, and CCPF.

Filter RMSE in East (m) RMSE in North (m) Error Range (m) Overall RMSE (m)

PF 4.1719 4.7618 (−13.1, 14.0), (−14.5, 16.1) 6.3308
CPF 3.7231 3.7504 (−13.0, 11.1), (−13.0, 12.1) 5.2846

CCPF 2.7061 2.5168 (−8.1, 9.6), (−7.0, 7.1) 3.6956

Table 2. Velocity RMSEs of the PF, CPF, and CCPF.

Filter RMSE in East (m/s) RMSE in North (m/s) Error Range (m/s) Overall RMSE (m/s)

PF 0.0912 0.1023 (−0.24, 0.22), (−0.25, 0.21) 0.1371
CPF 0.0892 0.0887 (−0.11, 0.16), (−0.18, 0.19) 0.1258

CCPF 0.0769 0.0674 (−0.14, 0.15), (−0.10, 0.15) 0.1022

From the above results, it can be concluded that the CCPF can achieve more accu-
rate state estimations under constrained conditions than the CPF and PF for GNSS/DR-
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integrated navigation. It is also shown that the filtering solution of CCPF is bounded, which
further verifies the theoretical convergence analysis of the CCPF (described in Section 3.3).

The above RMSEs, together with the theoretical convergence analysis described in
Section 3.3, demonstrate the consistent performance of the proposed CCPF. To further
evaluate the filter’s consistency, Figure 9 illustrates quantile–quantile plots of the position
residuals derived from the use of the PF, CPF, and CCPF. As shown in Figure 9a, it is
obvious that the quantile of the position residuals of the PF does not coincide with its
normal quantile. Although the residual quantiles of both the CPF and CCPF are in good
agreement with their normal quantiles, as shown in Figure 9b,c, the residual quantile of
the CCPF is much closer to its normal quantile compared to that of the CPF. Therefore, it is
clear that the proposed CCPF possesses the consistency for state estimation.
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5. Conclusions

Nonlinear systems with constraints and non-Gaussian uncertainties are commonly
encountered in vehicle navigation. To address this issue, this paper proposes a new CCPF
to estimate system state parameters for vehicle navigation. It enhances the CPF importance
sampling process using constraints to improve the importance density distribution. Sub-
sequently, it improves the CPF resampling process by using the Euclidean distance of the
measurement residual to adjust particle weights to ensure the diversity of particles, thus
decreasing particle degradation. Theories were also established to prove the convergence of
the proposed CCPF. The experimental results and the results derived from our comparative
analysis of GNSS/DR-integrated vehicle navigation demonstrate that the proposed CCPF
can effectively estimate system state parameters in constrained environments, resulting in
it having enhanced accuracy compared to the PF and CPF.

Our future research work will focus on the improvement of the proposed CCPF. The
proposed CCPF will be combined with advanced artificial intelligence technologies and
genetic algorithms to achieve nonlinear state estimation in the environments of more
complex constraints.
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