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Abstract: Sensor localization remains a crucial function within the context of wireless sensor networks
(WSNs) and is a delicate concern that has attracted many researchers’ attention. Undoubtedly, a good
distance estimation between different wireless sensors allows us to estimate their accurate locations
in the network well. In this article, we present a simple but very effective anchor-free localization
scheme for wireless sensor networks called the contextual received signal strength approach (CRSSA)
localization scheme. We use the received signal strength (RSS) values and the contextual network
connectivity within an anchor-free WSN. We present and thoroughly analyze a novel joint estimation
methodology for determining the range, path loss exponent (PLE), and inter-node distances in a
composite fading model that addresses small-scale multipath fading and large-scale path loss shad-
owing effects. We formulate analytical expressions for key parameters, the node’s communication
range and the PLE value, as functions of the sensor’s number, the network’s connectivity, and the
network density. Once these parameters are estimated, we estimate the inter-node distances and
the positions of nodes, with relatively high accuracy, based on the assumed propagation model in a
two-dimensional anchor-free WSN. The effectiveness of the CRSSA is evaluated through extensive
simulations assuring its estimation accuracy in anchor-free localization.

Keywords: wireless sensor network; network connectivity context; RSS; inter-node estimation;
anchor-free; small/large-scale fading channel; localization

1. Introduction

Wireless sensor networks (WSNs) are a fundamental component in a wide range of
applications, including environmental monitoring, object tracking, logistics management,
and industrial operations [1]. These networks consist of small, cost-effective sensor nodes
that communicate wirelessly, and the precise localization of these nodes within the network
is essential for their effective operation. These networks, comprising small, cost-effective
sensor nodes, may require precise localization for effective operation. A review published
in [2] exposed location-aware schemes, as well as parameters affecting the performance of
localization during the past few years. Within the realm of WSN localization, techniques are
broadly categorized into two main types: anchor-based and anchor-free methods. Anchor-
based methods rely on nodes with known positions to assist in the localization process,
offering high accuracy but often at the cost of reduced flexibility and increased operational
expenses. In contrast, anchor-free methods, which do not depend on predefined anchor
positions, offer greater flexibility and scalability, making them increasingly popular in
dynamic and large-scale deployment scenarios [3–5].

Traditionally, localization has often relied on anchor nodes with known positions.
Although these algorithms have high localization accuracy, anchors introduce limitations
in deployment flexibility and incur higher operational costs. Consequently, there is a grow-
ing interest in developing and refining anchor-free algorithms, which promise a flexible
structure and reduced cost. Our research directly addresses the challenges and opportu-
nities in anchor-free localization within WSNs [6,7]. In our endeavor, we introduce the
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“contextual received signal strength approach” (CRSSA), an innovative method leveraging
the widely utilized received signal strength (RSS) metric, compatible with a broad range
of commercially available sensors. This universality is a key strength, enabling diverse
sensors to efficiently process RSS data extracted from standard received communication
packets. Although RSS-based localization is celebrated for its simplicity and widespread
applicability, it grapples with accuracy challenges stemming from the complexities and
unpredictability of signal propagation, especially in industrial environments. Our previous
work in developing CRSSA for one-dimensional (1D) environments showed promising
results [8]; however, the problem was confined to a basic linear context or string topology.
In this article, the primary research question that we address is whether extending CRSSA
to two-dimensional (2D) WSNs maintains its precision and avoids divergence. Moving
beyond the linear limitations of the 1D context, we aim to explore the capabilities of CRSSA
in the more complex and spatially diverse 2D environments, ensuring that the transition
to a higher dimensional space does not compromise the method’s accuracy or lead to
algorithmic instability. By thoroughly investigating signal behavior complexities, includ-
ing multipath effects and environmental interference, we strive to affirm the robustness
and reliability of the CRSSA for diverse and demanding conditions in industrial WSN
applications [6,7].

Our research encompasses a comprehensive simulation evaluation, designed to rigor-
ously evaluate the CRSSA in a 2D setting. We compare the performance of the 2D-extended
CRSSA against established anchor-free algorithms, with a focus on determining whether
the shift to 2D preserves the accuracy and stability observed in 1D environments. Special
emphasis is placed on evaluating the precision of inter-node distance estimation, a critical
factor in assessing the effectiveness of any localization method. The forthcoming sections
will thoroughly explore the theoretical underpinnings of the 2D CRSSA, delve into the in-
tricate signal propagation challenges in 2D environments, and present detailed results from
simulations. These insights will culminate in a discussion on the practical implications of
the findings, particularly how the 2D CRSSA could be implemented in real-world wireless
sensor networks, addressing the unique challenges that they present.

2. Related Works
2.1. Anchor-Free Localization

In the field of anchor-free localization within WSNs, several techniques and algorithms
have been proposed. Youssef et al. [9] introduced a clustering-based approach, dividing the
network into clusters, each with its gateway node responsible for generating a local relative
map. These local maps are then combined to obtain the global network layout. However,
it is worth noting that managing these clusters can introduce significant complexity into
the localization process. Arbula et al. [10] also employed clustering but in a distributed
manner, initially localizing clusters and then integrating them together to achieve network-
wide localization. While cluster-based approaches offer advantages in certain scenarios,
they frequently require intricate coordination and management, adding to the overall
complexity of the localization system. The work in [11] took advantage of the sensor
clustering approach to organize the network topology and the triangle test method to
determine cluster heads. A local coordinate system was formed within each cluster, and a
fusion algorithm was proposed to unify all clusters into a uniform coordinate system. In
the work referenced as [12], Wang et al. introduced a distributed cluster-based anchor-free
node localization algorithm by employing a clustering approach for single-hop nodes
and the time of arrival (ToA) technique to estimate inter-node distances. Then, a cluster
synchronization was employed, where all nodes within a cluster are harmonized, and local
coordinates are determined based on angle and distance information. The final step was the
global localization phase. The most recent work in [13] presented an efficient anchor-free
algorithm (EAFLA), which grouped nodes into one-hop clusters and estimated distances
between nodes within each cluster using RSS. For nodes not within one hop, the Kleincrock
model [14] and Al-Kashi’s theorem (cosine law) were used to derive the positions of sensors
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in the network. In contrast, our CRSSA streamlines the localization process by avoiding
the complexities associated with clustering. Utilizing contextual connectivity information
alongside the readily available RSS metric, the CRSSA aims to achieve precise localization
without the overhead of managing multiple clusters or gateway nodes, thereby simplifying
operations and reducing costs.

The authors in [15] proposed a range-based anchor-free approach, where distances
between all pairs of sensors within communication range were known, while distances
beyond this range were considered unknown. Contrasting with this approach, the CRSSA
operates on the principle that no distances are pre-known, even among proximate sensors.
This challenges the traditional reliance on pre-established distances within communication
range, as seen in [15]. An anchor-free localization approach was introduced in [16], utilizing
a single node as a global reference position. This node sends a special active packet through
the network, and when received by a sensor, the sensor would calculate the angle and
distance to the node. However, this approach required all sensors to be equipped with
angle-measuring devices. The authors in [6] proposed the ladder diffusion node localization
algorithm (LDLA) anchor-free localization algorithm, in which each sensor calculated its
relative position with the sink node. Activation packets were broadcast by the sink node,
and when received, a sensor would relay them using the ladder diffusion method. This
allowed sensors to adjust their coordinate systems based on received packets from source
nodes and neighbor node positions, but this method also shared the same limitation of
requiring angle-measuring devices for effective localization. The work in [7] presented
a method that achieved positioning through beacon data interaction between a rotating
antenna on the base station and sensor nodes. The sensors determined their positions
based on the vertical elevation angle of the antenna, the horizontal rotation angle, and
distance information from the node to the base station antenna. In comparison, the CRSSA
approach diverges significantly by being designed to work with the inherent capabilities
of almost all commercial sensors, eliminating the need for specialized hardware. This
adaptability makes the CRSSA not only more cost-effective but also more versatile, as it can
be implemented in a wider range of environments without the need for complex setups or
additional equipment.

In [17], the authors utilized the LDLA approach and introduced the sunflower algo-
rithm (SFO) for implementing range-free anchor-free localization in WSNs using distance
vector-hop (Dv-Hop) and considering the distance vector routing protocol. This method
adopted a radio channel model based on free space attenuation, a simplification that may
not align with the complexities of real-world signal propagation in various environments.
While this approach provides a basic framework, it potentially overlooks the nuanced
signal behaviors often encountered in environments with physical obstructions or interfer-
ence. CRSSA diverges from this conventional one, adopting a more realistic view of signal
propagation behavior in WSN environments. CRSSA enhances the accuracy and reliability
of localization, adapting to the diverse and dynamic nature of signal interactions. This
adaptability is particularly crucial in real-world applications where signal propagation can
be unpredictable and complex. Table 1 summarizes anchor-free localization studies as well
as used techniques and approaches.

In localization techniques utilizing RSS, it is essential to consider the precision and
variability of the signal across different fading models. However, the majority of localization
studies in WSN assume a propagation model where the received power is related to distance
by a path loss model with zero-mean Gaussian noise, such as in [18–20]. An anchor
free algorithm for one-hop nodes is proposed in [21], where it computes the inter-node
distances based on RSS and the centroid techniques. The nodes are then located by using
the average of the inter-node distances. However, this algorithm does not provide highly
accurate position estimates, especially in situations with a high degree of measurement
noise or non-line-of-sight conditions, and it does not take into account signal propagation
characteristics. An anchor-based hybrid localization algorithm in the absence of knowledge
of the transmit power and PLE value is presented in [18]; these parameters are estimated
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using a Kalman filter, and an unknown node is localized based on RSS/AOA (angle of
arrival) information. The authors in [19] proposed a method that utilized the RSS value
at the unknown node and the most valuable player algorithm to localize it in the grid
system. Also, in [20], the authors proposed anchor-based range-free algorithms based on
RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF).
On the other hand, many studies, including [22,23], emphasize the importance of accurate
signal propagation models in wireless communication systems, especially when accounting
for phenomena like multi-path fading and shadowing effects. Traditional models like the
lognormal distribution for large-scale shadowing effects [24] and the gamma distribution as
an alternative [25] have their limitations. In realistic environments, where these phenomena
coexist, a composite fading distribution becomes necessary. For our CRSSA method, we
have utilized the Nakagami-m model, as detailed in [26–28]. This model is particularly
effective in capturing the variability of signal fading in diverse environmental conditions.
Employing the Nakagami-m model enhances the adaptability and accuracy of the CRSSA,
ensuring its effectiveness across a range of WSN scenarios and solidifying it as a robust
solution for the complexities of real-world signal propagation.

Table 1. Anchor-free localization approaches.

Issue/Paper Technique and Approach

Youssef et al., 2005 [9] In order to obtain the global network layout, the authors proposed an anchor-free clustering-based approach to
generate local maps that are then combined together.

Arbula et al., 2008 [10] The authors employed clustering but in a distributed manner, initially localizing clusters and then integrating them
together to achieve network-wide localization.

Xingfu et al., 2010 [11] The authors used a clustering technique with the triangle test method to form a local coordinate system.

Qu et al., 2015 [16] The authors introduced an anchor-free localization approach, where the sensor would calculate the angle and
distance to a single node as a global reference position.

Wang et al., 2016 [12] The authors used a distributed cluster-based anchor-free node localization algorithm, where they employed a
clustering approach for single-hop nodes and the ToA technique to estimate inter-node distances.

Shah et al., 2020 [21] The authors proposed an anchor-free algorithm for one-hop nodes by computing the inter-node distances using RSS
and the centroid techniques.

Rayavarapu et al., 2021 [17] The authors applied the LDLA approach and introduced the SFO for implementing range-free anchor-free
localization in WSNs using Dv-Hop.

Aka et al., 2023 [13] The authors grouped nodes into one-hop clusters and estimated distances between nodes within each cluster
using RSS.

2.2. Propagation Models Relevance

In the context of localization techniques utilizing RSS, it is crucial to consider the
precision and variability of the signal at both small and large scales of fading models. Failure
to consider these factors can lead to misleading performance assessments on the relevance
of any proposed localization solution based on using RSS. Many studies have highlighted
the significance of accurate signal propagation models in wireless communication systems,
considering phenomena such as multi-path fading and shadowing effects [22].

The lognormal distribution has been traditionally used to represent large-scale shad-
owing effects [24], but it often appears inflexible due to its relatively inconvenient algebraic
representation. In fact, it involves parameters and assumptions that may not always ac-
curately capture the complexity of real-world scenarios, such as variations that can occur
in the large-scale shadowing effects in different environments. Therefore, the conditions
and assumptions of the lognormal distribution might not hold in practice, leading to a less
flexible model, adaptable to changes in environmental conditions or other factors that can
influence large-scale shadowing effects. Hence, the gamma distribution has been largely
used as a substitute for lognormal distribution [25]. Nevertheless, in a realistic environ-
ment, they happen simultaneously; therefore, composite fading distribution is commonly
required in wireless communication modeling. However, even if Nakagami-gamma (gener-
alized K) and Nakagami-inverse Gaussian (NiG) approaches model simply the shadowed



Sensors 2024, 24, 1210 5 of 19

fading, neither of them endures the match over the whole range of fading and shadowing
values [24]. Recent studies and analyses presented in the literature show that the composite
Nakagami–lognormal (NL) distribution proposed in [26] to obtain the outage probability
has been widely employed to model the mixture of small-scale fading and shadowing, and
it fits in more measurement campaigns than the other distributions [27,28].

3. Contextual Received Signal Strength Approach
3.1. Assumptions

In developing the CRSSA for WSNs, our methodology is predicated on a set of founda-
tional assumptions. These assumptions are designed to mirror realistic deployment scenarios
and signal propagation behavior in WSN environments, ensuring that our approach is both
practically relevant and scientifically rigorous. Key among these assumptions are:

i. Random 2D Deployment with Unknown Initial Positions: All sensors, unaware of
their own positions initially, are randomly deployed across a two-dimensional plane,
mirroring diverse real-world deployment scenarios. After deployment, they are
assumed to remain stationary. This static nature simplifies the analysis by eliminating
the variable of sensor movement, focusing our study on the efficacy of localization
under stable conditions.

ii. Adoption of Nakagami–Lognormal Model for Real-World Scenarios: The adoption of
the composite Nakagami–lognormal (NL) distribution model is pivotal in accurately
representing the signal fading and shadowing effects in various environments. By
utilizing this model, the CRSSA effectively adapts to realistic signal propagation
scenarios, enhancing the robustness and reliability of the localization process in
diverse WSN settings. The composite NL distribution is employed to model the
mixture of small-scale fading and shadowing.

iii. Varied and Dynamic Communication Range Based on Propagation Model: While each
sensor operates within a communication range R, this range is influenced by the specific
propagation model in use, particularly the composite NL distribution. This approach
acknowledges the variability in signal strength and range due to environmental factors,
ensuring a more accurate representation of real-world WSN conditions.

iv. Dynamic Communication Ranges: Given the reliance on the composite NL propagation
model, the communication ranges between sensors are dynamic, reflecting the variability
in signal propagation. This dynamic range adds realism to our model, acknowledging the
fluctuating nature of signal strength in different environmental conditions.

v. Ensuring Comprehensive Network Connectivity: In our model, we assume that the
network is fully connected without any disconnected sub-networks, which is crucial
for the effective functioning of the CRSSA method. This complete connectivity is
essential for preventing information isolation and ensuring that data can flow seam-
lessly throughout the entire network. To ascertain and maintain this level of network
integrity, we utilize Dijkstra’s theorem in our simulations. This helps in identifying
the most efficient paths and avoiding scenarios where parts of the network become
isolated, thereby safeguarding the reliability and effectiveness of the localization
process across the entire network.

These assumptions form the backbone of our approach, allowing us to develop and
evaluate the CRSSA in a controlled yet realistic manner, simulating conditions representa-
tive of typical WSN applications.

3.2. Propagation Model

The communication between two sensors is hence assumed to be affected by both
shadowing and small-scale fading resulting from obstructions and multi-path propagation,
respectively [28]. In function of the transmitting power, Pt, the received power at distance
d is well known [29] and expressed as

Pr(d)[dBm] = Pt[dBm]− PL(d)[dB]. (1)
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Antenna gains are included in PL(d), the path loss at distance d, defined as follows:

PL(d) = PL(d0) + 10γ(
d
d0

) + X, (2)

where PL(d0) is the free space path loss calculated at d0, the close-in reference distance,
γ is the path loss exponent, (2 ≤ γ ≤ 6), and X is the composite when fading and
shadowing affect the signal simultaneously, known as Nakagami–lognormal fading. Using
the properties and theories in [30–32], the pdf of the Nakagami–lognormal (NLN) power u
is defined by Equation (4.76) in [24], as

fNLN(u) =
∫ ∞

0

mmum−1

zmΓ(m)
exp(−m

u
z
)
(10/loge(10))√

(2πσ2z2)
exp

[ (10log10z− µ)2

2σ2

]
dz, (3)

where m is the shape parameter (m ≥ 1/2), Γ(m) is the gamma function, z is the average
power, and f (z) is treated to be lognormal with mean µ and variance σ2.

3.3. Network Model and Overview

N nodes are randomly uniformly deployed in a 2D square area A such that A >> πR2,
where R is the communication range of each node. We assume a fully connected network,
i.e., no node is isolated. Figure 1 illustrates an example of a sensor network where N nodes
are randomly deployed in a 2D square area. The regular nodes, depicted as blue dots, and
a sink node depicted as red square. Unknown nodes are interconnected by dashed lines
representing direct or ’one-hop’ connections between two neighboring nodes at a particular
instant, underscoring the localized structure of the network at that precise moment. This
figure challenges traditional models that typically portray coverage areas as well-defined
circles with a fixed radius. Instead, it adopts a more realistic approach by acknowledging
the variability and irregularities in signal propagation pertinent to sensor networks. This
approach more accurately captures the real-world environmental and spatial challenges
faced by sensor networks. As a result, the figure not only depicts standard coverage areas
but also those under disturbance, shown in cyan, illustrating the complexities and nuances
of data transmission and signal propagation in specific sensor network scenarios.

Figure 1. Network Model.
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Connectivity

Two nodes (i and j) are neighbors at one hop if they are connected; hence, Cij is a
random variable presenting the connectivity context information defined as

Cij =

{
1, if Pr(d) ≥ Pthreshold

0, otherwise
, (4)

where i = {1, · · · , N}, j = {1, · · · , N}, and j ̸= i. Pthreshold is the power detection threshold,
and d is the distance separating i and j. The global connectivity context information matrix
CI is then defined as

CI = [Cij]N×N . (5)

3.4. CRSS Approach
3.4.1. Analysis from Spatial Data

A complete spatial randomness (csr) is synonymous with a homogeneous Poisson process
in Rd. (“This process has the property that, conditional on N(A). The number of events
in a bounded region A ⊂ Rd, the events of the process are independently and uniformly
distributed over A. That is, given N(A) = n, the ordered n tuple of events (s1, ..., sn) in An

satisfies Prob(s1 ∈ B1, ..., sn ∈ Bn) = ∏n
i=1(|Bi|/|A|), B1, ..., Bn ⊂ A“) [33] (p. 586). Distances

may be measured between sample and nearest events. For a completely spatial process, i.e., a
homogeneous Poisson process, the distribution theory for nearest neighbor distances is well
known [34], where the density of the positive random variable W in R2 is

g(W) = 2πλwe(−πλw2). (6)

Theoretical calculations show that, under csr in R2, the probability G(r) that the distance
from a chosen event to its nearest event is less than or equal to r can be expressed by

G(r) = 1− e(−λπr2), (7)

where λ is the intensity of the homogeneous point process. For the homogeneous Poisson
process, the probability that there are no events within distance x for an arbitrary point
is e(−λπx2). Hence, the distribution function of the point to the nearest event distance is
1− e(−λπx2), x > 0.

3.4.2. From Spatial Data to WSN

Applying this analysis from spatial data, in a sensor network, the random point is the
random node (sensor) [35]. Thus, the pdf of the distance, β > 0, of a node to its nearest
neighbor is

f (β) = 2πλβe(−λπβ2). (8)

Moreover, the probability that this distance is less than or equal to the communication
range R is then expressed as

P(β ≤ R) =
∫ R

β=0
f (β)dβ = 1− e(−λπR2). (9)

(i) In a one-dimensional case
N nodes are randomly uniformly deployed on a distance dmax = [0, xmax]. Let v be the
number of nodes located in an interval [x1, x2] with a probability p = x2−x1

dmax
[35]. Let ξ

be a random variable denoting the number of nodes in a defined interval. Therefore,
the probability that v of N are placed with [x1, x2] is

P(ξ = v) =
(

N
v

)
pv(1− p)N−v, (10)
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for N >> 1 and (x2−x1)
dmax

<< 1, this solution can be approximated with a Poisson
distribution, with p = x2−x1

dmax
, and keeping the density λ = N

dmax
constant:

P(ξ = v) =
(Np)v

v!
e−Np

=
(N (x2−x1)

dmax

v!

)v
e−N (x2−x1)

dmax

= (
λ(x2 − x1)

v!
)ve−λ(x2−x1)

(11)

Thus, the probability that a node has v neighbors within its communication range R, is
the same as the probability in Equation (11), but the distance interval is on 2R such as

P(ξ = v) =
(λ2R

v!

)v
e−λ2R. (12)

(ii) In two-dimensional deployment

N nodes are deployed randomly on surface A, providing a realistic representation
of random node placement in practical scenarios. Under this assumption, the average
number of nodes per unit area is denoted by λ = N/A. This allows us to compute the
probability P(ξ = v) that any subset of v nodes from the total N nodes falls within a specific
sub-area A0 of the system plane A, delimited by the communication range R of a node,
with A0 = πR2; hence, analogously to (11), P(ξ = v) is obtained as

P(ξ = v) =
( A0

A N)v

v!
e−

A0
A N

=
(λA0

v!

)v
e−λA0

=
(λπR2

v!

)v
e−λπR2

.

(13)

3.4.3. Probabilistic Approach in Interpreting RSS

In our examination of the network’s connectivity, we consider R̄ to represent the aver-
age effective communication radius, assuming a homogeneous propagation environment.
This radius is crucial for estimating the area Ā within which a typical sensor node can
communicate, calculated as the area of a circle, Ā = πR̄2. This average range is pivotal in
our probabilistic approach for interpreting the RSS values. The expected average number
of neighbors falling within a radius R around a given node is described as

E(ξ) = λπR2. (14)

Acknowledging R̄ as an average range allows us to probabilistically interpret the
RSS data from sensors, providing a basis for inferring the likelihood of node connectivity
within this range. This average range, and the area that it defines, become key in localizing
nodes and optimizing the performance of the CRSSA method in a WSN setting to find the
number of adjacent or one-hop neighbors for each node, which is pivotal for deducing its
communication range.

This calculation represents the expected count of adjacent neighbors for any given
node i, providing an assessment of the network’s connectivity. On the other hand, the
number of connected neighbors, ni, to node i = 1, · · · , N, can be obtained from the
connectivity context data as

ni =
N

∑
i=1

Cij. (15)
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Further, the average number of adjacent neighbors per node is derived by the connec-
tivity matrix considering the individual communication ranges, which may vary due to
environmental dynamics but are averaged out across the network:

n̄ =
1
N

N

∑
i=1

ni =
1
N

N

∑
i=1

N

∑
j=1

Cij. (16)

By leveraging the connectivity matrix, we can accurately determine the average num-
ber of connected neighbors for each node, thereby enabling a detailed analysis of network
density and communication coverage. This level of specificity is crucial for the effective
implementation of the CRSSA method as it directly impacts the localization accuracy within
the WSN.

• Range Estimation, ˆ̄R
The values in Equations (14) and (16) are equivalent; hence, based on these equations,
the average range R̄ is estimated as

ˆ̄R =
N

∑
i=1

R̂i
N

=

√
∑N

i=1 ∑N
j=1 Cij

λπN
. (17)

• PLE Estimation
Theoretical and measured-based propagation models indicate that average received
signal power decreases logarithmically with distance [29]. Hence, based on the log-
distance path loss model, and assuming the estimated average communication range
obtained in Equation (17) as the maximal distance reached by a transmitted signal
when the received power measured at this node is equal to the power detection
threshold Pthreshold, the PLE, ˆ̄γ, can be estimated as

ˆ̄γ =
−Pthreshold + PL(d0)

10log10(
ˆ̄R)

. (18)

• Inter-node distance estimation
Our proposed approach is an anchor-free solution; thus, it estimates the relative
positions with respect to a coordinate system established by a reference group of
nodes. Relative positioning information is sufficient for some applications, such
as location-aided routing or direction-based routing algorithm [36]. Moreover, the
recovery of the network’s key propagation characteristics and its geometry can be
addressed by relative positioning mainly from the connectivity information.
In relative localization, nodes are localized with respect to each other; thus, we estimate
the distance separating them. In this work, we will focus on estimating the distance
separating two neighbors nodes at one hop. Since the objective is to prove the efficiency
of the proposed CRSSA, distances between nodes at more than one hop are beyond
the scope of this work and will be addressed in future publications.
Based on the log-distance path loss model, the value of the estimated PLE in Equation (18),
and the received power value obtained at neighbor node k, Prik is the received power
at node k, and each node i = 1, · · · , N, estimates its distances separating its connected
neighbor nodes, k ̸= i ∈ κ = {i1, · · · , n̄i}, as

d̂ik = 10

PL(d0)− Prdik

10 ˆ̄γ . (19)

• Localization of nodes
To estimate the positions of nodes, we exploit estimated inter-node distances, RSS
values, and the sink position. Our approach employs a gradient-based optimization
method with weighted residuals, utilizing the RSS values as a key factor in the objec-
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tive function. Subsequently, we assess the accuracy of the estimated positions through
the calculation of the NRMSE.

3.5. Flowchart and Algorithm

To summarize the previous discussion, the flowchart in Figure 2, and the neighbor
discovery phase, as well as Algorithm 1, to jointly estimate the PLE value, the inter-node
distances are presented below.

Deploy N nodes ran-
domly in a XY plane.

START

Is the WSN fully
connected? (i.e.,

no isolated nodes)

Calculate Pr = [Pr]N×N ma-
trix based on equation (1)

Neighborhood discovery phase

Use algorithm (1) to estimate un-
known parameters: ˆ̄R, ˆ̄γ, the inter-
node distances between neighbor

nodes, and the positions of nodes .

STOP

No

Yes

Figure 2. CRSSA flowchart.
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Algorithm 1: Contextual Received Signal Strength Approach
Input : N: Unknown nodes, λ: Network density, A: Deployment area

Output : ˆ̄R: Estimated mean range, ˆ̄γ: Estimated mean path loss exponent, d̂ik:

Estimated inter-node distance, node position (x̂i, ŷi)

Data: Pr(d): Received power at distance d

1 for i=1 to N do

2 for j=1 to N do

3 Evaluate Cij ← using (4)

4 end

5 end

6 for i=1 to N do

7 Calculate the number of neighbors of node i, ni ← using (15)

8 end

9 Derive the average number of adjacent neighbors n̄← using (16)

10 Estimate the mean range ˆ̄R using (17) for i = 1 to N do

11 Estimate the inter-node distance between neighbor nodes i and k, d̂ik ← using

(19) ; /* this distance is estimated iff Cij = 1. */

12 end

13 Estimate the positions of nodes (x̂i, ŷi) using gradient-based optimization method

with weighted residuals.

Neighbor Discovery Phase

To build the neighbor connectivity context matrix, each node i(i = 1, · · · , N) has to
discover its neighbors by sending through the network a HELLO message containing its
identity, a single-bit variable receivedhello equal to 1 if a full HELLO has been received from
the neighbor, and a neighbor Set (NeighS), which is updated when a HELLO packet is
received from the neighbor. The neighbor connectivity context matrix Cij assigns a value of
0 or 1 for each pair of nodes depending on the neighborhood information. We assume a
non-symmetric connectivity context matrix. The value of the matrix is set as follows for
each pair of sensors i and j, where (i = 1, · · · , N), j = (1, · · · , N) and j ̸= i.

1. If receivedhello is 1 for both sensors i and j, Cij = Cji = 1.
2. If receivedhello is 1 for sensor i and 0 for sensor j, Cij = 1 and Cji = 0.
3. If receivedhello is 0 for both sensors i and j, Cij = Cji = 0.

Once the packet is successfully received by a node, the NeighS is updated by adding the
identity of the node transmitting the HELLO packet. At this step, each node is aware of its
neighbors and their numbers. The information concerning each node connectivity context
matrix is sent to the sink node in charge of computational operations. After a successful
exchange of HELLO packets, nodes can automatically establish adjacency and can start to
send and route data between them. After the neighbor discovery phase, the information on
global connectivity is used by the sink node to estimate the channel parameters and the
inter-node distances.
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4. Performance Evaluation
4.1. Evaluation Metric

In order to prove the effectiveness of our proposed approach, we calculate the normal-
ized root mean square error (NRMSE) of the estimated inter-node distances as

e =
1
N

N

∑
i=1

1
C(κi)

∑k∈κi

√
(d̂ik − dik)2

R̄
, (20)

where d̂ik is the estimated inter-node distance, dik is its real value, and C(κi) is the cardinal
of κi, the set of node-i’s neighbors. The normalization is performed with respect to the the
average communication range R̄. Other normalization metrics go far beyond the scope of
this work. Also, we assess the localization NRMSE as

eposition =
1

Nu

Nu

∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2

R̄
, (21)

where Nu is the number of localized sensors.

4.2. Simulation Setup

Extensive simulations for evaluating the performance of our CRSSA are conducted
by using Matlab (R2022b) [37]. In order to prove the stability and the efficiency of our
approach, we test it in different propagation parameters, as well as different numbers of
nodes. The general simulation setup is listed in Table 2.

Table 2. WSN simulation parameter setup.

Parameters [Unit] Values (s)
√

A[m]: Square length 100

N: Sensor node cardinality 150

Pthreshold: Threshold power [dBm] −90

PL(d0): Free space path loss at d0 [dB] −45

Pt: Transmitting power [dBm] 0

η: Number of runs 100

A random deployment of N static nodes inside a square region of length
√

A in
each run is considered. We execute 100 runs, and we make sure that the network is
fully connected at each run. Random received power values for each link are generated,
following relations explained in Section 3.2. Parameters’ values used for simulation such as
γ, σ, and m are listed in each subsection below. The path loss exponent, the communication
range, and the inter-node distances are then estimated using the generated noisy received
power. The CRSS approach is studied by fixing two variables and varying the third one.

In order to test the impact of varying the Nakagami parameter, γ and σ values are fixed
and m is changed. At each variation of the m value, the approach is tested for 100 runs, and
the results are reported in Section 4.2.1. Similarly, to assess the impact of the PLE value on
the accuracy and the reliability of the CRSS approach, σ and m values are fixed, and the γ
value is changed; Section 4.2.2 details obtained results. Analogously, Section 4.2.3 elucidates
the consequence of varying the shadowing standard deviation on the CRSS approach.

4.2.1. m-Nakagami Parameter Variable

The results presented in Figure 3 show the inter-node distance estimation NRMSE
by varying the value of the m-Nakagami parameter while γ = 3 and σ = 4dB. NRMSE is
calculated based on Equation (20). The blue boxplots show the results of 100 runs conducted
using the parameters listed in Table 3. They show how the data error is extended, and red
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lines show the median of the error. A significant relationship is identified, as shown in
Figure 3, between the Nakagami shape parameter m and the localization error. Notably, the
results showed that as m increases from 1 to 5, the median localization error progressively
decreases from 5.5% to 4% of the range. This improvement aligns with the theory that a
higher m indicates a signal less prone to fading, resulting in greater accuracy. However,
a key observation is that the most significant changes occur at m = 1, where the model
exhibits the most multipath fading. Beyond m = 5, improvements become marginal, with
the error slightly increasing to 4.01% for m = 6. This indicates a plateau in performance
gains, influenced by other limiting factors such as the path loss exponent or shadowing.
Additionally, it is important to note that, for m = 1, the error increases by 1.5% from its
ideal level observed at m = 5.

Table 3. Variable parameter setup 1.

Parameters [Unit] Values (s)

γ: PLE 3

σ: Lognormal shadowing standard deviation [dB] 4

m: Nakagami parameter (1; 2; 3; 4; 5; 6)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
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Figure 3. Inter-node distance estimation NRMSE for variable m-Nakagami parameter.

4.2.2. γ: PLE Parameter Variable

In this subsection, the results presented in Figure 4 show the estimation NRMSE by
varying the value of γ while m = 4 and σ = 4dB. Similarly, boxplots show the results of
100 runs conducted using the parameters listed in Table 4. They show how the data error
is extended, and red lines show the median of the error. Low errors show the approach
stability. The interval of NRMSE values ranges between 0.01 and 0.11.

Table 4. Variable parameter setup 2.

Parameters [Unit] Values (s)

γ: PLE (2.5; 3; 4; 5; 6)

σ: Lognormal shadowing standard deviation [dB] 4

m: Nakagami parameter 4
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Figure 4. Inter-node distance estimation NRMSE for variable PLE values.

Another relationship is identified in this case between the PLE value γ and the local-
ization error. Remarkably, the results showed that as γ increases from 2.5 to 6, the median
localization error progressively decreases from 9% to 1% of the range. This enhancement is
explained by the fact that smaller PLE values translate into higher average-range values.
Thus, the number of neighbors within range, yet at more than a single-hop distance, gets
increasingly larger, thus biasing more seriously the estimate in (17).

4.2.3. σ: Lognormal Shadowing Standard Deviation Variable

In this subsection, the impact of varying σ is studied. Simulations parameters are
listed in Table 5. Figure 5 presents boxplots illustrating the results of 100 runs. They show
how the data error is extended, and red lines show the median of the error. It can be
observed that NRMSE values increase with the σ value, without exceeding 0.12 when
σ = 6 dB. Correspondingly to intuitive expectations, where σ introduces randomness in
the received signal power, the median localization error progressively increases from 2% to
8% of the range.

Table 5. Variable parameter setup 3.

Parameters [Unit] Values (s)

γ: PLE 3

σ: Lognormal shadowing standard deviation [dB] (1; 2; 3; 4; 5; 6)

m: Nakagami parameter 4
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Figure 5. Inter-node distance estimation NRMSE for variable σ, lognormal shadowing standard deviation.
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4.2.4. Node’s Number Impact

This approach relies on the network contextual information. The node’s number impact
study is crucial as it affects the network density, λ. In fact, this latter is a key parameter studied
in different WSN applications. Bulusu [38] proposed Equation (22) to calculate λ as

λ =
NπR2

A
, (22)

where N is the number of nodes in area A, and R is the nominal range of each node.
However, the authors in [39] propose a more precise equation as

λ = lim|A|→0
N(A)

|A| (23)

where density is measured in nodes per m2.
A higher node density introduces less distance between nodes; thus, the impact of this

network parameter is crucial in this study since it affects the number of neighbor nodes
within a communication range.

The CRSSA is tested with a different number of nodes without changing the deploy-
ment area. Boxplots in Figure 6 show the simulation results for different N, by illustrating
how errors are extended. Simulation parameters are listed in Table 3. As observed, the
maximal NRMSE value does not exceed 0.065 for N = 100. An important observation is
drawn from Figure 6: the median localization error denoted by red lines remains stable
when varying N, where it changes from 4.1% to 4.2% of the range. Once more, the results
indicate a plateau in performance gains and validate the effectiveness of the approach.
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Figure 6. Inter-node distance estimation NRMSE for different number of nodes, N, with (γ = 3, σ = 4,
m = 4).

4.2.5. Results Comparison

After proving the competence of the CRSSA in different and varying channel parameters
and numbers of nodes, we evaluate its performance by comparing the NRMSE against state-of-
the-art anchor-free localization techniques proposed in recent studies, namely, Shah et al. [21],
SFO [17], and EAFLA [13]. Shah et al. employed a time division multiple access (TDMA)
scheduling algorithm, where each node broadcasts a beacon message containing its unique
node ID. RSS measurements are then utilized to estimate distances between nodes, and the
centroid and average distance are computed for localization.

The SFO technique applied in [17] involves an approach using the DV-Hop algorithm.
This technique leverages the principles of SFO to optimize node positions based on hop
distances obtained from the DV-Hop algorithm.
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The EAFLA proposed in [13] begins by electing cluster heads and forming clusters
according to the low-energy adaptive cluster hierarchical (LEACH) protocol. Distances
between nodes are then estimated using a combination of the RSS signal transmission
model and the Kleinrock and Sylvester model [14].

In Figure 7, we evaluate the NRMSE under specific parameter settings (γ = 3,
σ = 4, and m = 4). We present results in blue boxplots. Our proposed approach consistently
outperforms existing benchmark methods found in the literature. The NRMSE achieved
by our approach falls within an impressive range of [0.03, 0.058]. In comparison, errors
obtained using the SFO method vary between 0.16 and 0.189, Shah et al.’s approach yields
errors within [0.45, 0.1], and errors with the EAFLA range from 0.07 to 0.26. This demon-
strates the superior accuracy and precision of our proposed method, consistently achieving
lower NRMSE values across the specified parameter configurations when compared to
existing state-of-the-art approaches.

SFO SHAH et al. EAFLA CRSSA
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Figure 7. Inter-node estimation NRMSE comparison (γ = 3, σ = 4, and m = 4).

4.2.6. Node Localization

In order to localize sensors, we adopt a gradient-based optimization method with
weighted residuals, utilizing the RSS values as a key factor in the objective function. Neighbors
at one hop of each node are positioned using the estimated inter-node distances. The sink’s
neighbors are localized based on the known position of the sink, and then the rest of the
sensors are positioned. Figure 8 shows that our proposed methodology consistently surpasses
other anchor-free localization techniques found in the literature. The NRMSE achieved by our
approach falls within a range of [0.02, 0.045]. In contrast, errors obtained using the SFO method
vary between 0.089 and 0.16, Shah et al.’s approach yields errors within [0.12, 0.18], and errors
with the EAFLA range from 0.09 to 0.16. This highlights the superior accuracy and precision of
our proposed method, consistently attaining lower NRMSE values.
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Figure 8. Localization NRMSE (γ = 3, σ = 4, and m = 4).
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4.2.7. Discussion

As presented above, we aim through extensive simulations to show the efficiency of
our approach by achieving low errors in estimating inter-node distances in a WSN, as well
as its stability when varying different propagation parameters in conditions simulating a
realistic model. Moreover, our technique outperforms the benchmark anchor-free approach
in the same propagation models and same assumptions.

Hence, our anchor-free technique relies on using the contextual network information
consisting of connectivity, network density, and node number to overcome any variation in
the WSN deployment environment. In other words, our technique adjusts and adapts the
estimation of the main unknown parameters, ˆ̄R and ˆ̄γ, by using derived equation functions of
propagation model parameters as well as deployed network parameters. After that, ˆ̄R and ˆ̄γ
are used in estimating the inter-node distance based on the received power model, allowing
us to accurately find the relation between distance and received power without using any
extra device or known nodes. Then, the nodes are localized based on the estimated inter-node
distances. This will drastically decrease the cost of the WSN since no anchor nodes are needed
and the aim is to achieve a relative positioning in some WSN applications.

5. Conclusions and Future Work

In this paper, we present an anchor-free localization technique in 2D WSN. Analytical
expressions for the average communication range, PLE value, and inter-node distances are
derived. The introduction of the CRSSA in this article marks a substantial advancement in
wireless sensor networks (WSNs), showcasing a novel anchor-free localization technique
that leverages RSS and contextual connectivity. This approach sets a new standard in
localization accuracy within WSNs, highlighting the study’s innovative edge and techni-
cal proficiency. The study’s robust theoretical framework and comprehensive simulative
evaluations are particularly noteworthy, demonstrating the method’s effectiveness and su-
periority in precision compared to existing localization methods like EAFLA. Additionally,
the anchor-free nature of the CRSSA emerges as a pivotal development, offering enhanced
flexibility and cost-effectiveness in sensor network deployments, which are crucial in the
evolving realm of wireless communications.

The potential of the CRSSA in the field of WSNs is underscored by its adaptability and
economic efficiency. Future research avenues, such as addressing real-time computational
efficiency and undertaking experimental validations in diverse real-world settings, will
further cement its practicality and application scope. Integrating the CRSSA with emerging
technologies and considering dynamic environments where node mobility is a factor will
expand its utility and relevance.

This study, therefore, not only provides a significant contribution to WSN localization
techniques but also opens up exciting possibilities for future innovation and practical
applications, setting a new benchmark in the field.
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