
Citation: Wang, H.; Deng, K.; Zhong,

G.; Duan, Y.; Yin, M.; Meng, F.; Wang,

Y. Optimization of Internet of Things

Remote Desktop Protocol for

Low-Bandwidth Environments Using

Convolutional Neural Networks.

Sensors 2024, 24, 1208. https://

doi.org/10.3390/s24041208

Academic Editor: Matteo Anedda

Received: 27 December 2023

Revised: 1 February 2024

Accepted: 5 February 2024

Published: 14 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimization of Internet of Things Remote Desktop Protocol for
Low-Bandwidth Environments Using Convolutional
Neural Networks
Hejun Wang, Kai Deng, Guoxin Zhong, Yubing Duan, Mingyong Yin, Fanzhi Meng and Yulong Wang *

Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, China;
wanghejun1995@gmail.com (H.W.); dengkai@caep.cn (K.D.); zhoguoxin@126.com (G.Z.); duanyb@caep.cn (Y.D.);
yinmy@caep.cn (M.Y.); mengfz@caep.cn (F.M.)
* Correspondence: wangyulong@caep.cn

Abstract: This paper discusses optimizing desktop image quality and bandwidth consumption in
remote IoT GUI desktop scenarios. Remote desktop tools, which are crucial for work efficiency,
typically employ image compression techniques to manage bandwidth. Although JPEG is widely
used for its efficiency in eliminating redundancy, it can introduce quality loss with increased compres-
sion. Recently, deep learning-based compression techniques have emerged, challenging traditional
methods like JPEG. This study introduces an optimized RFB (Remote Frame Buffer) protocol based on
a convolutional neural network (CNN) image compression algorithm, focusing on human visual per-
ception in desktop image processing. The improved RFB protocol proposed in this paper, compared
to the unoptimized RFB protocol, can save 30–80% of bandwidth consumption and enhances remote
desktop image quality, as evidenced by improved PSNR and MS-SSIM values between the remote
desktop image and the original image, thus providing superior desktop image transmission quality.

Keywords: Remote Frame Buffer protocol; IoT remote desktop; virtual network console; image
compression

1. Introduction

Remote desktops, which are essential in various sectors such as cloud computing
and wireless sensor networks [1], face challenges with the growth of display resolutions.
For instance, a 4K resolution desktop image, uncompressed, demands about 23.73 MB per
frame. At 60 Hz, this equates to a bandwidth of roughly 1.39 GB/s. Such high bandwidth
consumption can degrade user experience. VNC (Virtual Network Console), a popular
remote desktop tool, uses the RFB (Remote Frame Buffer) protocol with its tight encoding
mode employing JPEG for image compression. This approach conserves bandwidth.
However, JPEG’s fixed parameters in its discrete cosine transform may not always suit the
image’s features. Moreover, its block processing can introduce block effects and artifacts.

Some researchers have proposed different solutions for desktop image processing
methods in remote desktop application scenarios. Lin et al. proposed a composite image
compression algorithm specifically for remote desktop image transmission [2]. This al-
gorithm uses a method similar to the block partitioning of desktop images in the JPEG
compression algorithm. On this basis, the algorithm divides the text and graphics in the
blocks and uses different compression methods for them than for images. For text and
graphics, the color values can be indexed and compressed based on the index for text and
graphics areas, while for areas with complex color information such as images, the JPEG
compression algorithm is used for compression. However, this method still does not solve
the shadow and blur problems caused by the JPEG compression algorithm for desktop im-
ages under low-quality parameters. Wang et al. proposed a composite image compression
method and joint coding (UC) based on several effective text/graphics and natural image

Sensors 2024, 24, 1208. https://doi.org/10.3390/s24041208 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041208
https://doi.org/10.3390/s24041208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8148-3099
https://doi.org/10.3390/s24041208
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041208?type=check_update&version=1

Sensors 2024, 24, 1208 2 of 18

compression algorithms [3,4]. This method mainly uses lossy intra-frame hybrid coding
tools or their variants to compress natural images, while for text/graphics, it mainly uses
dictionary entropy coding, run-length coding (RLE) in the RFB protocol, Hextile in the RFB
protocol, and PNG and other encoding tools as candidates for text/graphics compression.
By appropriately combining these lossless tools with intra-frame hybrid coding, high com-
pression performance is achieved for the text/graphics part of the composite image. This
method uses an optimizer based on rate–distortion cost to separate natural images and
text/graphics, and finally selects lossy and lossless coding tools for encoding, respectively.
However, this desktop image coding scheme still has some drawbacks. Firstly, the image
to be encoded needs to be divided into small pixel blocks. Secondly, iterative selection is
required for different block coding, which may affect the real-time performance of image
coding. Lastly, the support for high-resolution images is not good enough, which cannot
adapt well to the current era of high-resolution desktop images.

Several researchers have optimized desktop image coding methods for specific re-
mote desktop usage scenarios. Sazawa et al. proposed a desktop image coding scheme
for engineering applications such as 2D-CAD and CAE: Remote Virtual Environment
Computing (RVEC) [5]. RVEC combines movie compression and compression algorithms
with small static image loss, which greatly reduces the bandwidth of image transmission
without compromising the acceptable engineering standards. In addition, RVEC uses a
new lossless compression algorithm, the graphic compression algorithm, to compress static
images applied to graphics. The graphic compression algorithm uses vector features in
the displayed image to obtain better compression ratios without affecting the compression
speed. Shimada et al. later proposed a high-compression method for graphic images in
3D-CAD, CAE software, and other engineering applications based on Sazawa’s research [6].
This method uses the characteristic that the pixel values in artificial images do not change
locally and extracts constant gradients through frequency transformation, fully utilizing
the characteristics of graphic images. It provides reasonable actual compression time,
compression size, and image quality for engineering applications in cloud environments.
However, although the image coding scheme proposed by Sazawa, Shimada, and others
performs well in the field of engineering applications, it is not universal and therefore
difficult to apply to general remote desktop usage scenarios.

Deep learning’s advancements [7] offer promising applications in image processing.
Its ability to discern image features can reduce data redundancy, optimizing bandwidth
for remote desktop transmission. Given that users focus on specific desktop areas, deep
learning can enhance the reconstruction of text and graphics, improving visual experience.

Deep learning-based image compression methods have been proposed, showing
performance approaching or surpassing traditional methods [8]. This potential paves
the way for its application in remote desktop image transmission. This paper focuses on
constructing an algorithm that is more suitable for remote desktops, replicating the method
proposed by Ballé et al. [9], with Mean Squared Error (MSE) as the optimization target.
Despite optimizing Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) of
images [10], this method presents some limitations [11]. Considering the importance of
users’ subjective perception of desktop image quality in performance evaluation, this paper
introduces Multi-Scale Structural Similarity (MS-SSIM) as an additional optimization target.
Moreover, an adaptive attention mechanism module is introduced, combining spatial
and channel attention, which serves as an image encoder enhancement module, applying
attention weights to the latent representations of images [12–15]. Subsequently, this paper
improves the existing RFB protocol based on this image compression algorithm, introducing
a novel encoding method. This approach employs a convolutional neural network-based
image compression technique as its core method for encoding images. Experimental results
indicate that the enhanced RFB protocol proposed in this paper can reduce the bandwidth
consumption for remote desktop usage by 30–80% without compromising the adequacy of
remote desktop image transmission.

Sensors 2024, 24, 1208 3 of 18

Compared to the preliminary conference version of the paper [16], this work has
expanded on it by designing protocols based on the input–output characteristics of the CNN
model to enable its application in remote desktops. In this work, several different processing
approaches are introduced to maximize the improvement in image transmission efficiency
of the optimized RFB protocol, while ensuring a balance between bandwidth consumption
and hardware performance. Ultimately, this paper demonstrates the effectiveness of our
proposed optimized RFB protocol—significantly reducing bandwidth consumption in
remote desktops while enhancing the quality of transmitted desktop images.

The remainder of this paper is organized as follows: Section 2 reviews related work,
while Section 3 analyzes the differences between various image quality assessment methods.
Section 4 introduces the image compression techniques employed in the improved RFB
protocol proposed in this paper. Section 5 details the proposed improved RFB protocol.
Section 6 presents the experimental results and analysis, and Section 7 offers conclusions.

2. Related Works

In the domain of remote desktop technologies, significant progress has been made in
optimizing the performance and efficiency of transmission protocols, particularly focusing
on encoding strategies and virtualization enhancements. A notable contribution in this field
is the work by Halim [17], which presents a detailed framework for evaluating the encoding
performance in remote desktop systems, with a specific focus on the TigerVNC protocol.
This analysis is crucial as it provides insights into the optimization of image transmission,
which is a key factor in remote desktop interactions. Complementing this, the study by
Li et al. [18] investigates the enhancement of service transportation in cloud-based virtual
desktop infrastructures. Their research sheds light on the integral role of video encoding
and compression algorithms in improving the overall efficiency and performance of virtual
desktop systems. Both studies collectively offer a comprehensive understanding of the
current advancements and challenges in remote desktop protocol technologies, underlining
the importance of continuous innovation in this rapidly evolving field.

Most image compression methods based on deep learning are lossy image com-
pression methods [19]. Due to the robust modeling capabilities of deep learning, these
algorithms have gradually approached or even surpassed the performance of traditional
image compression methods. Currently, the primary deep learning-based image com-
pression techniques involve the integration of convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and generative adversarial networks (GANs). CNNs,
in particular, have seen rapid development in image processing, excelling in tasks such as
object detection, image classification, and semantic segmentation. The sparse connectivity
and parameter sharing properties of CNN convolution operations have demonstrated
advantages in image compression.

In 2016, Ballé et al. [20] introduced a parametric nonlinear model for Gaussianizing
data derived from natural images. Their primary contribution was the development of a
normalization layer—the Generalized Divisive Normalization (GDN) layer—optimized
for image compression and reconstruction tasks. This layer effectively reduces random
noise introduced by traditional Batch Normalization (BN) layers. Later, Ballé et al. [21]
proposed an image compression technique based on nonlinear transformation and uniform
quantization. This approach leverages a CNN to extract latent feature representations
from images and implements local gain via the previously proposed GDN layer to reduce
additive noise. This marked the first integration of CNNs with image compression tech-
niques, establishing a foundation for the development of end-to-end CNN-based image
compression methods. Subsequently, Ballé et al. [9] introduced an end-to-end image com-
pression model that integrates hyperprior encoders with decoders. This model effectively
captures spatial dependencies within latent feature representations and eliminates redun-
dancy via Gaussian distribution modeling, resulting in lower bit-rate image compression.
Jiang et al. [22] introduced an end-to-end CNN-based image compression encoder–decoder.
This approach utilizes a neural network in conjunction with traditional image process-

Sensors 2024, 24, 1208 4 of 18

ing techniques to process images. Initially, a CNN-based image encoder is employed to
extract a compact representation of the image, effectively shrinking the original image
along its height and width dimensions. Subsequently, traditional image compression meth-
ods (e.g., JPEG or BPG) are utilized to encode this compact representation of the image.
At the decoding stage, traditional image compression encoding is first applied to restore
the compact representation of the image. Then, a CNN-based image decoder is used to
scale up this compact representation and restore it back into its original form as an image.
Zhao et al. [23] argued that integrating traditional forms of image compression may not be
optimal for deep learning-based approaches to this task. As such, they proposed a method
that employs a virtual encoder to connect the encoding and decoding stages during training.
This virtual encoder—also based on CNNs—can directly map compact representations
onto image code streams transmitted to the decoding stage via nonlinear mapping. This
approach effectively links neural network-based encoding and decoding stages and can
be integrated with traditional encoders to produce high-quality reconstructed images. It
can also be extended to other end-to-end CNN-based image compression architectures.
To enhance the quality of reconstructed images, Liu et al. [22] introduced a decoding stage
enhancement module capable of learning residual information between reconstructed and
original images via neural networks. By leveraging this residual information to improve
decoding performance, the module further enhances the quality of images reconstructed
by decoders.

3. Algorithm for Remote Desktop Image and Compression Quality Evaluation

Image compression algorithms are typically evaluated by applying image quality
standards to measure the extent of quality degradation after compression. These evaluation
techniques can be categorized into subjective and objective assessments. Subjective assess-
ment involves viewer-based scoring, wherein several evaluators grade the reconstructed
image against the original one, with the mean score serving as the final evaluation. In con-
trast, objective assessment calculates the differences between images using mathematical
models. Although subjective assessments are time-consuming and affected by numerous
factors, objective assessments offer automated scoring that is not influenced by viewer bias.

Common objective image quality metrics include Peak Signal-to-Noise Ratio (PSNR),
which is widely used in the field of image and video processing. PSNR, calculated conve-
niently through Mean Squared Error (MSE), quantifies image distortion. The computation
equation for MSE is presented in Equation (1), and substituting it into Equation (2) gives
the PSNR value for an image, where n represents the number of pixels in the image.

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2 (1)

PSNR = 10× log10(
(2n − 1)2

MSE
) (2)

In optimizing the quality of reconstructed desktop images, the Mean Squared Error
(MSE) method presents certain limitations. MSE, offering equal weight to all pixels, may not
aptly assess reconstructed desktop images. Even with identical MSEs, perceptual differences
between images can be significant, indicating that the Peak Signal-to-Noise Ratio (PSNR)
derived from MSE may not accurately represent human perception. When viewing desktop
images, the human eye often concentrates on specific work areas and is more sensitive to
noise in these sections than in other areas. Furthermore, the human eye has greater sensitivity
to luminance than color, a facet overlooked when merely calculating MSE between the
reconstructed image and the original. In contrast, the Structural Similarity Index (SSIM)
estimates luminance similarity, contrast, and structure similarity between two images by

Sensors 2024, 24, 1208 5 of 18

calculating their means, variance, and covariance. Equations (3), (4) and (5), respectively,
represent the calculations for luminance similarity, contrast, and structure similarity.

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(3)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(4)

s(x, y) =
σxy + c3

σxσy + c3
(5)

Here, C1 = (K1L)2, C2 = (K2L)2, C3 = C2
2 with K1 = 0.01, K2 = 0.03, and L = 2B − 1,

where B denotes the pixel depth of the image. The structural similarity between the
distorted and original images can be calculated by substituting Equations (3)–(5) into
Equation (6), with α = β = γ = 1. Optimal performance of structural similarity requires
specific configuration. In contrast, Multi-Scale Structural Similarity (MS-SSIM) calculates
the degree of structural similarity at different scales between the distorted and original
images through multiple low-pass filtering and downsampling processes, maintaining
good performance across different image resolutions. Equation (7) describes the calculation
of structural similarity at multiple scales, where αj = β j = γj and ∑M

j=1 γj = 1.

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (6)

This study aims to optimize the performance of end-to-end image compression models
using Mean Squared Error (MSE) combined with Multi-Scale Structural Similarity (MS-
SSIM) as the loss function. By disregarding the quality of monotonic or non-working
areas that are less relevant to human perception, we ensure a more complete preservation
of image information in the working area of the reconstructed desktop image, thereby
enhancing the comprehensive performance of the proposed method in the field of desktop
image compression.

SSIM(x, y) = [lM(x, y)]α M
M

∏
j=1

[
cj(x, y)

]β j
[
sj(x, y)

]γj (7)

4. Convolutional Neural Network-Based Image Compression Codec
4.1. Overview

As depicted in Figure 1, the proposed model includes an image encoder, image
decoder, and a hyperprior encoder–decoder. The input digital image x is transformed into
latent representation y via the encoding network and then quantized to ŷ by the quantizer
Q. In the decoding stage, ŷ is used to reconstruct image x̂. The hyperprior encoder–
decoder extracts edge information from the latent representation, reducing redundancy
and facilitating the entropy coding process, thereby achieving a shorter coding length and
higher compression ratio.

The encoder, primarily comprising a downsampling module and a spatial channel at-
tention module, extracts latent feature representation. Under the attention module, the final
latent feature representation y is obtained with applied channel and spatial attention.

The downsampling module consists of four convolutional layers and a Generalized
Divisive Normalization (GDN) layer between each pair. It extracts the latent feature
representation by downsampling the input image x. If a higher compression rate is re-
quired at some quality loss, 128 convolution kernels per convolutional layer are sufficient.
For higher-quality reconstructed images, 192 convolution kernels per layer are needed.

Sensors 2024, 24, 1208 6 of 18

Figure 1. The architecture of proposed end-to-end image compression model.

Between each pair of convolutional layers, a normalization layer, the GDN, is applied.
While Batch Normalization (BN) is typically used in deep learning-based image processing
tasks, in this study, the advantages of BN become disadvantages. Hence, BN is unsuitable
for this application. Conversely, the GDN layer, which is more appropriate for image
reconstruction, eliminates the additive noise brought by BN. During training, the GDN layer
normalizes the feature map through unsupervised learning, performing Gaussianization
on the symbolic data. The GDN layer is expressed as in Equations (2)–(8).

yi =
xi

(βi + ∑i γi × x2
i)

1
2

(8)

In the quantization stage, this paper employs Equations (9) and (10) to quantize
the latent representation y into ŷ. This approach adds uniform additive noise to the
latent feature representation instead of directly truncating the fractional part, ensuring
quantization of the feature representation while preserving gradients.

ŷ = y + ∆y (9)

∆y ∼ µ(−0.5, 0.5) (10)

The decoder utilizes quantized latent features as input, reconstructing the image
through a number of transposed convolutional layers mirroring the encoder. Most layers
match the encoder’s convolutional kernel size, quantity, and stride: 128 5 × 5 kernels with
a stride of 2 under low-quality encoding, and 192 5 × 5 kernels with the same stride under
high-quality conditions. An exception is the final layer, utilizing three 5 × 5 kernels to
reconstruct the image’s three color channels. Between every two transposed convolutional
layers in the decoder, an “Inversed Generalized Divisive Normalization” (IGDN) layer is
inserted to reverse the GDN layer’s output, assisting image reconstruction. The calculation
process for the IGDN layer aligns with Equation (11).

yi = xi × (βi + ∑
i

γi × x2
i)

1
2 (11)

The hyperprior encoder ha extracts edge information from latent features y, yielding
edge representation z. This is quantized to ẑ, aiding encoding of y. The hyperprior
decoder hs uses ẑ to estimate the standard deviation distribution σ̂ of ŷ and encode it.
ẑ, which is also needed at the decoding stage for σ̂ estimation and entropy decoding,
must be compressed and transmitted from the encoder to the decoder. Edge information
is extracted from y via a convolutional layer and a nonlinear activation function in ha,
while hs uses a transposed convolution and a nonlinear activation function to estimate

Sensors 2024, 24, 1208 7 of 18

σ̂. The standard deviation σ̂ models ŷ using a Gaussian distribution (Equation (12)).
Substituting Equation (12) and σ̂ into Equation (13) yields the probability distribution of
any symbol in ŷ. During model training iterations, symbols with minimal impact on image
quality approach zero, increasing their probability and shortening the encoding length
during entropy coding, thus removing redundancies.

N(x|µ, σ) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
(12)

pŷi (ŷi|σ̂i) =
∫ ŷi+

1
2

ŷi− 1
2

N(ŷi|0, σ̂i)dy (13)

4.2. Attention Mechanism

This paper introduces the Convolutional Block Attention Module (CBAM) [24], which
is a mechanism that combines spatial and channel attention to adaptively learn the impor-
tance of different channels and spatial positions within feature maps. By weighting feature
maps in multiple dimensions, it achieves improved compression and reconstruction. Its
detailed structure is presented in Figure 2.

Figure 2. Attention mechanism.

For channel attention, CBAM initially extracts weights from different channels within
feature maps through max pooling and average pooling. Subsequently, it applies two fully
connected layers to perform nonlinear transformations on these pooled results. To obtain
the final channel weights, it first sums the output from the fully connected layers and then
applies another nonlinear transformation. The input to this operation is Fcin ∈ RC×H×W ,
with the computation process as shown in Equations (14) and (15).

Mc(F) = σ(FC(AvgPool(F)) + FC(MaxPool(F))) (14)

FC(F) = W1(σ(W0(F))) (15)

In terms of spatial attention, the input feature map undergoes max pooling and average
pooling along the channel axis, thereby converting the input dimensions from Fsin ∈ RC×H×W

to 2× H ×W. A convolution operation is then performed on this dimensionally trans-
formed feature map to extract weights from different spaces, as shown in Equation (16).

Sensors 2024, 24, 1208 8 of 18

Finally, the effects of channel attention and spatial attention are collectively applied to the
feature map, as described by Equation (17).

Ms(F) = σ(Conv(θ, [AvgPool(F); MaxPool(F)])) (16)

F′ = Ms(Mc(F)⊗ F)⊗ (Mc(F)⊗ F) (17)

4.3. Loss Function

The end-to-end image compression model balances distortion and bitrate according
to Equation (18), where λ—analogous to the quality parameter QP in JPEG—controls
reconstructed image quality and storage space requirements. The distortion function,
d(·), quantifies the distortion between the input and reconstructed image (Equation (19)),
considering both MS-SSIM (LSSIM, Equation (20)) and L2 error (LMSE, Equation (21))
with parameter α balancing attention to these aspects. The rate estimation function, H(·),
includes the bitrates required for encoding the feature representation ŷ and the auxiliary
information ẑ (Equations (22) and (23)). The probability distribution function for ẑ and its
cumulative distribution function are given in Equations (24)–(28), with parameters a, h,
and b following a normal distribution N(0, 0.01), and K is set to 4 in this study.

L = λD + R = λd(x̂, x) + H(ŷ) + H(ẑ) (18)

d(x̂, x) = α× LSSIM(x̂, x) + (1− α)× LMSE(x̂, x) (19)

LSSIM = 1− SSIM(x̂, x) (20)

LMSE =
1
N

N

∑
i=1
||x̂i − xi||2 (21)

H(ŷ) = −∑
i

log2 Pŷ(ŷ|ẑ) (22)

H(ẑ) = −∑
i

log2 Pẑ(ẑ) (23)

pẑi (ẑi) = BitEstimator(ẑi +
1
2
)− BitEstimator(ẑi −

1
2
) (24)

BitEstimator(x) = fK ◦ fK−1 ◦ . . . ◦ f1 = fK(fK−1(. . . f1(x))) (25)

fK(x) = σ(x⊙ ζ(h)⊕ b) (26)

fk(x) = gk(x⊙ ζ(h)⊕ b) (27)

gk(x) = x⊕ tanh(x)⊙ tanh(a) (28)

5. Optimized RFB Protocol
5.1. The Expansion of the RFB Protocol

The open-source version of the RFB protocol currently supports nine different image
encoding and transmission methods, as detailed in Table 1. Raw encoding transmits the
original pixel data of the requested update area directly, scanning from left to right and top
to bottom. Building on Raw, CopyRect sends the positional data of areas on the desktop that
have changed in location but not content. CoRRE, a variant of RRE, inherits the characteris-
tics of RRE and is capable of encoding and transmitting foreground and background colors
separately, making it particularly effective for screens with monochromatic colors. ZRLE,
zlib, and Tight, on the other hand, employ various compression algorithms to compress
data for transmission or compress the original desktop images before transmission. We
have expanded the RFB protocol based on its open-source version 3.8, registering a new
method of desktop image transmission encoding. This encoding, assigned the number 24,
is referred to in this paper as DeepTight encoding.

Sensors 2024, 24, 1208 9 of 18

Table 1. Desktop image encoding methods in the RFB protocol.

Code Name

0 Raw
1 CopyRect
2 RRE
4 CoRRE
5 Hextile
16 ZRLE
6 zlib
7 Tight
8 zlibhex

5.2. Research on Encoding Schemes

The RFB protocol updates the screen by only refreshing the parts that have changed,
dividing these altered sections into rectangles of varying sizes for encoded transmission.
The encoding scheme for the pixels within these sub-rectangles varies depending on the
encoding method and pixel arrangement. This paper reviews the implementation of existing
encoding schemes in the RFB protocol and designs the DeepTight encoding, which is tailored
to the characteristics of image compression and decompression codecs based on deep learning.

5.2.1. Partitioning of Update Regions

To balance the data volume of single encoded images with the number of encoding
iterations for the rectangles pending update, this study imposes restrictions on the size
of each encoding area. The specific rules are as follows: the height or width of a single
area to be encoded must not exceed 480 pixels, and the total number of pixels in a single
rectangular area to be encoded should not exceed 320 pixels by 320 pixels. The algorithm
for dividing sub-rectangles is as follows (Algorithm 1):

Algorithm 1 Update Region Dividing

Require: The left-top pixel location (le f t, top) and the right-bottom pixel location
(right, bottom) of an update region;

Ensure: A queue of sub-rectangles;
1: subRectangles← queue()
2: w← right− le f t
3: h← bottom− top
4: if w ≤ 480 and h ≤ 480 and w× h ≤ 320× 320 then
5: subRectangles.push(region)
6: return subRectangles
7: else
8: xnum ← round((w + 320− 1)/320)
9: ynum ← round((h + 320− 1)/320)

10: xstep ← round(w/xnum)
11: ystep ← round(h/ynum)
12: for j = 0 to ynum do
13: topsubrectangle ← top + j× ystep
14: bottomsubrectangle ← (j = ynum − 1)?bottom : (topsubrectangle + ystep)
15: for i = 0 to xnum do
16: le f tsubrectangle ← le f t + i× xstep
17: rightsubrectangle ← (i = xnum − 1)?right : (le f tsubrectangle + xstep)
18: subRectangles.push(subrectangle)
19: end for
20: end for
21: return subRectangles
22: end if

Sensors 2024, 24, 1208 10 of 18

5.2.2. Identification of Monochromatic Update Regions and Handling of Minor
Update Areas

Figure 3 illustrates two real-world scenarios of user interface usage: web browsing and
document editing. As shown in the figure, apart from the areas displaying web pages and
document content, there is a significant amount of blank space, which constitutes monochro-
matic regions. In most current remote desktop usage scenarios, these monochromatic areas
occupy a substantial proportion.

(a) web browsing scenario (b) document editing scenario

Figure 3. Different usage scenarios of remote desktops.

The redefined areas awaiting updates often contain several monochromatic sub-
rectangles. Correctly identifying and processing these monochromatic sub-rectangles,
particularly the efficient handling of such areas, can enable the client to bypass the de-
coding step and directly fill these regions. This approach significantly reduces data trans-
mission for remote desktops and accelerates the encoding and decoding speed of desktop
images between the server and the client. The algorithm for identifying monochromatic
sub-rectangles in this study is as follows (Algorithm 2):

Algorithm 2 Solid Rectangle Recognizing

Require: The pixels of a rectangle with its left-top pixel location (le f t, top) and its right-
bottom pixel location (right, bottom);

Ensure: If a rectangle is a solid rectangle;
1: pix ← rectangle[le f t, top]
2: for j← top to bottom do
3: for i← le f t to right do
4: if pix ̸= rectangle[i, j] then
5: return False
6: end if
7: end for
8: end for
9: return True

In addition, this study also addresses the potential presence of tiny, non-monochromatic
areas awaiting update. The DeepTight encoding considers any update area with a total
pixel count less than 100 as a minor update area. If this area is not monochromatic, it
transmits all the pixel values within this small area directly, without encoding them as an
image. The purpose of this design is to reduce the computational resource consumption on
both the server and client, thereby lowering the performance load during the operation of
remote desktop software.

5.2.3. Expansion of Areas Awaiting Update

Before encoding the partitioned sub-rectangles awaiting update, the DeepTight en-
coding expands their edges to fit the input size required by deep learning-based image

Sensors 2024, 24, 1208 11 of 18

compression encoders. The specific expansion rules are as follows: the width of the sub-
rectangle is extended to the right to be a multiple of 16, using the rightmost column of pixels
from the unexpanded sub-rectangle as the fill pixels. Then, the length of the sub-rectangle
is increased downwards to be a multiple of 16, using the bottom row of pixels from the
right-extended sub-rectangle as the fill pixels for expansion. The algorithm for expanding
the update areas is as follows (Algorithm 3):

Algorithm 3 Rectangle Expansion

Require: The pixels of an unexpanded rectangle ur with its left-top pixel location (le f t, top)
and its right-bottom pixel location (right, bottom);

Ensure: An expanded rectangle er;
1: W ← round((right− le f t + 16− 1)/16)× 16
2: H ← round((bottom− top + 16− 1)/16)× 16
3: for j← top to (top + H) do
4: for i← le f t to (le f t + W) do
5: if j < top then
6: if i < right then
7: er(i, j)← ur(i, j)
8: else
9: er(i, j)← ur(right, j)

10: end if
11: else
12: er(i, j)← ur(i, bottom)
13: end if
14: end for
15: end for
16: return er

5.2.4. Explanation of Encoded Data Format

The Deep encoding uses 8 bytes, or 64 bits, to describe the position information of a
specific area awaiting update. This includes 32 bits to describe the position of the top-left
pixel of the update area and another 32 bits for the bottom-right pixel position. Additionally,
4 bytes, or 32 bits, are required to describe the encoding method used for the update area.
The header format for the update area is as depicted in Table 2, where the encoding format
number for Deep encoding is designated as 24.

Table 2. Header of an update-rectangle.

Length (Bytes) Type Variable Name Description

2 Unsigned Short x X-coordinate of the update area
2 Unsigned Short y Y-coordinate of the update area
2 Unsigned Short w Width of the update area
2 Unsigned Short h Height of the update area
4 Unsigned Int encoding Encoding format description

After detailing the position information and encoding method of the area awaiting
update, Deep encoding requires further elaboration on the encoding of the update area
based on its own specifics. Therefore, following the header information of the update area,
there is an additional header for Deep encoding to facilitate the client’s processing of Deep
encoded content. Table 3 lists the header format for Deep encoding.

Following the header information for Deep encoding is the area awaiting update
that will be processed with Deep encoding. The client can correctly receive the data for
the update area based on the amount of entropy-encoded data specified in the header.
The verification of the received Deep encoded update area is performed by using the
checksum and the data volume before entropy encoding, as indicated in the header. This

Sensors 2024, 24, 1208 12 of 18

allows for the correct decompression of the update area, after which the decompressed
data are passed to the image decoder for decoding and filling the sub-rectangles.

Table 3. Header of Deep encoding.

Length (Bytes) Type Variable Name Description

4 Unsigned Int block_num Number of sub-rectangles in the area
4 Unsigned Int data_size Compressed data size (in bytes)
4 Unsigned Int origin_size Original data size (in bytes) before compression
4 Unsigned Int checksum Checksum

As Deep encoding involves the re-partitioning of areas awaiting update, each subdi-
vided sub-rectangle requires its own header information to record relevant details before
and after encoding. Table 4 lists the header information for a single sub-rectangle.

Table 4. Header of a sub-rectangle.

Length (Bytes) Type Variable Name Description

2 Unsigned Short x Sub-rectangle position
2 Unsigned Short y Sub-rectangle position
2 Unsigned Short height Sub-rectangle height
2 Unsigned Short width Sub-rectangle width
2 Unsigned Short padded_height Height of the sub-rectangle after padding
2 Unsigned Short padded_width Width of the sub-rectangle after padding
4 Unsigned Int data_size Size of the encoded data (in bytes)

6. Experiments and Analysis

In this paper, the remote desktop clients used in the experiments were deployed on
two Windows 10 computers with x86 architecture, equipped with Intel i9-10900 CPUs
and 64GB of memory. This experiment analyzed bandwidth-time curves for three RFB
protocol encoding methods: DeepTight encoding based on deep image compression, Tight
encoding using the JPEG image compression algorithm, and the 8-bit mode provided by
VNC. The Figure 4 show that, in the same scenarios, the DeepTight encoding proposed in
this paper consumed less network bandwidth than the other two low-bandwidth encoding
methods available in VNC for most of the time. Table 5 lists detailed bandwidth data
for these three encoding methods in scenarios such as document editing, web browsing,
slideshow presentation, and desktop application usage. The data reveals that, across all
four scenarios, DeepTight encoding uses less average and peak bandwidth compared to
the other two methods. Specifically, compared to Tight encoding with JPEG compression,
DeepTight encoding saved 34.08%, 84.60%, 72.96%, and 83.89% of average bandwidth and
58.42%, 81.68%, 83.19%, and 80.78% of peak bandwidth in the four scenarios, respectively.
In comparison to the 8-bit color depth method, DeepTight encoding saved 29.80%, 66.67%,
32.18%, and 77.99% of average bandwidth and 44.27%, 67.03%, 39.64%, and 78.73% of peak
bandwidth in each respective scenario. Average bandwidth represents the network traffic
consumption of a remote desktop protocol. Generally, the lower the average bandwidth
required by a remote desktop protocol over a period of time, the less the total network traffic
consumption. Peak bandwidth determines the maximum network bandwidth demand
of the remote desktop protocol. The lower the peak bandwidth required by the remote
desktop protocol, the lower the network bandwidth needed for smooth operation. The
data shows that, in terms of both network traffic and bandwidth, DeepTight requires the
least, making it more adaptable to low-bandwidth environments compared to the other
two methods.

Sensors 2024, 24, 1208 13 of 18

(a) document editing scenario (b) web browsing scenario

(c) slideshow presentation scenario (d) desktop application usage scenario

Figure 4. Bandwidth–time curves in different scenarios.

Table 5. The performance data of different encodings in different scenarios.

Encoding Method Average Bandwidth (KB/s) Peak Bandwidth (KB/s) Usage Scenario

DeepTight encoding 4.97 38.61 Document editing
Tight encoding 7.54 92.85 Document editing

8 bit color mode 7.08 69.28 Document editing
DeepTight encoding 17.48 87.18 Web browsing

Tight encoding 113.50 475.80 Web browsing
8 bit color mode 52.47 264.43 Web browsing

DeepTight encoding 10.62 47.45 Slideshow presentation
Tight encoding 39.27 282.27 Slideshow presentation

8 bit color mode 15.66 78.61 Slideshow presentation
DeepTight encoding 17.65 84.61 Using desktop applications

Tight encoding 109.53 440.18 Using desktop applications
8 bit color mode 80.19 397.81 Using desktop applications

Figures 5–8 each demonstrate the reconstructed desktop images and their level of
distortion relative to the original server-side desktop images under different encoding
schemes in four scenarios: document editing, web browsing, slideshow presentation,
and desktop application usage. Table 6 provides a detailed display of the PSNR and MS-
SSIM scores for different encodings in four scenarios. The data reveal that in all these
scenarios, DeepTight encoding surpasses the other two encoding methods in terms of MS-
SSIM scores for reconstructed desktop images. In PSNR comparison, however, DeepTight
encoding outperforms the others only in the slideshow presentation scenario, while in
the remaining scenarios, the scores for DeepTight encoding’s reconstructed images are
comparable to or slightly lower than those of the other two encoding methods. PSNR
represents the average difference between the reconstructed image and the original image.

Sensors 2024, 24, 1208 14 of 18

In the other three scenarios, there is a significant amount of whitespace in the desktop
images. DeepTight encoding’s restoration of these whitespace areas is not as effective as
the other two methods. However, these whitespace areas are non-working zones that users
generally do not focus on. Minor distortions in these areas are unlikely to impact the users’
actual visual experience. From the graphical analysis, it can be observed that compared to
Tight encoding, DeepTight encoding restores desktop images with greater color continuity
and smoothness. In contrast to the 8 Bit mode, DeepTight encoding achieves more accurate
color reproduction. Moreover, among all encoding methods, DeepTight encoding consumes
the least bandwidth, both in terms of average and peak usage.

Table 6. The PSNR and MS-SSIM of different encodings in different scenarios.

Scenario Encoding PSNR MS-SSIM

Document Editing DeepTight 26.9343 0.9906
Document Editing Tight 34.7194 0.9849
Document Editing 8 Bit mode 34.7262 0.9827

Web Surfing DeepTight 27.1035 0.9877
Web Surfing Tight 27.7353 0.9853
Web Surfing 8 Bit mode 30.1149 0.9846
Power Point DeepTight 31.3474 0.9866
Power Point Tight 30.4862 0.9676
Power Point 8 Bit mode 29.5967 0.9662

Desktop Application DeepTight 28.8299 0.9878
Desktop Application Tight 30.2307 0.9864
Desktop Application 8 Bit mode 34.7262 0.9783

Additionally, in all four scenarios, compared to Tight encoding using the JPEG com-
pression algorithm, DeepTight encoding effectively reduces block artifacts and shadow
effects in the reconstructed desktop images. In contrast to encoding methods using 8-bit
color depth, DeepTight encoding more accurately restores the colors of the original server-
side desktop images and also reduces block artifacts resulting from lower pixel color depth.

(a) Origin (PSNR, MS-SSIM) (b) DeepTight encoding (26.9343, 0.9906)

(c) Tight encoding with JPEG (34.7194, 0.9849) (d) 8 Bit mode (34.7262, 0.9827)

Figure 5. The comparisons of desktop images in a document editing scenario.

Sensors 2024, 24, 1208 15 of 18

(a) Origin (PSNR, MS-SSIM) (b) DeepTight encoding (27.1035, 0.9877)

(c) Tight encoding with JPEG (27.7353, 0.9853) (d) 8 Bit mode (30.1149, 0.9846)

Figure 6. The comparisons of desktop images in a Web surfing scenario.

(a) Origin (PSNR, MS-SSIM) (b) DeepTight encoding (31.3474, 0.9866)

(c) Tight encoding with JPEG (30.4862, 0.9676) (d) 8 Bit mode (29.5967, 0.9662)

Figure 7. The comparisons of desktop images in a Microsoft PowerPoint scenario.

Sensors 2024, 24, 1208 16 of 18

(a) Origin (PSNR, MS-SSIM) (b) DeepTight encoding (28.8299, 0.9878)

(c) Tight encoding with JPEG (30.2307, 0.9864) (d) 8 Bit mode (34.7262, 0.9783)

Figure 8. The comparisons of desktop images in using a desktop application scenario.

7. Conclusions

This study advances convolutional neural networks, introducing an end-to-end model
for image compression and decompression with corresponding computational equations.
It also enhances the RFB protocol, a key component in VNC’s remote transmission, by in-
tegrating a novel scheme, Deep encoding, which is tailored for deep image compression
and decompression codecs. This innovation led to the development of a remote desktop
prototype using open-source VNC code based on the Deep encoding approach.

This paper details an image compression and decompression model fine-tuned for
optimal human perception of reconstructed image quality. It seamlessly integrates adap-
tive spatial and channel attention mechanisms, comprising an encoder, a decoder, and a
hyperprior codec. The encoder extracts latent image features, the decoder reconstructs
images from these features, and the hyperprior codec converts these features into Gaussian
form, aiding in achieving an improved rate–distortion equilibrium.

For optimization, the study employs Mean Squared Error (MSE) and Multi-Scale Struc-
tural Similarity (MS-SSIM) as combined metrics to assess image reconstruction distortion.
The findings reveal that this dual-metric approach not only boosts MS-SSIM performance
in desktop image reconstruction but also retains greater structural and textural fidelity
compared to MSE-only optimizations, which can smooth out important textural nuances.
This paper further introduces an attention mechanism within the model, targeting latent
feature representations across both channel and spatial dimensions, thereby enhancing
rate–distortion effectiveness. Testing shows that this addition elevates Peak Signal-to-Noise
Ratio (PSNR) performance while preserving MS-SSIM quality.

To adapt this model for the open-source VNC remote desktop, this paper introduces
Deep encoding—a fresh approach to remote desktop transmission encoding. This method,
focused on segmenting, identifying, and encoding diverse image feature-based update
areas, marks a significant refinement of the RFB protocol. The prototype, built on Deep en-
coding and VNC code, was evaluated against two low-bandwidth VNC encoding schemes,
demonstrating up to 84.60% average and 83.19% peak bandwidth savings. Its MS-SSIM

Sensors 2024, 24, 1208 17 of 18

performance surpasses all existing low-bandwidth image encoding methods in VNC. More-
over, images reconstructed with Deep encoding show markedly fewer block effects and
artifacts in low-bandwidth scenarios, substantially improving the user experience.

Author Contributions: Conceptualization, H.W.; Methodology, K.D.; Software, G.Z.; Validation, Y.D.;
Investigation, M.Y.; Resources, F.M.; Writing—review & editing, Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jayanto, N.; Kustija, J. Remote desktop system in IoT and HTML 5-based virtual laboratory for HMI (Human Machine Interface)

practicum and hydraulic simulation. Iop Conf. Ser. Mater. Sci. Eng. 2020, 830, 042052. [CrossRef]
2. Lin, T.; Hao, P. Compound image compression for real-time computer screen image transmission. IEEE Trans. Image Process. 2005,

14, 993–1005. [CrossRef] [PubMed]
3. Wang, S.; Lin, T. United coding method for compound image compression. Multimed. Tools Appl. 2014, 71, 1263–1282. [CrossRef]
4. Wang, S.; Lin, T. United coding for compound image compression. In Proceedings of the 2010 3rd International Congress on

Image and Signal Processing, Yantai, China, 16–18 October 2010; Volume 2, pp. 566–570.
5. Sazawa, S.; Hashima, M.; Sato, Y.; Horio, K.; Matsui, K. RVEC: Efficient remote desktop for the engineering CLOUD. In

Proceedings of the 2012 26th International Conference on Advanced Information Networking and Applications Workshops,
Fukuoka, Japan, 26–29 March 2012; pp. 1081–1088.

6. Shimada, D.; Hashima, M.; Sato, Y. Image Compression for Remote Desktop for Engineering Cloud. In Proceedings of the 2014
IEEE International Conference on Cloud Engineering, Boston, MA, USA, 11–14 March 2014; pp. 478–483.

7. Wang, Y.; Deng, K.; Meng, F.; Chen, Z.; Yin, M.; Yang, R. Branchy-TEE: Deep Learning Security Inference Acceleration Using
Trusted Execution Environment. Available online: https://ksiresearch.org/seke/seke23paper/paper131.pdf (accessed on
1 December 2023).

8. Mishra, D.; Singh, S.K.; Singh, R.K. Deep architectures for image compression: A critical review. Signal Process. 2022, 191, 108346.
[CrossRef]

9. Ballé, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. arXiv 2018,
arXiv:1802.01436.

10. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

11. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.

12. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Proceedings of the 28th Annual Conference on Neural
Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.

13. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

14. Bi, Q.; Qin, K.; Zhang, H.; Li, Z.; Xu, K. RADC-Net: A residual attention based convolution network for aerial scene classification.
Neurocomputing 2020, 377, 345–359. [CrossRef]

15. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.

16. Wang, H.; Deng, K.; Duan, Y.; Yin, M.; Wang, Y.; Meng, F. Adaptive CNN-Based Image Compression Model for Improved
Remote Desktop Experience. In Proceedings of the International Conference on Neural Information Processing, Changsha, China,
20–23 November 2023; Springer: Singapore, 2023; pp. 37–52.

17. Halim, A. Image Encoding Evaluation in Remote Desktop Systems: A Framework for Measuring the Encoding Performance
in TigerVNC. 2023. Available online: https://liu.diva-portal.org/smash/get/diva2:1823614/FULLTEXT02.pdf (accessed on
1 December 2023).

18. Li, F.; Guo, T.; Li, X.; Wang, J.; Xia, Y.; Ma, Y. Transportation of Service Enhancement Based on Virtualization Cloud Desktop.
Electronics 2023, 12, 1572. [CrossRef]

19. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into
JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]

http://doi.org/10.1088/1757-899X/830/4/042052
http://dx.doi.org/10.1109/TIP.2005.849776
http://www.ncbi.nlm.nih.gov/pubmed/16121449
http://dx.doi.org/10.1007/s11042-012-1274-y
https://ksiresearch.org/seke/seke23paper/paper131.pdf
http://dx.doi.org/10.1016/j.sigpro.2021.108346
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1016/j.neucom.2019.11.068
https://liu.diva-portal.org/smash/get/diva2:1823614/FULLTEXT02.pdf
http://dx.doi.org/10.3390/electronics12071572
http://dx.doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969

Sensors 2024, 24, 1208 18 of 18

20. Ballé, J.; Laparra, V.; Simoncelli, E.P. Density modeling of images using a generalized normalization transformation. arXiv 2015,
arXiv:1511.06281.

21. Ballé, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimized image compression. arXiv 2016, arXiv:1611.01704.
22. Jiang, F.; Tao, W.; Liu, S.; Ren, J.; Guo, X.; Zhao, D. An end-to-end compression framework based on convolutional neural

networks. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 3007–3018. [CrossRef]
23. Zhao, L.; Bai, H.; Wang, A.; Zhao, Y. Learning a virtual codec based on deep convolutional neural network to compress image.

J. Vis. Commun. Image Represent. 2019, 63, 102589. [CrossRef]
24. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSVT.2017.2734838
http://dx.doi.org/10.1016/j.jvcir.2019.102589

	Introduction
	Related Works
	Algorithm for Remote Desktop Image and Compression Quality Evaluation
	Convolutional Neural Network-Based Image Compression Codec
	Overview
	Attention Mechanism
	Loss Function

	Optimized RFB Protocol
	The Expansion of the RFB Protocol
	Research on Encoding Schemes
	Partitioning of Update Regions
	Identification of Monochromatic Update Regions and Handling of Minor Update Areas
	Expansion of Areas Awaiting Update
	Explanation of Encoded Data Format

	Experiments and Analysis
	Conclusions
	References

