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Abstract: Digital twin technology has become increasingly popular and has revolutionized data
integration and system modeling across various industries, such as manufacturing, energy, and
healthcare. This study aims to explore the evolving research landscape of digital twins using Keyword
Co-occurrence Network (KCN) analysis. We analyze metadata from 9639 peer-reviewed articles
published between 2000 and 2023. The results unfold in two parts. The first part examines trends
and keyword interconnection over time, and the second part maps sensing technology keywords to
six application areas. This study reveals that research on digital twins is rapidly diversifying, with
focused themes such as predictive and decision-making functions. Additionally, there is an emphasis
on real-time data and point cloud technologies. The advent of federated learning and edge computing
also highlights a shift toward distributed computation, prioritizing data privacy. This study confirms
that digital twins have evolved into complex systems that can conduct predictive operations through
advanced sensing technologies. The discussion also identifies challenges in sensor selection and
empirical knowledge integration.

Keywords: digital twins (DT); keyword co-occurrence network (KCN); artificial intelligence (AI);
sensors; scientometric analysis

1. Introduction

The concept of digital twins has evolved beyond its original role in product lifecycle
management [1] and become an essential element in the digital transformation across
various sectors. The digital twin applications typically involve the creation, utilization, and
sustainment of a virtual counterpart of a physical system, facilitating real-time, two-way
data exchanges [2]. Digital twins enhance human-machine interactions and inter-machine
communications. They dynamically and behaviorally mirror their physical counterparts,
integrating both raw and processed data to reflect real-world conditions accurately. While
proactive development of digital twins is advocated for optimal integration, retrofitting
remains a common practice for existing systems [3].

Digital twins are categorized into four functional levels: representation, replication,
reality, and relational [4], as shown in Figure 1. The foundational level, representation,
focuses on data collection and physical system representation. The form of digital twins at
this level is usually real-time data connectivity and visualization. A virtual model is created
at the replication level to duplicate the physical system and produce the same outputs as
the physical system. With the aid of cutting-edge simulation approaches, virtual models
have been capable of monitoring and controlling industrial systems with more complex
configurations [5]. Digital twins at this level are usually equipped with basic analytical
models that can analyze and predict system conditions given existing scenarios. The reality
level expands the digital twin’s capabilities for exploratory “what-if” analyses, enabling
predictions for hypothetical changes and scenarios. The most advanced level, relational
function, equips digital twins with machine learning models, providing insights that can be
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acted upon to optimize the physical system performance. Digital twins at this level achieve
a seamless close-loop bidirectional data flow and integration between the physical and
virtual realms.

Figure 1. Four levels of functionalities of digital twins.

Smart technologies such as the Internet of Things (IoT) and Cyber-Physical Systems
(CPSs) have been thoroughly studied before the emergence of digital twins. The IoT is a
network of physical objects with embedded sensors and other technologies that connect
and exchange data with other devices [6]. On the other hand, CPSs are complex systems
that integrate the cyber world and the physical world through computing, communication,
and control [7]. Although CPSs and digital twins seem similar in definition, they differ in
their primary focuses. Digital twins focus on creating a comprehensive virtual model that
mimics and predicts the behavior of its physical counterpart [8]. In contrast, CPSs focus on
real-time control and the ability to respond to physical states, often through direct sensor
and actuator involvement.

Digital twins rely on the same or similar the IoT and CPS-enabling technologies. Be-
cause of this, digital twins, as with the IoT and CPSs, have expanded beyond manufacturing
and into various other industries. The sensing ecosystem, which includes traditional physi-
cal sensors, advanced data analytics, and processing platforms, is central to the expansion
of digital twins [9]. The sensing ecosystem captures and interprets the vast streams of
data generated by the IoT and monitored by CPSs, forming the backbone of digital twin
functionality and setting the stage for the vital role of sensors in digital twin-supported
integrated systems.

Sensors, commonly represented by physical devices such as accelerometers and tem-
perature gauges, are the fundamental interface between the physical and digital worlds.
The basic structure of a sensor moduleserves to convert measurable physical phenomena
into data streams for analysis and application in digital systems [10]. Yet, the definition
of sensors has expanded in today’s interconnected environment. Today, a sensor can be
anything that translates real-world variables into data, ranging from social media posts
that gauge public sentiment to medical tests that provide insights into a patient’s health.
This broader interpretation of sensors enables sensors to serve as the primary medium for
data flow and analysis across various applications.

Table 1 features a collection of papers that review digital twin applications in various
areas highlighting their contributions and identifying gaps and opportunities. This work
adds quantitative research trend analysis to the current digital twin review landscape
with Keyword Co-occurrence Network (KCN) analysis. KCN analysis is a tool to analyze
the research landscape from the metadata of literature [11]. This method allows us to
thoroughly examine and interpret the extensive range of digital twin research.
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Table 1. A selection of digital twins review papers.

Application Area Key Contributes Gaps/Opportunities Identified Ref.

General
Applications

Reviews covering concepts, key enabling
technologies, and implementation of digital
twins, including challenges and prospects
across multiple domains

The need for standardization, data avail-
ability, processing power, interdisciplinary
collaboration, and development of reference
frameworks and performance metrics

[12–15]

Smart
Manufacturing

Reviews digital twins integration in
Industry 4.0 and digital supply chains and
their optimization potential

The need for design frameworks, early detec-
tion of design flaws, clarity in research focus,
and organized research environment

[16,17]

Smart Grid and
Smart City

Review of digital twins in energy
management and infrastructure durability

Challenges in data management, analy-
sis, real-time interaction, and effective dis-
tributed sensing updating

[18,19]

Agriculture Current trends, roadmap, and open
questions in digital twins for agriculture

The need for automated decision-making
support and complex examples [20–22]

Smart Healthcare

Review of digital twin applications in
precision medicine, clinical trial design, hos-
pital operations, and platforms supporting
mobile health applications

Technical, regulatory, and ethical challenges
in healthcare digital twins [23,24]

Education Review of digital twins in remote and
virtual laboratories

Integration of digital twin concepts into
educational systems [25]

This review paper serves digital twin researchers and architects. The KCN method
reveals the interconnectedness of knowledge components, concepts, technologies, and
methodologies in digital twin research, aiding researchers in identifying emerging trends
and under-researched areas. For digital twin architects, the KCN analysis provides informa-
tion on the practical application of sensors and other advanced digital twin technologies. It
can assist them in making informed architectural decisions and understanding the evolving
landscape of digital twin applications in relation to Cyber-Physical Systems.

The remainder of this work is structured as follows. In the methodology section,
we explain the process of KCN analysis and its implementation in the context of the
digital twin literature. In the results section, we present the analysis results, which include
the temporal analysis of research trends, mapping of sensing technology to application
fields, and detailed analysis of digital twin applications in various fields. These insights
are presented with a series of visualizations and tables that illustrate the interconnected
landscape of digital twin research. In the discussion section, we explain the implications of
these findings and conclude by reflecting on the challenges currently being faced and the
potential paths for the future development of digital twins.

2. Methods

This study applies KCN analysis to investigate research trends in digital twin technol-
ogy. The methodology includes a temporal KCN analysis to identify trends over time and
a detailed review of principal application categories. This section outlines the process for
article collection, keyword extraction, KCN construction, and network evaluation metrics.

2.1. Article Collection and Screening

This study began with a thorough search for literature related to recent advancements
in digital twins. We queried literature from Engineering Village, IEEE Xplore, and PubMed.
Engineering Village and IEEE Xplore ensure comprehensive coverage in engineering-
related subjects, and PubMed provides additional coverage of medical literature. We
selected articles that contain the terms “digital twin” OR “digital twins” in the metadata
(title, keywords, and abstract). After narrowing the search to peer-reviewed journal articles
and conference proceedings published in English from 2000 to 2023, we identified a total of
9639 papers and downloaded the metadata of this article collection.
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We classified the papers according to their respective application categories to analyze
the research trends of digital twins and their applications in different fields. We identified
six primary application categories. Figure 2 displays the subtopics under each primary
category. Although a paper may fall under multiple categories, it is assigned to the most
relevant category based on its content.

Figure 2. Six primary digital twin application categories.

2.2. Keyword Co-Occurrence Network Construction

After collecting the metadata from the publications identified in the initial screening,
we converted this unstructured data into a structured format suitable for quantitative
temporal analysis. To achieve this, we started by extracting keywords and key phrases
from the abstract, keywords section, and the title of each paper. We then used a Natural
Language Processing (NLP) toolkit to extract essential information while minimizing
language biases [26]. The toolkit automatically broke down the title and keyword strings
into phrases, eliminated common words such as “a” and “the”, reduced words to their
basic form, and reconciled different terminologies referring to the same concept, such as
“cyber-physical systems” and “CPS”.

To construct a KCN using the structured data, each keyword is considered as a node,
and the co-occurrence of a pair of keywords in the same paper is treated as an edge
connecting the co-occurring keyword pair (node pair). The resulting KCN is undirected
and weighted, with edge weights indicating co-occurrence frequencies. The KCN, which
consists of n unique keywords, is stored in an n × n adjacency matrix a. The value of
each cell in the matrix, aij, is set to 1 if a connection exists between keyword i and j, and
0 otherwise.

This study conducts two types of analyses using the KCN. The first type is a temporal
research trend analysis, in which we segment publications into distinct time windows:
2000–2020, 2021, 2022, and 2023. We build a separate KCN for each time window to capture
the evolving trends over time. The second analysis focuses on capturing research highlights
within each application field. Therefore, we divided the publications by their application
category and constructed an individual KCN for each category. After constructing the
network, we calculated various network metrics for our subsequent analyses.

2.3. Network Metrics

This study applies five network metrics to evaluate the KCN. These metrics help
identify important keywords, understand their interconnections, and determine the overall
structure and trend of the research field. These metrics measure node centrality, connections,
and the local topology of node groups.

Node centrality is measured by degree and strength. The degree of a node refers to
the number of unique nodes it directly connects to. The degree can be calculated using the
adjacency matrix a . As shown in Equation (1), the degree of node i is the sum of aij . Node
j belongs to the group of nodes Ni that directly connects to node i.

di = ∑
j∈Ni

aij (1)



Sensors 2024, 24, 1202 5 of 23

The strength of a node counts the number of connections it has, taking into account
the frequency of co-occurrences. As shown in Equation (2), the strength of node i is a
weighted sum of aij, where wij is the number of connections between node i and node j.

si = ∑
j∈Ni

aijwij (2)

Average weight as a function of endpoint degree quantifies the relationship between
the connectivity of nodes and the strength of their co-occurrences. To calculate this, we
define the endpoint degree of an edge connecting node i and j as didj. We then examine the
relationship between wij and didj for every edge in the network. Due to the multiplicity
of edges with identical endpoint degree values in large networks (e.g., 1 × 50 and 5 × 10
both equal 50 and hence will have the same endpoint degree), we aggregate edges into set
E when they share the same endpoint degree. The average weight for edges in set E is then
calculated by Equation (3), where |E| is the count of edges in set E. By plotting wE against
the endpoint degree of edge set E, we can visualize the patterns in keyword connectivity. A
positive correlation indicates that highly connected keywords (i.e., keywords connected
with high strength) tend to co-occur more, while a negative correlation suggests that less
connected keywords (i.e., keywords connected with low strength) tend to co-occur more.

wE =
∑(i,j)∈E wij

|E| (3)

The local topology of a network was measured by the average weighted nearest neigh-
bor degree and weighted clustering coefficient. The average weighted nearest neighbor
degree indicates the strength of a node’s connection with its high- or low-degree neighbors.
As shown in Equation (4), the average weighted nearest neighbor degree dw

i of a node i is
obtained by adding up the weighted connections of a node’s direct neighbors and dividing
it by the node’s strength. A higher value indicates that a keyword is typically associated
with highly connected keywords. By plotting dw

i against di, we can visualize how nodes of
different degrees behave in terms of connectivity.

dw
i =

1
si

∑
j∈Ni

aijwijdj (4)

The weighted clustering coefficient measures the level of interconnectedness among
a node’s neighboring nodes, taking into account the weight of each connection. As shown
in Equation (5), the coefficient Cw

i is calculated by averaging the weights wij and wih of
the connections that node i shares with its neighbors, node j and node h. The calculation
incorporates a normalization factor si(di − 1), which adjusts for the number of potential
connections and the strength of each. A high Cw

i value indicates that a node’s neighbors
are not only interconnected but also connected through stronger ties; this suggests a more
cohesive and tightly knit structure around the node. In the context of KCN, a high-weighted
clustering coefficient for a keyword indicates robust thematic clustering.

Cw
i =

1
si(di − 1) ∑

j,h∈Ni

(
wij + wih

2
)aijaihajh (5)

3. Results

In this section, we first analyze the evolution of digital twins research over time,
featuring visualizations of emerging and declining topics. Then, we examine the application
of sensor technology across different fields, highlighting principal keywords in each area.
Finally, we present specific case studies from each application field, showcasing the practical
implementations of digital twin technology.
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3.1. Research Landscape Evolution Over Time

From the KCN analysis results, we see a clear growth and diversification trend in
the digital twin field. Table 2 presents the statistics of KCNs from 2000 to 2023. Here, we
observe a substantial rise in the number of articles, keywords, and links, particularly after
2020. The increase in articles indicates a surge in research activities, while the growth in
links points to an expanding web of interconnected topics.

Table 2. Temporal analysis of four KCNs from four time periods.

Metric 2000–2020 2021 2022 2023

Number of Articles 1462 1561 3041 3575
Number of Keywords 1060 1148 2346 2770
Number of Links 6082 7382 19,634 26,299
Average Network Strength 14.85 16.47 21.22 24.53
Max Strength 1665 2092 4658 7284
Average Network Degree 11.48 12.86 16.74 18.99
Max Degree 652 807 1709 2305
Average Network Weight 1.29 1.28 1.27 1.29
Max Weight 77 72 139 158

The development stage of this research field can also be assessed with the K value,
based on Kuhn’s model of scientific progression [27]. The K value is calculated by dividing
the number of unique keywords by the frequency of those keywords within a discipline.
Derived from Table 2, the K values for four different time windows are 0.174, 0.155, 0.119,
and 0.105, respectively. The declining trend in the K value, inversely proportional to the
growing number of publications, suggests that the field of digital twins is in the midst of
an evolution, aligning with Kuhn’s pre-revolution or revolution stage.

Figure 3 reinforces this observation by showing the distribution of articles, keywords,
and links across the four time periods, with significant growth in the latter two years. This
suggests not only an increase in the research volume but also expansion in the complexity
within the field. Figure 4 expands on these data by comparing the average network strength
and the maximum weight of the network, both of which indicate an increase in inter-article
and inter-topic connections.

Figure 5 offers a distribution of keyword degrees, strengths, and link weights. The
upward trends in average and maximum network degrees from Figures 4 and 5 hint at a
broadening scope of individual topics and articles, suggesting an increasingly collaborative
research environment where topics are more interconnected. Notably, the outliers represent
the keywords that are highly connected and centric to this research field. We will present
and discuss these topics in the following sections.

Figure 3. Number of articles, keywords, and links over the four time periods.
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Figure 4. Growth trends in KCN parameters such as average network strength, maximum strength,
average network degree, and maximum degree.

Figure 5. Boxplots of keyword degree, strength, and link weight distribution in the KCN.

Figure 6 provides various insights into the dynamics of the network. Figure 6a shows
the probability density function of keyword degree. A shift toward the right over time
indicates that certain keywords are becoming increasingly prominent within the network.
Figure 6b examines the average weight as a function of endpoint degree. The positive linear
trend suggests that keywords with a higher degree tend to form stronger connections with
other keywords. However, it is not clear from this graph alone whether these connections
tend to be with other highly connected keywords or emerging keywords. In addition, the
subtle shift toward the right with time means that the combination of keyword degrees
associated with a given average weight has been growing with time, suggesting popular
keywords start to be the hubs that connect newer topics into the network, facilitating the
network’s growth.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Linecharts of KCN metrics: (a) probability density function of keyword degree, (b) average
weight as a function of endpoint degree, (c) average weight as a function of endpoint degree,
and (d) weighted clustering coefficient as a function of node degree.

Figure 6c presents the relationship between the average weighted neighbor’s degree
and the node degree. In all four time windows, there is no clear correlation between the
degree of a node and its neighbor’s degree. This complements the insights from Figure 6b
and shows that highly connected keywords connect with a diverse range of nodes rather
than only with other highly connected nodes. To accompany this insight, Figure 6d shows
the decreasing trend in the weighted clustering coefficient, indicating that highly connected
nodes act more as bridges than remaining within isolated clusters, pointing to an expanding
and diversifying field.

These visualizations and metrics depict the characteristics of a rapidly growing com-
plex field, with foundational research expanding and certain topics gaining more promi-
nence. However, the consistent average weight across years also suggests that the additional
links may not always contribute to the foundational research, raising questions about the
depth and influence of recent publications. This nuanced view of the field’s evolution
indicates both robust growth and areas requiring further investigation to understand the
research impact.

3.2. Emerging and Declining Research Topics

Figures 7 and 8 trace the changes in keyword relevance over time, from the earliest
time window of 2000–2020 to the most recent time window of 2023. In each time window,
we ranked keywords based on their strength, which is determined by the number of
connections each keyword has. We then compared the ranking of keywords from both time
windows to assess emerging or declining trends.

Because there was a substantial increase in overall keyword strength from the earlier
to the later time window, we used rank as a proxy for a keyword’s relevance within its
specific period. Additionally, we categorized the keywords into two groups: those relating
to digital twin applications and those relating to the sensing ecosystem, which includes
sensors, machine learning methods, and computational systems.

It is important to note that a slight decline in a keyword’s rank does not necessarily
indicate a decrease in its importance or research focus. Instead, it may indicate a natural
transition of the keyword from a novel research area to a more established topic that no
longer occupies the forefront of emerging research themes. This shift can be seen as a
maturation process within the research landscape, where once-novel concepts become
foundational elements of the field.
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Figure 7. Emerging and declining keywords of digital twin applications from 2000–2020 to 2023.

Figure 7 presents keywords related to digital twin applications. Notably, the top five
keywords, namely digital twins, Internet of Things, Cyber-Physical Systems, Industry 4.0,
and simulation, have maintained the top five positions with no rank change, indicating
that they have endured centrality and significance in digital twin research for over two
decades. Digital twins, as the literature searching criteria, is naturally included in all
research. The Internet of Things is significant for providing the sensor data that feeds
digital twins. Cyber-Physical Systems are essential as they constitute the framework in
which digital twins operate, integrating computation with physical processes to enable
automated decision making. Industry 4.0 represents the current trend of automation and
data exchange in manufacturing technologies, including Cyber-Physical Systems, the IoT,
and cloud computing, which are inherently linked to the concept of digital twins. In
addition, simulation serves as the analytical engine that enables the virtual representation
to predict the behavior and performance of its physical counterpart.

There are two types of keywords that indicate emerging trends: application fields (ar-
eas where digital twins are being applied) and functions (what digital twins help achieve).
The emerging application fields for digital twins include smart cities, energy consump-
tion, healthcare, the construction industry, power systems, smart grids, and autonomous
vehicles. The more digitalized and intelligent infrastructure in these areas enables the
implementation of digital twins. The increasingly diversified application fields for digi-
tal twins also explain the slight decline of smart manufacturing and the manufacturing
industry in the right panel.

The emerging functions include digital transformation, decision making, resource
allocation, predictive maintenance, fault diagnosis, and real-time monitoring. The trend can
be attributed to advancements in machine learning and sensor technologies. As machine
learning algorithms have become more sophisticated, digital twins are now able to not only
replicate physical systems but also transform and optimize them. Digital twins also have
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enhanced decision-making capabilities, enabling automated and informed decisions based
on predictive analytics and real-time data.

Figure 8. Emerging and declining keywords of digital twins sensing technology from 2000–2020 to 2023.

Figure 8 presents keywords related to sensor and machine learning technology. The top
two keywords are machine learning and artificial intelligence. The emerging keywords related
to sensors are real time, point cloud, and sensor network, highlighting the growing demand
for sensors that can deliver immediate, interconnected, and diverse data types. Regarding the
computation architecture that supports digital twins and machine learning functions, we notice
a rising trend in edge computing and metaverse and a declining trend in cloud computing. This
points to a research area pivoting toward distributed computing paradigms, suggesting a move
to bring processing closer to the data source for quicker insights. This trend implies that while
cloud computing has become a well-established field, the frontier of research is moving toward
systems that can handle analytics at the edge of networks.

As for the machine learning-related keywords, emerging models include deep learning, re-
inforcement learning, federated learning, surrogate models, and convolutional neural networks.
This emergence corresponds to the need for sophisticated analytical tools capable of processing
complex, multimodal sensor data. These methods are particularly suited to the demands of
digital twins, offering enhanced capabilities for privacy preservation and data security.

3.3. Mapping Keywords to Application Fields

The previous analysis has focused on the temporal characteristics of the research field
and the trends in the relevance of the top keywords. In this section, we will delve deeper
and examine how digital twin technology, specifically sensing, machine learning, and
computation technologies, are being applied in different fields.

In the methodology section, we mentioned that we classified the literature into six
application categories. In this section, we draw insights from each category and visualize
the insights using a Sankey diagram. The left column of the Sankey diagram lists the
keywords of interest, while the right column represents the application fields. The numbers
on the left represent the number of papers that contain the keyword of interest. The number
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on the right is a summation of all streams of numbers from the left. Since we only selected
the top keywords in each category to visualize, the number on the right should not be
confused with the total number of papers in each category.

Figure 9 displays the mapping from sensor technology to different digital twin ap-
plication fields. Real-time data and point cloud emerge as the most prevalent keywords,
which validates the trend from the slope graph. From this graph, there are two types of
sensor keywords: focused sensing technologies and cross-domain technologies. As for
focused keywords, process data and vibration have found their place in manufacturing
settings as they are common practices for machine and equipment monitoring. Electro-
cardiograms and cardiac electrophysiology in healthcare may be linked to their potential
to create high-fidelity visualizations for cardiac twins. LiDAR shows a strong association
with infrastructure applications, likely due to its precision in capturing environmental data
for smart city applications.

Figure 9. Mapping of sensor technology to digital twin application areas.

Cross-domain keywords such as point cloud, data acquisition, and human–robot
interaction point toward the versatility of these technologies. Point cloud data, with their
high-resolution spatial information, are crucial not only in manufacturing and logistics but
also in infrastructure for transportation and urban planning. Data acquisition stands out as
a foundational element in the sensing ecosystem to ensure the quality of high-frequency
and multimodal sensing data. Human–robot interaction emphasizes the increasing col-
laboration between humans and automated systems. In healthcare, this could translate
to robotic surgery or patient care systems, while, in manufacturing, this can pertain to
collaborative robots working alongside human operators.
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Figure 10 displays the mapping from machine learning methods to different digital
twin application fields. Machine learning bestows active digital twins with decision-making
capabilities in various applications. Neural networks and deep learning algorithms play
a prominent role in pattern recognition and predictive analytics. The strong presence
of reinforcement learning, particularly in fundamental research, signals an interest in
developing digital twins capable of autonomous decision making and optimization—a
critical feature for systems that learn and adapt over time.

Figure 10. Mapping of machine learning methods to digital twins application fields.

The emergence of federated learning points to a growing concern for data privacy and
distributed computation, enabling collaborative model training without centralized data storage.
This approach aligns well with digital twins, which often require the synthesis of distributed
data while sustaining confidentiality, particularly in healthcare and business settings.

The strong connection between optimization techniques and manufacturing and
supply chain applications underlines the role of digital twins in process improvement
and efficiency gains. Meanwhile, the intersection of convolutional neural networks with
infrastructure and transportation highlights their importance in image and video processing
tasks relevant to these fields.

Interestingly, the relatively modest numbers attached to healthcare and human-centric
technology may reflect the nascent integration of machine learning into these regulated
domains, where safety and validation are paramount.

Overall, Figure 11 displays the mapping from computational technologies to differ-
ent digital twin application fields. Blockchain’s notable presence across multiple fields,
especially in business and asset management, highlights its role in enhancing security,
transparency, and traceability. Its application within manufacturing and supply chain
domains indicates its potential to revolutionize how data across the digital twin lifecycle
are securely managed and shared.

The Metaverse, often associated with immersive virtual environments, shows a sub-
stantial intersection with infrastructure and transportation. This could point toward the
Metaverse’s capacity for sophisticated simulations and virtual testing environments, which
are crucial for planning and managing large-scale infrastructural projects. As suggested by
the slope chart above, cloud computing displays a slightly declining influence, indicating
a shift toward distributed computing paradigms such as edge computing. Big data and
data-driven keywords maintain a steady connection with fundamental research, reflecting
the ongoing need to process and analyze large datasets within the digital twin sphere
to extract meaningful insights. In addition, semantic interoperability and data fusion,
though not as dominant, indicate niche but vital areas in ensuring that digital twins can
communicate effectively across systems and synthesize information from disparate sources.
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Figure 11. Mapping of computation technology to digital twin application areas.

3.4. Specific Cases in Each Application Field

Guided by the insights from the previous section, we select and review specific in-
stances of digital twin research in this section. The tables in this section are a curated
collection of publications based on the highlighted keywords from our Sankey analysis.
This section aims to transition from high-level trends to individual research efforts, pro-
viding examples of how sensing, machine learning, and computation technologies are
implemented within various application areas.

Table 3 presents a selection of studies in fundamental research of digital twins. The
study on sensor calibration within building systems [28] demonstrates the ongoing effort to
synchronize physical and virtual sensor data, which is a crucial step for accurate digital twin
simulations. Research into sensor reliability [29] tackles the challenge of predictive mainte-
nance by using redundant digital sensors to foresee potential sensor failures. Both studies
emphasize the significance of sensor calibration in maintaining the operational integrity
of digital twins. Challenges remain in improving the accuracy of a virtual model while
maintaining the complex system built upon multiple sensors. Wearable ECG sensors [30]
have been studied for low-latency signal analysis, enhancing the responsiveness of dig-
ital twins. This research resonates with the need to make digital twins interactive and
user-centric. In the future, digital twins will serve not only as tools for simulation and
monitoring but also as an end-to-end platform for interaction, providing intuitive feedback
to users. The integration of tactile sensors in tactile devices [31] offers insight into the
sensory augmentation possibility within digital twins, while the use of LiDAR for user
interface design [32] highlights the importance of high-resolution spatial data in creating
intuitive teleoperation systems. Both studies suggest that as the digital twin userbase
grows, the user experience will become an essential factor, particularly in how objects
are identified and interacted with within these virtual environments. Researchers should
recognize that the usability of digital twins is as important as their technical accuracy [9].

Table 3. Examples of articles covering fundamental research in digital twins.

Domain Physical
Asset Sensors Physical–Digital

Data Flow Form of Digital Asset Research Objective Ref.

Sensor
calibration

Building
system and

sensors

Temperature and
pressure sensors Sensor readings Building automation

system (BAS) interface

Simultaneous in situ
calibration of physical and

virtual sensors
[28]

Sensor
reliability Sensors

Vibration,
temperature, and

force sensors
Sensor readings

Simulated readings of
the redundant digital

sensors

Predict sensor failure using
redundant digital sensors [29]
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Table 3. Cont.

Domain Physical
Asset Sensors Physical–Digital

Data Flow Form of Digital Asset Research Objective Ref.

Sensor
connectivity Human Wearable ECG

sensor Sensor readings
Low-latency signal
visualization and

analysis

Enhanced biosensor data
flow across a Bluetooth to

Ethernet gateway
[30]

Tactile sensing Tactile device Tactile sensors Touch events
Across-platform

semantic abstraction
and visualization

Ontology model
construction for tactile

sensing devices
[31]

Data
processing Truss Force sensor and

strain gauge Sensor readings Rapid visualization of
the truss stress field

Multi-fidelity surrogate
model development [33]

Scene
construction

Bridge
construction

site
Cameras Multi-resolution

images
Holographic scene in a

prototype interface

Dynamic holographic
modeling approach for

augmented visualization of
digital twin scenes

[34]

User interface
design

Geometrical
objects

Onboard robot
sensing (e.g.,

LiDAR)
Point cloud Visualization of the

physical asset

Evaluate the recognition of
physical objects and its

implications on UI design
for teleoperation systems

[32]

Table 4 presents a selection of research efforts showcasing the application of digi-
tal twin technology in the manufacturing and supply chain areas. In CNC machining,
force sensors monitor the cutting torque in end milling processes, supplying data for a
comprehensive dashboard that integrates real and simulated torque signals for condition
monitoring [35]. The predictive maintenance capacity enables real-time adjustments and
machine downtime reduction. Another study develops nonlinear multi-variant dynamic
models of multi-axis machine tools with onboard CNC sensing data and visualizes the
servo system’s dynamics [36]. The digital twins in the form of real-time visualization can
help optimize the machine tool performance and reduce production errors.

Table 4. A sample of articles covering manufacturing and supply chain digital twin research.

Domain Physical
Asset Sensors Physical–Digital

Data Flow
Form of Digital

Asset Research Objective Ref.

CNC
machining

Cutting
torque in end

milling
Force sensors

Process parameters
and database of
historical torque

signals and analysis

Dashboard of
simulated and real
cutting torque and

analysis

Machine tool condition
monitoring [35]

CNC
machining

Servo system
of a 5-axis
laser drill

Onboard CNC
sensing

In-process CNC data
(e.g., body motion,

actuator ripples, and
vibration modes)

Real-time
visualization of servo

dynamic models

Develop nonlinear
multi-variant dynamic
models of multi-axis

machine tools

[36]

CNC
machining

Milling
machine

Onboard CNC
sensing (e.g., torque

current and
tachometer)

Fusion of tool,
workpiece, and

process monitoring
data

Visual dashboard of
part geometry,

process data, and
analysis

Development of digital
process twin [37]

Cyber-
Physical
System

CTTP 4.0
production

cell
Optical sensors

Fusion of real-time
operational

parameters and
sensor readings

Interactive visual
replication of

production cell

Practical implementation
of digital twin complied

to industry standards
[38]

Additive man-
ufacturing

Temperature
and strain

profiles

Embedded
distributed fiber

sensors

Fusion of process
parameters and
sensor readings

FEA simulation of
temperature and

strain

Model temperature and
strain with embedded

distributed fiber sensors
[39]

Production
planning

Body-in-
white (BIW)
production

system

Onboard sensors and
LiDAR

Fusion of CPS
indicators,

production data, and
point cloud of the

plant

3D production plant
model with
optimized

production planning

Demonstrate the
automated creation and

updating of a BIW
production digital twin

[40]
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Further, in CNC machining, the fusion of tool, workpiece, and process monitoring data,
is visualized on a dashboard, providing a complete view of the manufacturing process [37].
This digital process twin supports operators in making informed decisions by simulating part
geometry and process analytics. The use of optical sensors in a cyber-physical production
cell to create an interactive visual replica [38] signifies the importance of high-fidelity models
for understanding and optimizing complex production systems. The above approaches
to building digital twin models have made significant progress in unveiling the relations
between key indicators and tool performance in the machining process. The sensor-based
digital twins allow autonomous monitoring and troubleshooting within smart manufacturing
environments. Future work could investigate the scalability of the method to consistently
deliver accurate responses and optimize processes as the numbers of machine types and
operational parameters scale. Additionally, exploring the integration of machine learning
across different manufacturing environments would be valuable.

In additive manufacturing, embedded distributed fiber sensors are used for Finite Ele-
ment Analysis (FEA) simulations of temperature and strain [39]. The ability to model these
parameters with high precision is indicative of the move toward high-fidelity simulations
in digital twins, ensuring product quality and process reliability.

Lastly, the production planning process benefits from the fusion of CPS indicators,
production data, and LiDAR-generated point clouds to create a 3D model of a production
plant [40]. This example demonstrates the potential of digital twins in providing a com-
prehensive three-dimensional context for production planning, facilitating better spatial
understanding and resource allocation.

Table 5 presents the selected applications of digital twin sensor technology in the
energy and power grid sector. The energy equipment monitoring example showcases a
condition monitoring digital twin of a small hydro turbine, enabled by a wireless sensor
network, including accelerometers, temperature, and inductive current sensors. The digital
twins operating on sensor readings and environmental data provide a condition indicator
visualization [41]. This approach can detect faults early and reduce downtime, which is
crucial in the energy sector where continuity is essential.

Table 5. A selection of research articles covering energy and power grid digital twins research.

Domain Physical Asset Sensors Physical–Digital Data
Flow

Form of Digital
Asset Research Objective Ref.

Equipment
monitoring

Small hydro
turbine

Wireless sensor
network (e.g.,

accelerometers,
temperature, and
inductive current

sensors)

Sensor readings,
production, and

environmental data

Condition indicator
visualization and

predictive analysis

Build digital twin from
various data source for

turbine condition
monitoring

[41]

Electric power
converter

Photovoltaic (PV)
dc–dc converter Thermal camera

Scanning electron
microscope (SEM)

images, converter tech
specs, and

temperature data

FEM simulation and
prediction of junction,

case, and heat sink
temperatures

Fast estimation of
switching device

temperature in PV
converters

[42]

Wind
engineering

Wind pressure
field

Wind pressure
sensors Sensor readings

Wind pressure field
visualization and

measurements

Develop an optimal
sensor placement

algorithm to reconstruct
wind pressure fields

[43]

Hydropower
generation

Hydraulic
network (e.g.,

valve, tank, and
pipe)

Pressure sensors
Hydraulic model of the
plant and the valve and

flap configuration

Hydraulic variables
and hydropower

generation
visualization and

analysis

Develop a control system
to maximize hydropower

production while
meeting hydraulic

constraints

[44]

Smart grid

Smart grid (e.g.,
consumer,

producer, and
regulator)

Event logger

Live semantic
annotation (LSA) of

events and coordination
laws that cause the

events to evolve

Autonomous
proactive agents on a

coordination
platform CLEMAP

Develop a series of
digital twins that interact
and coordinate activities
to exchange energy and
enhance grid stability

[45]
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In electric power conversion, the photovoltaic (PV) dc–dc converter’s efficiency is
augmented by thermal cameras and scanning electron microscope imagery. FEM simula-
tions predict temperatures at critical converter components, enabling fast estimations of
device conditions under various operational stresses [42]. The two studies highlight the
importance of digital twin predictive maintenance in infrastructure reliability.

Wind engineering research utilizes wind pressure sensors to develop an optimal
sensor placement algorithm [43]. This algorithm aims to reconstruct wind pressure fields
accurately, which is indispensable for assessing the structural integrity of wind turbines
and optimizing their design for maximum energy capture. The reconstruction of the wind
pressure field can also be utilized for creating digital twin infrastructure.

For hydropower generation, pressure sensors are deployed within the hydraulic net-
work, informing the development of a control system that maximizes hydropower produc-
tion while adhering to hydraulic constraints [44]. Such digital twin applications ensure the
harmonization of power generation with environmental and infrastructural considerations.

Lastly, in the field of smart grids, event loggers are utilized to develop digital twins
with autonomous proactive agents [45]. These agents interact within a coordination plat-
form to manage the complex dynamics of energy demand and supply, thus enhancing
grid stability and operational resilience. This research points out that integrating an agent-
coordination model into digital twins can address complex energy management issues
at the microgrid level. The findings provide an example of how to create resilient and
user-centric energy networks.

Table 6 presents the applications of digital twin sensor technology in the healthcare
and human-centric area, where sensors are broadly referred to as any device or system
that detects events or changes in a given environment, transmitting the information to
other devices. In the cardiology field, ECG sensors are integral in developing a digital
twin of the human heart [46]. This innovative approach merges ECG data with medical
records to construct a “Cardio Twin”, a proof of concept that offers heart condition visual-
izations for both local and remote diagnosis. In another example, clinical 12-lead ECGs and
Magnetic Resonance Imaging (MRI) create biophysically detailed digital twins for cardiac
electrophysiology [47]. These models simulate intricate heart structures, including Purkinje
networks, paving the way for in silico clinical trials and advanced cardiac care.

Table 6. A selection of research articles covering healthcare and human-centric digital twin research.

Domain Physical Asset Sensors Physical–Digital
Data Flow

Form of Digital
Asset Research Objective Ref.

Cardiology Human Heart ECG sensors ECG data and
medical records

Heart condition
visualization and

analysis available for
local and remote

diagnosis

Proof of concept version of
the Cardio Twin [46]

Cardiology

Human heart
and cardiac

electrophysiol-
ogy

Clinical 12-lead
ECG and
magnetic

resonance (CMR)
imaging

ECG data and CMR
imaging

Biophysically
detailed cardiac twin

including Purkinje
networks and cardiac

electrophysiology

Create personalized,
multiscale biventricular
heart models for in silico

clinical trial

[47]

Rural health Patients in
rural areas

Healthcare IoT
sensors and

medical devices
Sensor readings

Blockchain-
encrypted medical
data and analysis

Integrate healthcare IoT data
with blockchain for secure

and efficient data
management in rural

healthcare

[48]

Space
medicine

Medical
training

environment

Mixed reality
(e.g., HoloLens)

and haptic
devices

Digitized real-world
training scenarios

and learner’s
real-time input

Interactive training
with virtual feedback

integrated into
real-world scenarios

Develop a
mixed-reality-based medical

training platform for
astronauts

[49]
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Table 6. Cont.

Domain Physical Asset Sensors Physical–Digital
Data Flow

Form of Digital
Asset Research Objective Ref.

Education Remote lab of a
production cell

Onboard sensors
for equipment

control and
monitoring

Sensor readings
Interactive interface

with multimodal
visualizations

Apply the digital twin
concept in a hybrid remote

laboratory for various
learning scenarios

[50]

Human–robot
collaboration

Battery pack
assembly line

Force/torque
sensor

Fusion of sensor
readings and

production data (e.g.,
idle times)

Visualization and
analysis of the
human–robot
collaboration
assembly line

Design, develop, and
operate an agile, adaptable,

and safe human–robot
collaborative system

[51]

For rural healthcare, IoT sensors and devices are leveraged to bring medical services
to remote areas [48]. Here, sensors encompass a variety of medical devices that collect
health-related data, which, when coupled with blockchain technology, ensures secure
data management and analysis in resource-limited settings. In space medicine, sensors
include mixed reality devices such as HoloLens and haptic systems, which create a digitized
interactive training environment [49]. This expands the sensory experience by providing
real-time feedback and immersive scenarios for astronaut medical training. The above
research highlights the potential and success of digital twin technology in the field of
personalized and predictive healthcare.

In the educational sector, sensors refer to the instrumentation of a remote lab, where
equipment control and monitoring are critical [50]. These sensor systems enable a hybrid
remote laboratory for various learning scenarios, fostering interactive and multimodal
educational experiences. This also encourages future researchers to explore digital twin
solutions for better learning outcomes and operational safety [52].

Lastly, in the context of human–robot collaboration, force/torque sensors on a battery
pack assembly line provide data for a digital twin that visualizes and analyzes the collabo-
rative environment [51]. This digital twin assists in designing, developing, and operating a
safe and efficient human–robot interactive system. Future study can revolve around the
safety and optimization of these systems with the aid of digital twins [53].

Table 7 presents examples of the use of digital twins in the optimization of infrastruc-
ture and transportation systems. For infrastructure modeling, LiDAR sensors are utilized
to capture detailed point cloud data of campus buildings [54]. This technology enables
the creation of accurate digital replicas of large structures and facilitates the creation of
accurate digital twins of extensive structures, enabling efficient maintenance planning and
historical preservation.

In transportation infrastructure, the fusion of 2D images from cameras and 3D point
clouds from LiDAR leads to a comprehensive digital twin of a magnetic levitation track [55].
This detailed representation bridges the gap between macroscopic project management
and microscopic engineering analysis, underscoring the capacity for digital twins to offer
multiscale insights into transportation systems. This study points out the importance of
having efficient and automated processes for managing large LiDAR datasets to enhance
the scalability of digital twins in civil engineering. Future study should include devel-
oping advanced algorithms that could automate the conversion of point cloud data into
information modeling.

Urban logistics can benefit from the integration of sensors and actuators within the
infrastructure. This can be achieved through a platform architecture for digital twins that
informs policy making via interactive dashboards [56]. This approach allows for real-
time sensor data and logistics system documentation to drive simulation models that can
pinpoint gaps and opportunities for transformation within city ecosystems. It is challenging
to convert this framework into physical systems for city planners and logistics stakeholders
to use and improve urban logistics.
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Table 7. A selection of infrastructure and transportation digital twins research.

Domain Physical Asset Sensors Physical–Digital
Data Flow

Form of Digital
Asset Research Objective Ref.

Infrastructure
modeling

Campus
buildings LiDAR Point cloud data

Virtual replicas of
large campus
infrastructure

Assess and implement
reconstruction methods to
create digital twins of large
infrastructure using point

cloud data

[54]

Transportation
infrastructure

Magnetic
levitation track

Cameras and
LiDAR

Fusion of 2D
images 3D point

clouds

Detailed digital
representation with

macroscopic to
microscopic

perspective analysis

Fuse 2D image and 3D point
cloud to create a digital twin
model of magnetic levitation

track

[55]

Urban logistics
Urban

infrastructure and
logistics systems

Sensors,
actuators, and

logistic
system docu-

mentation

Sensor readings
reflecting the
state of the

logistic system

Interactive
dashboards with

metrics and logs to
inform policy making

Propose a platform
architecture for digital twins

in urban logistics,
addressing gaps in
simulation model

orchestrations and data
transformation

[56]

Factory logistics

Assembly line
with Automated
Guided Vehicles

(AGVs)

Sensors for
AGV tracking

and
monitoring

Sensor readings
and

documentation of
assembly logistics

Data model,
simulation analysis,
and virtual action

model of the
assembly line

Develop and apply an AGV
multi-objective dynamic

scheduling method based on
digital twins to improve

logistics efficiency

[34]

Transportation
planning

Long-distance
freight flows with
various transport

modes

IoT sensors,
GPS, and GIS

Real-time data
inputs from

transport modes

Virtual infrastructure
visualization and

transportation mode
analysis

Explore the potential of
digital twins in

synchromodal transport for
long-distance freight flows

[57]

Smart agriculture
Cyclone bag filter
in grain milling

plants

Pressure
sensors and
anemometer

Real-time sensor
readings

Computational fluid
dynamics simulation
of cyclone bag filter
for RUL prediction

Apply digital twins for
predictive maintenance of

the cyclone bag filter system
[58]

Factory logistics can be revolutionized by incorporating Automated Guided Vehicles
(AGVs) that track and monitor the movement of goods on the assembly line [34]. The
development and application of a multi-objective AGV scheduling method based on digital
twins reflect a shift toward intelligent and efficient logistics systems.

The planning of long-distance freight flows can be analyzed by integrating IoT sensors,
GPS, and GIS into a virtual infrastructure and transportation model [57]. This digital twin
serves as a powerful tool for analyzing and synchronizing transport, demonstrating the
potential of digital twins to streamline logistics operations across vast distances. Future
study can focus on achieving interconnection between real-time data and virtual models
for different transport modes in an operational context.

The predictive maintenance of agriculture equipment can be improved by digital
twin technologies integrated with sensors and data pipeline systems [58]. This study
streamlines computational fluid dynamics (CFD) simulation data, sensor readings, and
historical information to replicate a virtual cyclone bag filter system in grain milling
plants. The digital twins of the system can monitor the filter status and perform precise
predictions of a system’s remaining useful life. This research marks the potential of digital
twins in improving operational efficiency for smart agriculture through monitoring and
predictive analytics.

Table 8 explores the digital twin applications in business and asset management. These
sensors are not limited to traditional physical devices but also include digital and social
data sources. In production management, the term “sensor” encompasses product docu-
mentation throughout production [59]. This documentation acts as a sensor by providing
continuous feedback on the product lifecycle, enabling the development of a digital twin
for efficient tracking in high-volume production environments. This study set an example
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of using Asset Administration Shell to standardize and simplify the digital twin representa-
tions of manufacturing assets. Another study in this domain proposes a hybrid digital twin
approach that integrates traditional onboard sensors with telemetry data sources to create
virtual production line properties [60]. Their innovative usage of Apache StreamPipes
for handling high-volume data streams features a solution to the data preprocessing for
digital twins.

Table 8. A selection of business and asset management digital twins research.

Domain Physical
Asset Sensors Physical–Digital

Data Flow
Form of Digital

Asset Research Objective Ref.

Production
management

Products and
assets

Product
documentation

throughout
production

Data from
production assets,

plants, and
operators

Asset Administration
Shell (AAS) for

lifecycle tracking

Develop a digital twin for
efficient lifecycle tracking in

high-volume production
[59]

Production
management

Steel
production

line

Onboard sensors
and telemetry
data sources in
production line

Sensor readings,
batch data, and
manually-input

data

Virtual production
line properties via the

digital twin API

Propose a hybrid digital
twin approach integrating

Industry 4.0-compliant
digital twins with AAS and

Apache StreamPipes

[60]

Environment
monitoring

Spread of
invasive
species

Social Media
(Twitter)

Posts on spotted
lanternfly

sightings and
behaviors

Visualization of
invasive species

spread

Create a digital twin using
social media content for

environmental monitoring
[61]

Social issue
alleviation

Social subjects
(e.g., personal
life, organiza-

tions)

Chat rooms
Communication
data from chat

rooms

Real-time sentiment
analysis and

Chatbot-driven
conversation
facilitation

Use chatbots to stimulate
and sustain communication

in social environments
[62]

Social network Social
sentiments

Business
intelligence data

infrastructure

Data from social
networks

Knowledge graphs
for social data

mapping

Create semantic-driven
digital twins for analyzing
social network dynamics

[63]

The notion of sensors expands further in environmental monitoring, where social
media posts on platforms such as Twitter become inputs. These “digital sensors” capture
real-time data on the spread of invasive species [61], offering a novel approach to environ-
mental monitoring by harnessing crowd-sourced information. This study manifests the
versatile nature of digital twins by bridging it with ecological management and leveraging
Natural Language Processing to model the spread of an invasive species. Additionally, in so-
cial issue alleviation and network sentiment analysis, chat rooms and business intelligence
data act as sensors by providing communication data and social network dynamics [62,63].
These data allow for real-time sentiment analysis and conversation facilitation via chatbots.
The concept of semantic digital twins for simulating human behavior for analytical pur-
poses is an innovative idea. In future studies, it is important to address privacy and data
security concerns, such as modeling complex human behavior and ensuring ethical use of
personal data.

4. Discussion

Our analysis of digital twin research from 2000 to 2023 shows that the field has been
growing and diversifying rapidly. This trend, particularly notable post-2020, offers digital
twin researchers avenues for new research opportunities and gives digital twin architects
insights into the evolving applications in areas such as smart cities, healthcare, and energy.
Emerging functions such as decision making and predictive maintenance also demonstrate
the field’s advancement.

Sensor-related keywords, such as real time, point cloud, and sensor network, are
becoming more important. This emphasizes the demand for real-time, interconnected, and
multimodal sensor data. This trend aligns with the computational architecture shift from
cloud to edge computing, indicating a move toward distributed computing for faster and
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more efficient data processing. Moreover, the emergence of advanced machine learning
models such as deep learning and federated learning reflects the increasing complexity of
sensor data processing. It also highlights the growing importance of privacy and security
for digital twins.

According to the keyword trends, digital twins are advancing beyond conventional
simulations such as FEA. The research suggests that there is a shift toward developing sys-
tems that not only replicate physical entities but also evolve with them. The importance of
keywords such as human–robot interaction and predictive maintenance has been growing,
which indicates the emergence of interactive and preemptive digital twins.

The Sankey diagrams demonstrate the wide range of sensor technologies used in
digital twins. These sensors go beyond traditional physical devices and include med-
ical equipment, clinical tests, and even social media platforms. This approach allows
digital twins to provide a comprehensive and accurate representation of real-world scenar-
ios. Moreover, the literature highlights the rise of virtual and soft sensors, which mirror
physical sensor functions, offering preemptive insights and facilitating proactive sensing
system maintenance.

Our study also revealed a connection between sensor selection and the functionality
levels of digital twins, namely representation, replication, reality, and relational. From the
review of specific digital twin examples, we observe that the choice of sensors directly
influences the level of digital twin functionality, particularly in retrofit designs. As the
digital twin capacity increases, we also observe that many applications need sensor data
fusion. For example, in the manufacturing setting, a proactive machine tool digital twins
will need the input of low-frequency production data and high-frequency sensor data.
Incorrect sensor choices can lead to a mismatch between sensor capacity and the expected
functionality of digital twins, eventually impacting the performance of the digital twins.

In addition, we believe that relying heavily on data-driven insights without substantial
domain expertise can be risky. With limited domain knowledge, there is a possibility of
creating brittle and underwhelming digital twins that may not respond inadequately to real-
world variables. Therefore, future research should aim at integrating domain knowledge
and robust empirical knowledge into digital twins to enhance their reliability and accuracy.

5. Conclusions

This study analyzed the research trends in the field of digital twins by examining
metadata from 9639 peer-reviewed articles published between 2000 and 2023. We processed
the metadata using an NLP-based toolkit and manually labeled each article with its most
relevant application field. Using the KCN methodology, we performed temporal research
trend analysis, mapping popular sensing technologies to six application fields and identi-
fying representative examples of digital twins in each field. For researchers, this analysis
provides a comprehensive view of the field’s development, identifying key areas for future
exploration. For architects, the findings highlight technological applications and examples
essential for informed decision making in digital twin system design.

This study found that the field of digital twins is rapidly growing and diversifying.
We used network metrics to analyze the temporal changes in the field and identified
emerging and declining keywords over time. We also identified emerging application
fields, functions, and enabling sensing technologies. The findings suggest that digital twins
are moving toward predictive tasks while ensuring system integrity and security across
many sectors beyond manufacturing.

We used a Sankey chart to visualize the mapping from popular sensing technologies
to six application fields. We found that real-time data, point cloud data, and human–robot
interaction are increasing trends. Additionally, we noticed an extension of the traditional
sensor definition to include novel sensors such as medical tests and social media posts. We
identified neural networks and reinforcement learning as crucial for autonomous decision
making. The emergence of federated learning marks a shift toward distributed computation,
emphasizing data privacy.
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Following the mapping, we reviewed specific examples of digital twins in each field.
For each application, we analyzed its physical assets, sensors, physical–digital data flow,
the form of digital assets, and research objectives. From these examples, we observed a
connection between sensor selection and the functionality level of digital twins. We raised
concerns over the mismatch between sensor capacity and digital twins’ functionality and
possible brittle digital twins if they are too dependent on empirical prior knowledge.
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