
Citation: Li, K.; Li, L.; Tang, C.; Lu,

W.; Fan, X. Three-Dimensional Path

Planning Based on Six-Direction

Search Scheme. Sensors 2024, 24, 1193.

https://doi.org/10.3390/s24041193

Academic Editors: Zhan Li,

Hongliang Guo, Weibing Li and

Chunxu Li

Received: 12 December 2023

Revised: 28 January 2024

Accepted: 29 January 2024

Published: 12 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Three-Dimensional Path Planning Based on Six-Direction
Search Scheme
Kene Li 1,2, Liuying Li 1, Chunyi Tang 1, Wanning Lu 1 and Xiangsuo Fan 1,*

1 School of Automation, Guangxi University of Science and Technology, Liuzhou 545006, China;
likene@163.com (K.L.); lly_xxxx@163.com (L.L.); tangchunyi@gxust.edu.cn (C.T.); lwn01010@163.com (W.L.)

2 Guangxi Engineering Research Center for Mechanism and Control Technology of Mobile Robots,
Liuzhou 545006, China

* Correspondence: 100002085@gxust.edu.cn

Abstract: In order to solve the problem of how to perform path planning for AUVs with multiple
obstacles in a 3D underwater environment, this paper proposes a six-direction search scheme based on
neural networks. In known environments with stationary obstacles, the obstacle energy is constructed
based on a neural network and the path energy is introduced to avoid a too-long path being generated.
Based on the weighted total energy of obstacle energy and path energy, a six-direction search scheme
is designed here for path planning. To improve the efficiency of the six-direction search algorithm,
two optimization methods are employed to reduce the number of iterations and total path search
time. The first method involves adjusting the search step length dynamically, which helps to decrease
the number of iterations needed for path planning. The second method involves reducing the number
of path nodes, which can not only decrease the search time but also avoid premature convergence. By
implementing these optimization methods, the performance of the six-direction search algorithm is
enhanced in favor of path planning with multiple underwater obstacles reasonably. The simulation
results validate the effectiveness and efficiency of the six-direction search scheme.

Keywords: 3D path planning; neural networks; collision energy; autonomous underwater vehicles

1. Introduction

In recent years, due to the abundance of marine resources, robotics scholars have been
paying more and more attention to underwater exploration. Autonomous underwater
robots (AUVs) have been widely used because they can combine advanced intelligent
algorithms for unmanned operation, and their related technologies have been rapidly de-
veloped. Due to the complex underwater environment with various types of obstacles and
random locations, underwater path planning in an underwater multi-obstacle environment
has become a necessary technology for an AUV to accomplish the related tasks safely [1,2].

Underwater 3D path planning to find a path without collision from the start point
to the goal point is a vital and challenging issues because there are an infinite number of
paths which are subject to physical constraints in a 3D space. Path planning can generally
be divided into global path planning and local path planning according to the known
information about the environment [3]. For global path planning, all the information about
the environment is known, which can be used to complete the planning. Many algorithms
are proposed for global path planning, such as the A* algorithm [4,5], Dijkstra algorithm [6],
Grid-based methods and so on. While the information for local path planning is not totally
known, some environmental information must be collected in real time by sensors to
determine the location of local obstacles and then to carry out path planning. Some typical
algorithms are the Dynamic window approach (DWA) [7], Artificial potential field method
(APF) [8,9], Rapidly exploring random tree algorithm (RRT) [10,11] and so on.

Most of the algorithms proposed above are suitable for 2D environments. In recent
years, scholars have found that there are related intelligent algorithms available for 3D

Sensors 2024, 24, 1193. https://doi.org/10.3390/s24041193 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24041193
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041193?type=check_update&version=1

Sensors 2024, 24, 1193 2 of 15

path planning, such as bio-heuristic intelligence optimization algorithms, neural networks
and other algorithms [12]. Bio-heuristic intelligent optimization algorithms mainly include
particle swarm optimization (PSO) [13,14], ant colony optimization (ACO) [15,16], genetic
algorithm (GA) [17,18] and so on.

Phung et al. [13] adopted the PSO to directly implement the constraints related to
turning angle and climb angle through the elevation and azimuth angles of the spherical
vectors. However, some premature convergence phenomena occurred. Shao et al. [14]
exploited the PSO with chaotic logistic mapping to promote the initial distribution of
particles, as well as the optimality of the solution. Chen et al. [15] combined the ACO
algorithm and APF algorithm to improve convergence and eliminate local minimum
problems. Yan et al. [16] improved the transfer probability and pheromone update strategy
to solve the problem of local optimal solution and the slow convergence speed of the
traditional ant colony algorithm. Hao et al. [17] proposed an adaptive genetic algorithm to
prevent path individuals from falling into the deadlock state during the generation process
and reduce the time of global path generation. Tao et al. [18] designed reasonable crossover
and mutation adaptive probability models to converge quickly. The bio-heuristic intelligent
optimization algorithms usually display higher efficiency. But there are also problems such
as high computational complexity and inefficient utilization of target information.

Neural networks have been developed rapidly and have presented many new-type
models in recent years [19,20]. They are capable of performing complex computational
tasks and can also be applied to path planning. Wang et al. [21] submitted a sampling-based
path planning framework that utilized a deep neural network to predict feasible paths
and output promising regions. Guo et al. [22] adopted the Li activation function and by
computing the time-varying pseudoinverse of the Jacobian matrix, the resultant ZNN model
was applied to redundant manipulator kinematic control. Kroumov et al. [23] described
obstacles using energy functions defined by neural networks and different path generating
equations were used, depending on the path points inside or outside the obstacles. Alex
et al. [24] applied a neural network to determine the orientation of an object for a robotic
arm’s grasping task.

Based on the above analysis, bio-intelligent algorithms in 3D environments have
more efficient computing efficiency but require more executing time. Meanwhile, neural
networks are also widely used in 3D path planning. Li et al. [25] proposed a four-direction
algorithm that designed a simpler search method and required fewer iterations. Therefore,
inspired by the four-direction algorithm, this paper presents a six-direction search scheme
for path planning in 3D environments. Specifically, the scheme solves the problem of
path planning for AUVs with multiple obstacles underwater by reducing the iteration step
length and reducing the path nodes.

This paper is organized as follows. Section 2 presents the neural network-based six-
direction path planning scheme. The simulations of various situations are given in Section 3.
The proposed algorithm performs physical verification on the robotic arm in Section 4.
Finally, the conclusion is given in Section 5.

2. Problem Description

Finding a collision-free path in 3D space became a challenging issue with the increase
in search space and number of objects [26]. This paper presents a path planning algorithm
based on a neural network and discusses its efficiency and realizability. The presented
algorithm can be designed as follows. Firstly, the obstacle can be described as a polyhedron
or a ball. Secondly, the collision energy of the obstacle is obtained based on the neural
network. Thirdly, to avoid generating a too long path, the algorithm introduces path energy,
i.e., the sum of squared distances between adjacent nodes in the path. Finally, the collision
energy and the path energy are weighted and summed, and the generated path with the
smallest sum is selected as the final path.

Sensors 2024, 24, 1193 3 of 15

2.1. Formulation of Collision Energy Function

Generally, in a known 3D environment, the information of the position and shape
of an obstacle can be used, e.g., a stationary obstacle can be described as a polyhedron
or a ball. In order to formulate the distances between paths and obstacles, the distances
are modeled as collision energy based on the neural network approach. Thus, the energy
distribution related to obstacles in the environment is obtained, as shown in Figure 1. The
neural network consists of an input layer, a hidden layer and an output layer.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 16

collision energy and the path energy are weighted and summed, and the generated path

with the smallest sum is selected as the final path.

2.1. Formulation of Collision Energy Function

Generally, in a known 3D environment, the information of the position and shape of

an obstacle can be used, e.g., a stationary obstacle can be described as a polyhedron or a

ball. In order to formulate the distances between paths and obstacles, the distances are

modeled as collision energy based on the neural network approach. Thus, the energy dis-

tribution related to obstacles in the environment is obtained, as shown in Figure 1. The

neural network consists of an input layer, a hidden layer and an output layer.

o1 o2 on

qi

u11 u12 u13 u14 u15 u16 u21 unm

xi yi zi

. . .

. . .

wx11 wy11 wz11

Figure 1. The neural network structure for the obstacles’ energy.

In the input layer, the three neurons xi, yi, zi demonstrate the coordinates of a point in

3D space. The neurons of the first hidden layer depict the spatial constraints of the obsta-

cles, and those of the second hidden layer function describe the collision energy output of

an obstacle. In the output layer, the neuron represents the total collision energy of a 3D

space point, i.e., the sum of collision energy of all obstacles to this point.

Specifically, the first hidden layer is determined by obstacles in the environment, and

the corresponding polyhedron of an obstacle is constrained by a set of sides, and thus can

be described as

0x y zw x w y w z + + + = (1)

where wx, wy, wz, σ are the side function coefficients.

Therefore, if an obstacle is a cuboid, its six-side inequality is expressed as follows:

 1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

0

0

 0

0

0

0

xj i yj i zj i uj

xj i yj i zj i uj

xj i yj i zj i uj

xj i yj i zj i uj

xj i yj i zj i uj

xj i yj i zj i uj

w x w y w z

w x w y w z

w x w y w z

w x w y w z

w x w y w z

w x w y w z

+ + +

+ + +
 + + +

+ + +
 + + +

 + + +

 (2)

The coefficients wxjk, wyjk, wzjk are taken as weight values of the input neurons xi, yi, zi

to the jk-th hidden layer neuron with k = 1, 2, 3, 4, 5, 6 and σujk as its threshold.

Figure 1. The neural network structure for the obstacles’ energy.

In the input layer, the three neurons xi, yi, zi demonstrate the coordinates of a point in
3D space. The neurons of the first hidden layer depict the spatial constraints of the obstacles,
and those of the second hidden layer function describe the collision energy output of an
obstacle. In the output layer, the neuron represents the total collision energy of a 3D space
point, i.e., the sum of collision energy of all obstacles to this point.

Specifically, the first hidden layer is determined by obstacles in the environment, and
the corresponding polyhedron of an obstacle is constrained by a set of sides, and thus can
be described as

wxx + wyy + wzz + σ = 0 (1)

where wx, wy, wz, σ are the side function coefficients.
Therefore, if an obstacle is a cuboid, its six-side inequality is expressed as follows:

wxj1xi + wyj1yi + wzj1zi + σuj1 ≥ 0
wxj2xi + wyj2yi + wzj2zi + σuj2 ≥ 0
wxj3xi + wyj3yi + wzj3zi + σuj3 ≥ 0
wxj4xi + wyj4yi + wzj4zi + σuj4 ≥ 0
wxj5xi + wyj5yi + wzj5zi + σuj5 ≥ 0
wxj6xi + wyj6yi + wzj6zi + σuj6 ≥ 0

(2)

The coefficients wxjk, wyjk, wzjk are taken as weight values of the input neurons xi, yi, zi
to the jk-th hidden layer neuron with k = 1, 2, 3, 4, 5, 6 and σujk as its threshold.

Sensors 2024, 24, 1193 4 of 15

There is a cuboid obstacle in space as shown in Figure 2, where the thresholds of wx,
wy, wz, σ are as follows:

wx1 = 1, σj1 = −2, wy1 = wz1 = 0;
wx2 = −1, σj2 = 8, wy2 = wz2 = 0;
wy3 = 1, σj3 = −3, wx3 = wz3 = 0;
wy4 = −1, σj4 = 7, wx4 = wz4 = 0;
wz5 = 1, σj5 = −1, wx5 = wy5 = 0;
wz6 = −1, σj6 = 5, wx6 = wy6 = 0;

Sensors 2024, 24, x FOR PEER REVIEW 4 of 16

There is a cuboid obstacle in space as shown in Figure 2, where the thresholds of wx,

wy, wz, σ are as follows:

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

1, 2, 0;

1, 8, 0;

1, 3, 0;

1, 7, 0;

1, 1, 0;

1, 5, 0;

x j y z

x j y z

y j x z

y j x z

z j x y

z j x y

w w w

w w w

w w w

w w w

w w w

w w w

= = − = =

= − = = =

= = − = =

= − = = =

= = − = =

= − = = =

Figure 2. A cuboid obstacle.

The first hidden layer neuron function for the k-th side of j-th obstacle is taken as

()/

1
(, ,)

1 xjk i yjk i zjk i ujk
jk i i i w x w y w z T

u x y z
e

− + + +
=

+
 (3)

where T is a positive design parameter. In addition, if the j-th obstacle is a spherical ob-

stacle, the first hidden layer neuron function is

3 2 2 2(, ,) () () ()j i i i i jx i jy i jzu x y z r x C y C z C= − − − − − − (4)

where r is the radius, and (Cjx, Cjy, Cjz) are the center coordinates of the j-th spherical ob-

stacle.

The second hidden layer neuron function for the j-th obstacle with k sides is taken as

1

1 2
()/

1
(, , ,)

1

k

ji oj

i

j j j jk
u T

o u u u

e

=

− −

=

+

(5)

where σoj = k − 0.5 (specifically, for the spherical obstacle σoj = 0.5).

For a 3D space with n obstacles, the energy of each point can be obtained, and the

output layer function is

1 2 1 2

1

(, , ,) (, , ,)
n

i n n

j

q o o o o o o
=

= (6)

2.2. Formulation of Path Energy Function

We take the straight line between the start point and the goal point as the initial path.

The initial path is divided into s line segments of the same length, and then there are s + 1

nodes in the path, as shown in Figure 3a. During the search period, the path nodes would

be driven away from the high collision energy point to obtain a collision-free path. How-

ever, a longer path may be generated for lower collision energy in order to avoid obstacles.

Figure 2. A cuboid obstacle.

The first hidden layer neuron function for the k-th side of j-th obstacle is taken as

ujk(xi, yi, zi) =
1

1 + e−(wxjkxi+wyjkyi+wzjkzi+σujk)/T
(3)

where T is a positive design parameter. In addition, if the j-th obstacle is a spherical obstacle,
the first hidden layer neuron function is

uj(xi, yi, zi) = r3 − (xi − Cjx)
2 − (yi − Cjy)

2 − (zi − Cjz)
2 (4)

where r is the radius, and (Cjx, Cjy, Cjz) are the center coordinates of the j-th spherical
obstacle.

The second hidden layer neuron function for the j-th obstacle with k sides is taken as

oj(uj1, uj2, · · · , ujk) =
1

1 + e
−(

k
∑

i=1
uji−σoj)/T

(5)

where σoj= k − 0.5 (specifically, for the spherical obstacle σoj = 0.5).
For a 3D space with n obstacles, the energy of each point can be obtained, and the

output layer function is

qi(o1, o2, · · · , on) =
n

∑
j=1

(o1, o2, · · · , on) (6)

2.2. Formulation of Path Energy Function

We take the straight line between the start point and the goal point as the initial path.
The initial path is divided into s line segments of the same length, and then there are
s + 1 nodes in the path, as shown in Figure 3a. During the search period, the path nodes
would be driven away from the high collision energy point to obtain a collision-free path.
However, a longer path may be generated for lower collision energy in order to avoid
obstacles. But too long of a path would not be optimal for path planning. For evaluation
convenience, the sum of squares of two adjacent nodes in the path is taken as the path

Sensors 2024, 24, 1193 5 of 15

energy. In order to prevent the generated path from being too long, in this paper, we take
the path energy along with the obstacle energy into consideration.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 16

But too long of a path would not be optimal for path planning. For evaluation convenience,

the sum of squares of two adjacent nodes in the path is taken as the path energy. In order

to prevent the generated path from being too long, in this paper, we take the path energy

along with the obstacle energy into consideration.

Based on the above discussion, the path energy can be obtained:

()
1

2 2 2

1 1 1

0

() ()
s

i i i i i i

i

L x x y y z z
−

+ + +

=

 = − + − + −
 (7)

where L denotes the total path energy, s denotes the total number of the line segments

divided from the initial path, xi, yi, zi denote the coordinates of the i-th path node and (x0,

y0, z0) denote the coordinates of the starting path node.

x

y

z

The (i-1)−th node

The (k+1)−th iteration step

The (i+1)−th node

The i−th node

(a) Initial line (b) Six-direction search method

Figure 3. Introduction to the six-direction search method. The green arrows indicate the direction

the mobile agent. The blue balls indicate the six directions in space.

Different from other search algorithms, a six-direction search (SDS) algorithm is pro-

posed in 3D space to lessen the path search computation, as shown in Figure 3b. By setting

the search step length 𝛿, for the i-th node, the SDS can be obtained as follows:

(1) ()

(1) ()

(1) ()

cos(/ 2) sin(/ 2)

sin(/ 2) sin(/ 2)

cos(/ 2)

k k

i i

k k

i i

k k

i i

x x j k

y y j k

z z k

+

+

+

= +

= +

= +

 (8)

where the superscript (k + 1)-th denotes the (k − 1)-th iteration and j = 1, 2, 3, 4, k = 2,3,4.

The newly generated six nodes are linked with the (i − 1)-th and (i + 1)-th nodes, respec-

tively, to form new paths. The obstacle energy and path energy of the new paths are cal-

culated. Together with the results of the k-th path, the path with the minimum energy is

selected as the optimal path.

Furthermore, in order to improve the problem of a large number of iterations and

premature convergence of the total energy caused by the fixed step length, we employ

variable step length. The variable step length approach is to search quickly by using larger

step lengths in the pre-search phase and smaller step lengths are employed with the mo-

bile agent being far away from the obstacle in the post-search phase. The variable step

length 𝛿𝑝 is presented as follows:

 = |||| Qp (9)

Figure 3. Introduction to the six-direction search method. The green arrows indicate the direction the
mobile agent. The blue balls indicate the six directions in space.

Based on the above discussion, the path energy can be obtained:

L =
s−1

∑
i=0

[
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2
]

(7)

where L denotes the total path energy, s denotes the total number of the line segments
divided from the initial path, xi, yi, zi denote the coordinates of the i-th path node and
(x0, y0, z0) denote the coordinates of the starting path node.

Different from other search algorithms, a six-direction search (SDS) algorithm is
proposed in 3D space to lessen the path search computation, as shown in Figure 3b. By
setting the search step length δ, for the i-th node, the SDS can be obtained as follows:

xi
(k+1) = xi

(k) + δ · cos(j · π/2) · sin(k · π/2)
yi

(k+1) = yi
(k) + δ · sin(j · π/2) · sin(k · π/2)

zi
(k+1) = zi

(k) + δ · cos(k · π/2)
(8)

where the superscript (k + 1)-th denotes the (k − 1)-th iteration and j = 1, 2, 3, 4, k = 2,3,4. The
newly generated six nodes are linked with the (i − 1)-th and (i + 1)-th nodes, respectively,
to form new paths. The obstacle energy and path energy of the new paths are calculated.
Together with the results of the k-th path, the path with the minimum energy is selected as
the optimal path.

Furthermore, in order to improve the problem of a large number of iterations and
premature convergence of the total energy caused by the fixed step length, we employ
variable step length. The variable step length approach is to search quickly by using larger
step lengths in the pre-search phase and smaller step lengths are employed with the mobile
agent being far away from the obstacle in the post-search phase. The variable step length
δp is presented as follows:

δp = ||Q
∣∣∣∣∞ · δ (9)

where Q = [q1, q2, · · · , qn] for a path with n nodes, the symbol ||·||∞ denotes the infinity
norm of a vector and δ is an initial fixed step length.

This article uses a neural network structure to model the obstacle energy and then
calculates the energy distribution model of obstacles in the 3D space. A higher obstacle
energy indicates the presence of obstacles or proximity to obstacles, while a lower obstacle

Sensors 2024, 24, 1193 6 of 15

energy indicates a greater distance from obstacles. The introduction of path energy can
avoid the generated path being too long. By using obstacle energy and path energy, a
collision-free and low-energy path can be obtained.

3. Simulation Studies

In this section, path planning is performed in a given 3D environment using the
proposed SDS method. In the presence of a cuboid obstacle in space, the performance of
the algorithm with different iteration step lengths is analyzed and discussed. Then, the
results are applied to a multi-obstacle situation. The MATLAB simulation is conducted in a
3D modeling environment.

3.1. Fixed-Iteration Step Length Studies

For discussion convenience, a cuboid obstacle is introduced and the fixed iteration
step length is used for the simulation conducted in a 3D space with X ∈ [0, 10], Y ∈ [0, 10],
Z ∈ [0, 10]. The cuboid obstacle vertex is set as {(3,3,0), (3,8,0), (8,8,0), (8,3,0), (3,3,8), (3,8,8),
(8,8,8), (8,3,8)}. The red line is a straight line from start to end. The mobile agent is assumed
to move from the start point (0,0,0) to the goal point (10,10,10), as shown in Figure 4a.
Figure 4b illustrates the collision energy distribution of the cuboid obstacle.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 16

where 𝑄 = [𝑞1, 𝑞2,⋅⋅⋅, 𝑞𝑛] for a path with n nodes, the symbol || · ||∞ denotes the infinity

norm of a vector and 𝛿 is an initial fixed step length.

This article uses a neural network structure to model the obstacle energy and then

calculates the energy distribution model of obstacles in the 3D space. A higher obstacle

energy indicates the presence of obstacles or proximity to obstacles, while a lower obstacle

energy indicates a greater distance from obstacles. The introduction of path energy can

avoid the generated path being too long. By using obstacle energy and path energy, a

collision-free and low-energy path can be obtained.

3. Simulation Studies

In this section, path planning is performed in a given 3D environment using the pro-

posed SDS method. In the presence of a cuboid obstacle in space, the performance of the

algorithm with different iteration step lengths is analyzed and discussed. Then, the results

are applied to a multi-obstacle situation. The MATLAB simulation is conducted in a 3D

modeling environment.

3.1. Fixed-Iteration Step Length Studies

For discussion convenience, a cuboid obstacle is introduced and the fixed iteration

step length is used for the simulation conducted in a 3D space with X ∈ [0, 10], Y ∈ [0,

10], Z ∈ [0, 10]. The cuboid obstacle vertex is set as {(3,3,0), (3,8,0), (8,8,0), (8,3,0), (3,3,8),

(3,8,8), (8,8,8), (8,3,8)}. The red line is a straight line from start to end. The mobile agent is

assumed to move from the start point (0,0,0) to the goal point (10,10,10), as shown in Fig-

ure 4a. Figure 4b illustrates the collision energy distribution of the cuboid obstacle.

(a) A cuboid present in the space (b) Obstacle energy profiles

Figure 4. Modeling of individual obstacle energy in space. The red line is a straight line from start

to end.

For the first case, the iteration step length 𝛿 = 0.1 is used to test the effectiveness of

the scheme. In Figure 5, the red line represents the shortest distance from the start point

to the goal point, and the blue line represents the actual search path using the SDS. It is

found that the proposed SDS scheme allows the mobile agent to move from the initial

position to the target position, and the generated path can avoid obstacles without colli-

sion.

Figure 4. Modeling of individual obstacle energy in space. The red line is a straight line from start
to end.

For the first case, the iteration step length δ = 0.1 is used to test the effectiveness of the
scheme. In Figure 5, the red line represents the shortest distance from the start point to the
goal point, and the blue line represents the actual search path using the SDS. It is found
that the proposed SDS scheme allows the mobile agent to move from the initial position to
the target position, and the generated path can avoid obstacles without collision.

The transient paths and total energy variations for the corresponding paths are shown
in Figure 6. As seen in Figure 6b, the total energy (i.e., the weighted sum of the collision
energy of the obstacle and the distance energy between adjacent points) decreases from
the initial state of 13.180 to the final state 4.921, and the number of iterations is 72. The
executing time for this simulation is 0.049669. The simulation results demonstrate that
the SDS algorithm works properly to avoid a stationary obstacle. It is worth pointing out
that the SDS algorithm converges prematurely in the case of a larger step length δ = 0.1,
resulting in the final path being close to the rectangular obstacle.

Sensors 2024, 24, 1193 7 of 15
Sensors 2024, 24, x FOR PEER REVIEW 7 of 16

Figure 5. Path planning by SDS scheme with fixed 𝛿 = 0.1.

The transient paths and total energy variations for the corresponding paths are

shown in Figure 6. As seen in Figure 6b, the total energy (i.e., the weighted sum of the

collision energy of the obstacle and the distance energy between adjacent points) de-

creases from the initial state of 13.180 to the final state 4.921, and the number of iterations

is 72. The executing time for this simulation is 0.049669. The simulation results demon-

strate that the SDS algorithm works properly to avoid a stationary obstacle. It is worth

pointing out that the SDS algorithm converges prematurely in the case of a larger step

length 𝛿 = 0.1, resulting in the final path being close to the rectangular obstacle.

(a) Transient path of 𝛿 = 0.1 (b) Total energy

Figure 6. Paths synthesized by SDS with 𝛿 = 0.1. The colored lines indicate the generated transient

paths during the move.

To improve this phenomenon of early convergence, a smaller iteration step length 𝛿

= 0.01 is employed to further validate the SDS scheme, and the result is shown in Figure

7. As seen from Figure 7, the generated path can reach the target point without collision

and the critical point does not closely approach the cuboid obstacle, which makes the path

more feasible in practice.

Figure 5. Path planning by SDS scheme with fixed δ = 0.1.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 16

Figure 5. Path planning by SDS scheme with fixed 𝛿 = 0.1.

The transient paths and total energy variations for the corresponding paths are

shown in Figure 6. As seen in Figure 6b, the total energy (i.e., the weighted sum of the

collision energy of the obstacle and the distance energy between adjacent points) de-

creases from the initial state of 13.180 to the final state 4.921, and the number of iterations

is 72. The executing time for this simulation is 0.049669. The simulation results demon-

strate that the SDS algorithm works properly to avoid a stationary obstacle. It is worth

pointing out that the SDS algorithm converges prematurely in the case of a larger step

length 𝛿 = 0.1, resulting in the final path being close to the rectangular obstacle.

(a) Transient path of 𝛿 = 0.1 (b) Total energy

Figure 6. Paths synthesized by SDS with 𝛿 = 0.1. The colored lines indicate the generated transient

paths during the move.

To improve this phenomenon of early convergence, a smaller iteration step length 𝛿

= 0.01 is employed to further validate the SDS scheme, and the result is shown in Figure

7. As seen from Figure 7, the generated path can reach the target point without collision

and the critical point does not closely approach the cuboid obstacle, which makes the path

more feasible in practice.

Figure 6. Paths synthesized by SDS with δ = 0.1. The colored lines indicate the generated transient
paths during the move.

To improve this phenomenon of early convergence, a smaller iteration step length
δ = 0.01 is employed to further validate the SDS scheme, and the result is shown in Figure 7.
As seen from Figure 7, the generated path can reach the target point without collision and
the critical point does not closely approach the cuboid obstacle, which makes the path more
feasible in practice.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16

Figure 7. Path planning by SDS scheme with fixed δ = 0.01.

Figure 8 illustrates the transient paths and their total energy variations. In case δ =

0.01, the total energy decreases from an initial state of 13.180 to a final state of 3.822 with

674 iterations. Compared to the δ = 0.01 case, with δ = 0.01 employed, the number of iter-

ations increased by 836.1% but the total energy decreased by 22.3%, and the scheme gen-

erated a smoother path. These results can confirm that premature convergence can be

improved by reducing the iteration step length. However, it is worth noting that reducing

the iteration step length will greatly increase the number of iterations and the amount of

computation will also increase a lot.

(a) Transient path of = 0.01 (b) Total energy

Figure 8. Paths synthesized by SDS with δ = 0.01.

3.2. Variable Iteration Step Length Studies

There are fewer iterations with iteration step length 𝛿 = 0.1 and better obstacle avoid-

ance performance with step length 𝛿 = 0.01. In order to obtain the advantages in both

cases, we further designed the step length. Through the above discussion and analysis, a

variable step length is presented that depends on the collision energy based on the ad-

vantages of the different step lengths. The variable step length is designed as 𝛿𝑝 = ||𝑄||∞ ·

𝛿0, where Q denotes the energy vector of the obstacle at the nodes and 𝛿0 denotes the

initial step length and is related to the size of the obstacle. For testing and comparison

purposes, 𝛿0 is set to 0.1. Figure 9 depicts the final path for the variable step length

scheme, where the critical point is not close to the rectangular obstacle, similar to the case

of 𝛿 = 0.01, but with fewer iterations than the case of 𝛿 = 0.01.

Figure 7. Path planning by SDS scheme with fixed δ = 0.01.

Sensors 2024, 24, 1193 8 of 15

Figure 8 illustrates the transient paths and their total energy variations. In case δ = 0.01,
the total energy decreases from an initial state of 13.180 to a final state of 3.822 with
674 iterations. Compared to the δ = 0.01 case, with δ = 0.01 employed, the number of
iterations increased by 836.1% but the total energy decreased by 22.3%, and the scheme
generated a smoother path. These results can confirm that premature convergence can be
improved by reducing the iteration step length. However, it is worth noting that reducing
the iteration step length will greatly increase the number of iterations and the amount of
computation will also increase a lot.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16

Figure 7. Path planning by SDS scheme with fixed δ = 0.01.

Figure 8 illustrates the transient paths and their total energy variations. In case δ =

0.01, the total energy decreases from an initial state of 13.180 to a final state of 3.822 with

674 iterations. Compared to the δ = 0.01 case, with δ = 0.01 employed, the number of iter-

ations increased by 836.1% but the total energy decreased by 22.3%, and the scheme gen-

erated a smoother path. These results can confirm that premature convergence can be

improved by reducing the iteration step length. However, it is worth noting that reducing

the iteration step length will greatly increase the number of iterations and the amount of

computation will also increase a lot.

(a) Transient path of = 0.01 (b) Total energy

Figure 8. Paths synthesized by SDS with δ = 0.01.

3.2. Variable Iteration Step Length Studies

There are fewer iterations with iteration step length 𝛿 = 0.1 and better obstacle avoid-

ance performance with step length 𝛿 = 0.01. In order to obtain the advantages in both

cases, we further designed the step length. Through the above discussion and analysis, a

variable step length is presented that depends on the collision energy based on the ad-

vantages of the different step lengths. The variable step length is designed as 𝛿𝑝 = ||𝑄||∞ ·

𝛿0, where Q denotes the energy vector of the obstacle at the nodes and 𝛿0 denotes the

initial step length and is related to the size of the obstacle. For testing and comparison

purposes, 𝛿0 is set to 0.1. Figure 9 depicts the final path for the variable step length

scheme, where the critical point is not close to the rectangular obstacle, similar to the case

of 𝛿 = 0.01, but with fewer iterations than the case of 𝛿 = 0.01.

Figure 8. Paths synthesized by SDS with δ = 0.01.

3.2. Variable Iteration Step Length Studies

There are fewer iterations with iteration step length δ = 0.1 and better obstacle avoid-
ance performance with step length δ = 0.01. In order to obtain the advantages in both cases,
we further designed the step length. Through the above discussion and analysis, a variable
step length is presented that depends on the collision energy based on the advantages of
the different step lengths. The variable step length is designed as δp =

∣∣|Q||∞·δ0 , where Q
denotes the energy vector of the obstacle at the nodes and δ0 denotes the initial step length
and is related to the size of the obstacle. For testing and comparison purposes, δ0 is set to
0.1. Figure 9 depicts the final path for the variable step length scheme, where the critical
point is not close to the rectangular obstacle, similar to the case of δ = 0.01, but with fewer
iterations than the case of δ = 0.01.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16

Figure 9. Path planning by SDS scheme with the variable step length.

Figure 10 describes the transient profiles and total energy variations for the corre-

sponding paths. The collision energy decreases as the number of iterations increases and

the variable step length 𝛿𝑝 also becomes smaller as the collision energy decreases. As can

be seen from Figure 10b, the total energy decreases from the initial state 13.180 to the final

state 4.401 with 150 iterations. Compared to the fixed δ = 0.1, the scheme increases the

number of iterations by 108.3%. Additionally, it decreases the total energy of the final con-

vergence point by 10.6%. On the other hand, compared to the fixed δ = 0.01, it decreases

the number of iterations by 77.7% and increases the total energy of the final convergence

point by 15.1%. This situation implies that employing variable step length significantly

diminishes the number of iterations and can improve premature convergence. However,

the results of this approach are not satisfactory.

(a) Transient path of variable step length (b) Total energy

Figure 10. Paths synthesized by SDS with variable step length.

It is worth noting that the iteration numbers of the scheme with different step lengths

substantially vary when the total energy decreases to about half from 13.180, which is

shown in Table 1. Specifically, it takes 35 iterations to decrease to 7.055 for the fixed step

length 𝛿 = 0.1, 244 iterations to 7.013 for the fixed step length 𝛿 = 0.01 and 41 iterations

to 7.036 for the variable step length.

Figure 9. Path planning by SDS scheme with the variable step length.

Sensors 2024, 24, 1193 9 of 15

Figure 10 describes the transient profiles and total energy variations for the corre-
sponding paths. The collision energy decreases as the number of iterations increases and
the variable step length δp also becomes smaller as the collision energy decreases. As can
be seen from Figure 10b, the total energy decreases from the initial state 13.180 to the final
state 4.401 with 150 iterations. Compared to the fixed δ = 0.1, the scheme increases the
number of iterations by 108.3%. Additionally, it decreases the total energy of the final
convergence point by 10.6%. On the other hand, compared to the fixed δ = 0.01, it decreases
the number of iterations by 77.7% and increases the total energy of the final convergence
point by 15.1%. This situation implies that employing variable step length significantly
diminishes the number of iterations and can improve premature convergence. However,
the results of this approach are not satisfactory.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16

Figure 9. Path planning by SDS scheme with the variable step length.

Figure 10 describes the transient profiles and total energy variations for the corre-

sponding paths. The collision energy decreases as the number of iterations increases and

the variable step length 𝛿𝑝 also becomes smaller as the collision energy decreases. As can

be seen from Figure 10b, the total energy decreases from the initial state 13.180 to the final

state 4.401 with 150 iterations. Compared to the fixed δ = 0.1, the scheme increases the

number of iterations by 108.3%. Additionally, it decreases the total energy of the final con-

vergence point by 10.6%. On the other hand, compared to the fixed δ = 0.01, it decreases

the number of iterations by 77.7% and increases the total energy of the final convergence

point by 15.1%. This situation implies that employing variable step length significantly

diminishes the number of iterations and can improve premature convergence. However,

the results of this approach are not satisfactory.

(a) Transient path of variable step length (b) Total energy

Figure 10. Paths synthesized by SDS with variable step length.

It is worth noting that the iteration numbers of the scheme with different step lengths

substantially vary when the total energy decreases to about half from 13.180, which is

shown in Table 1. Specifically, it takes 35 iterations to decrease to 7.055 for the fixed step

length 𝛿 = 0.1, 244 iterations to 7.013 for the fixed step length 𝛿 = 0.01 and 41 iterations

to 7.036 for the variable step length.

Figure 10. Paths synthesized by SDS with variable step length.

It is worth noting that the iteration numbers of the scheme with different step lengths
substantially vary when the total energy decreases to about half from 13.180, which is
shown in Table 1. Specifically, it takes 35 iterations to decrease to 7.055 for the fixed step
length δ = 0.1, 244 iterations to 7.013 for the fixed step length δ = 0.01 and 41 iterations to
7.036 for the variable step length.

Table 1. Iterations when the energy of different schemes falls to half of the total energy.

Improvement Measures Energy Iteration Approximation Iterations

Fixed step δ = 0.1 7.055 35
Fixed step δ = 0.01 7.013 244

Variable step length 7.036 41

3.3. Path Node Reduction Studies

By varying the step length or adjusting the step length in the experiment, better
experimental results can be achieved. This approach reduces the number of iterations,
resulting in an improved search performance. Considering the larger dimensionality of the
3D space, higher number of SDS nodes and higher algorithm complexity, a method for a
reduction in path nodes is presented to optimize this problem. The approach takes into
account the specific challenges posed by these factors and provides a more efficient solution.

Through reducing the path nodes, the scheme can efficiently and rapidly search the
collision-free path. And it can effectively reduce the number of iterations required as
the path nodes decrease. To optimize the path further, adding more nodes to the path is
considered. For comparison purposes, the number of nodes can be supplemented to 100,

Sensors 2024, 24, 1193 10 of 15

as in other cases. For the path continuity, the nodes are supplemented to the path by linear
interpolation. The pseudo-code for the Algorithm 1 is as follows:

Algorithm 1 Point Reduction Method

1 For all i loops
2 If i is even number
3 x1(i) = (x(i/2) + x((i/2) + 1))/2
4 y1(i) = (y(i/2) + y((i/2) + 1))/2
5 z1(i) = (z(i/2) + z((i/2) + 1))/2
6 else
7 x1(i) = x((i + 1)/2)
8 y1(i) = y((i + 1)/2)
9 z1(i) = z((i + 1)/2)

In Figure 11, the final path generated by the SDS algorithm of the reduced path nodes
scheme is shown, where the critical point is not in close proximity to the obstacle.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16

Table 1. Iterations when the energy of different schemes falls to half of the total energy.

Improvement Measures Energy Iteration Approximation Iterations

Fixed step 𝛿 = 0.1 7.055 35

Fixed step 𝛿 = 0.01 7.013 244

Variable step length 7.036 41

3.3. Path Node Reduction Studies

By varying the step length or adjusting the step length in the experiment, better ex-

perimental results can be achieved. This approach reduces the number of iterations, re-

sulting in an improved search performance. Considering the larger dimensionality of the

3D space, higher number of SDS nodes and higher algorithm complexity, a method for a

reduction in path nodes is presented to optimize this problem. The approach takes into

account the specific challenges posed by these factors and provides a more efficient solu-

tion.

Through reducing the path nodes, the scheme can efficiently and rapidly search the

collision-free path. And it can effectively reduce the number of iterations required as the

path nodes decrease. To optimize the path further, adding more nodes to the path is con-

sidered. For comparison purposes, the number of nodes can be supplemented to 100, as

in other cases. For the path continuity, the nodes are supplemented to the path by linear

interpolation. The pseudo-code for the Algorithm 1 is as follows:

Algorithm 1 Point Reduction Method

1 For all i loops

2 If i is even number

3 x1(i) = (x(i/2) + x((i/2) + 1))/2

4 y1(i) = (y(i/2) + y((i/2) + 1))/2

5 z1(i) = (z(i/2) + z((i/2) + 1))/2

6 else

7 x1(i) = x((i + 1)/2)

8 y1(i) = y((i + 1)/2)

9 z1(i) = z((i + 1)/2)

In Figure 11, the final path generated by the SDS algorithm of the reduced path nodes

scheme is shown, where the critical point is not in close proximity to the obstacle.

Figure 11. Path point reduction. Figure 11. Path point reduction.

In Figure 12, the transient profiles and variations in total energy are presented for the
corresponding paths. It can be seen that the total energy decreases from the initial state of
13.180 to 3.927, which is closer to the total energy of 3.822 in the δ = 0.01 case. Compared to
the variable step length scheme, this scheme reduces the number of iterations by 46.7% and
the total energy of the final convergence point by 10.8%. The data reveal that the reduced
path node scheme requires a lower number of iterations compared to the previous schemes.
Additionally, it demonstrates a significant decrease in total energy when compared to
Figures 6b and 10b, and it can effectively improve the premature convergence.

With the comparison of the reduced path node scheme with the variable step length
scheme, a significant improvement in the final convergence energy and a reduction in the
number of iterations can be seen. Reducing the path node energy eventually converges
to 3.927, which is smaller than 4.401 of the variable step length schemes. In addition, the
number of iterations of the reduced path node scheme is 80, which is close to one-half the
number of iterations for the variable step length. This implies that convergence of collision
energy can be optimized by reducing the number of path nodes. Moreover, this scheme
can further decrease the number of iterations. These results validate that reducing the path
nodes serves as an effective and feasible alternative to the proposed SDS method.

The simulation data gained with different step lengths and methods are summarized
in Table 2. After comparing them, they show that the path nodes reduction scheme is the
best one.

Sensors 2024, 24, 1193 11 of 15

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16

In Figure 12, the transient profiles and variations in total energy are presented for the

corresponding paths. It can be seen that the total energy decreases from the initial state of

13.180 to 3.927, which is closer to the total energy of 3.822 in the 𝛿 = 0.01 case. Compared

to the variable step length scheme, this scheme reduces the number of iterations by 46.7%

and the total energy of the final convergence point by 10.8%. The data reveal that the re-

duced path node scheme requires a lower number of iterations compared to the previous

schemes. Additionally, it demonstrates a significant decrease in total energy when com-

pared to Figures 6b and 10b, and it can effectively improve the premature convergence.

(a) Transient path of point reduction (b) Total energy

Figure 12. Paths synthesized by SDS with reduce path node.

With the comparison of the reduced path node scheme with the variable step length

scheme, a significant improvement in the final convergence energy and a reduction in the

number of iterations can be seen. Reducing the path node energy eventually converges to

3.927, which is smaller than 4.401 of the variable step length schemes. In addition, the

number of iterations of the reduced path node scheme is 80, which is close to one-half the

number of iterations for the variable step length. This implies that convergence of collision

energy can be optimized by reducing the number of path nodes. Moreover, this scheme

can further decrease the number of iterations. These results validate that reducing the path

nodes serves as an effective and feasible alternative to the proposed SDS method.

The simulation data gained with different step lengths and methods are summarized

in Table 2. After comparing them, they show that the path nodes reduction scheme is the

best one.

Table 2. Simulation data.

Improvement Measures
Whether to Avoid

Obstacles
Iterations Total Energy

Computational

Time

Whether or Not to

Converge Prema-

turely

Fixed step 𝛿 = 0.1 Y 72 4.921 0.049669 Y

Fixed step 𝛿 = 0.01 Y 674 3.822 0.197290 N

Variable step length Y 150 4.401 0.064872 Y

Path nodes reduction Y 80 3.927 0.064124 N

3.4. Path Planning Studies for Multiple Obstacles

In this section, to further validate the effectiveness of the SDS scheme, multiple ob-

stacles are considered in the 3D environment. Three obstacles are set typically as a cuboid,

a cylinder and a sphere. In detail, the vertex, cylindrical base center or sphere-center

Figure 12. Paths synthesized by SDS with reduce path node.

Table 2. Simulation data.

Improvement
Measures

Whether to Avoid
Obstacles Iterations Total Energy Computational

Time
Whether or Not to

Converge Prematurely

Fixed step δ = 0.1 Y 72 4.921 0.049669 Y
Fixed step δ = 0.01 Y 674 3.822 0.197290 N

Variable step
length Y 150 4.401 0.064872 Y

Path nodes
reduction Y 80 3.927 0.064124 N

3.4. Path Planning Studies for Multiple Obstacles

In this section, to further validate the effectiveness of the SDS scheme, multiple
obstacles are considered in the 3D environment. Three obstacles are set typically as a
cuboid, a cylinder and a sphere. In detail, the vertex, cylindrical base center or sphere-
center coordinates of the obstacles are {(3,2,0), (6,2,0), (3,4,0), (6,4,0), (3,2,7), (6,2,7), (3,4,7),
(6,4,7)} for the cuboid obstacle, {(2,8,0), r = 1, h = 8} for the cylindrical obstacle and {(7,7,7),
r = 1.5} for the sphere obstacle, respectively. It is assumed that the mobile agent starts
moving from the start point (0,0,0) and stops at the target point (10,10,10), as shown in
Figure 13a. Figure 13b shows the energy of the obstacles.

The green line is the path generated using the SDS algorithm, and the simulation
results are shown with two observation views, as seen in Figure 14. The simulation results
demonstrate that the generated path is smooth and successfully avoids collision with
obstacles. Moreover, the critical point remains at a certain distance from the obstacles,
indicating the effectiveness of this scheme for the avoidance of multiple obstacles.

Remarks. For the purpose of this paper, to verify the feasibility of the proposed search
scheme, the SDS algorithm is analyzed in comparison with the traditional RRT algorithm
and the IRRT algorithm that was proposed in the literature [11]. Both the RRT algorithm and
the SDS algorithm are comparable as they obtain new nodes by utilizing a node expansion
strategy and find the final path after several explorations and expansions. Figure 15 shows
the optimal paths obtained by the SDS, RRT and IRRT algorithms in the same case, with
the start and goal points represented by the green and blue balls, respectively. As can be
seen from the figure, in the same situation, the paths generated by all schemes can avoid
obstacles to reach the target point. Compared to the paths generated by the SDS and IRRT,
the RTT path is smoother. The proximity between the paths generated by RTT and IRRT
and the obstacles creates a risk of collision. But the path generated by SDS is a certain
distance from the obstacles, which does not generate a risk of collision and it is more in line
with the requirements of the actual situation.

Sensors 2024, 24, 1193 12 of 15

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16

coordinates of the obstacles are {(3,2,0), (6,2,0), (3,4,0), (6,4,0), (3,2,7), (6,2,7), (3,4,7), (6,4,7)}

for the cuboid obstacle, {(2,8,0), r = 1, h = 8} for the cylindrical obstacle and {(7,7,7), r = 1.5}

for the sphere obstacle, respectively. It is assumed that the mobile agent starts moving

from the start point (0,0,0) and stops at the target point (10,10,10), as shown in Figure 13a.

Figure 13b shows the energy of the obstacles.

(a) Multiple obstacles environment (b) Multiple obstacles energy

Figure 13. Energy modeling of multiple obstacles in space.

The green line is the path generated using the SDS algorithm, and the simulation

results are shown with two observation views, as seen in Figure 14. The simulation results

demonstrate that the generated path is smooth and successfully avoids collision with ob-

stacles. Moreover, the critical point remains at a certain distance from the obstacles, indi-

cating the effectiveness of this scheme for the avoidance of multiple obstacles.

(a) Main view (b) Top view

Figure 14. Multiple obstacle avoidance path.

Remarks. For the purpose of this paper, to verify the feasibility of the proposed search

scheme, the SDS algorithm is analyzed in comparison with the traditional RRT algorithm

and the IRRT algorithm that was proposed in the literature [11]. Both the RRT algorithm

and the SDS algorithm are comparable as they obtain new nodes by utilizing a node ex-

pansion strategy and find the final path after several explorations and expansions. Figure

15 shows the optimal paths obtained by the SDS, RRT and IRRT algorithms in the same

case, with the start and goal points represented by the green and blue balls, respectively.

Figure 13. Energy modeling of multiple obstacles in space.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16

coordinates of the obstacles are {(3,2,0), (6,2,0), (3,4,0), (6,4,0), (3,2,7), (6,2,7), (3,4,7), (6,4,7)}

for the cuboid obstacle, {(2,8,0), r = 1, h = 8} for the cylindrical obstacle and {(7,7,7), r = 1.5}

for the sphere obstacle, respectively. It is assumed that the mobile agent starts moving

from the start point (0,0,0) and stops at the target point (10,10,10), as shown in Figure 13a.

Figure 13b shows the energy of the obstacles.

(a) Multiple obstacles environment (b) Multiple obstacles energy

Figure 13. Energy modeling of multiple obstacles in space.

The green line is the path generated using the SDS algorithm, and the simulation

results are shown with two observation views, as seen in Figure 14. The simulation results

demonstrate that the generated path is smooth and successfully avoids collision with ob-

stacles. Moreover, the critical point remains at a certain distance from the obstacles, indi-

cating the effectiveness of this scheme for the avoidance of multiple obstacles.

(a) Main view (b) Top view

Figure 14. Multiple obstacle avoidance path.

Remarks. For the purpose of this paper, to verify the feasibility of the proposed search

scheme, the SDS algorithm is analyzed in comparison with the traditional RRT algorithm

and the IRRT algorithm that was proposed in the literature [11]. Both the RRT algorithm

and the SDS algorithm are comparable as they obtain new nodes by utilizing a node ex-

pansion strategy and find the final path after several explorations and expansions. Figure

15 shows the optimal paths obtained by the SDS, RRT and IRRT algorithms in the same

case, with the start and goal points represented by the green and blue balls, respectively.

Figure 14. Multiple obstacle avoidance path.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 16

As can be seen from the figure, in the same situation, the paths generated by all schemes

can avoid obstacles to reach the target point. Compared to the paths generated by the SDS

and IRRT, the RTT path is smoother. The proximity between the paths generated by RTT

and IRRT and the obstacles creates a risk of collision. But the path generated by SDS is a

certain distance from the obstacles, which does not generate a risk of collision and it is

more in line with the requirements of the actual situation.

(a) Main view (b) Top view

Figure 15. Paths generated by the different algorithms.

The experimental data of the SDS, RRT and IRRT algorithms are presented in Table

3, where the number of iterations and running time of the three schemes are compared.

The SDS algorithm is better than the RRT algorithm and IRRT algorithm in terms of the

number of iterations and running time.

Table 3. Experimental data.

Algorithms Iterations Computational Time

SDS 205 0.112469

RRT 359 4.301346

IRRT 329 0.469415

4. Physical Experiment Verification

The physical experiment verification includes two parts: physical robot model simu-

lation and physical robot verification. The experiment is conducted on a Mitsubishi six-

degree-of-freedom robotic arm RV-2F-D. The unit of each parameter in the experiment is

in millimeters (mm). The starting coordinates of the robot end-effector (i.e., the red ball

location) are (150,−50,170), and the target coordinates (i.e., the green ball location) are

(350,150,370). For illustration convenience, only a cylindrical obstacle {(250,50,0), r = 20, h

= 290} is set in the experimental space. To verify the path generated by the SDS method

based on the simulative robotic arm RV-2F-D model, the final path nodes optimized by

the SDS algorithm are input into the Mitsubishi robotic arm simulation software GX sim-

ulator. Then, the robotic arm performs path following, and the actual path is shown in

Figure 16. From Figure 16, it can be seen that the robotic arm can follow a smooth path

with obstacle avoidance. These simulation results verify that the scheme of the SDS algo-

rithm is effective and feasible.

Figure 15. Paths generated by the different algorithms.

Sensors 2024, 24, 1193 13 of 15

The experimental data of the SDS, RRT and IRRT algorithms are presented in Table 3,
where the number of iterations and running time of the three schemes are compared. The
SDS algorithm is better than the RRT algorithm and IRRT algorithm in terms of the number
of iterations and running time.

Table 3. Experimental data.

Algorithms Iterations Computational Time

SDS 205 0.112469
RRT 359 4.301346
IRRT 329 0.469415

4. Physical Experiment Verification

The physical experiment verification includes two parts: physical robot model simulation
and physical robot verification. The experiment is conducted on a Mitsubishi six-degree-of-
freedom robotic arm RV-2F-D. The unit of each parameter in the experiment is in millimeters
(mm). The starting coordinates of the robot end-effector (i.e., the red ball location) are
(150,−50,170), and the target coordinates (i.e., the green ball location) are (350,150,370). For
illustration convenience, only a cylindrical obstacle {(250,50,0), r = 20, h = 290} is set in the
experimental space. To verify the path generated by the SDS method based on the simulative
robotic arm RV-2F-D model, the final path nodes optimized by the SDS algorithm are input
into the Mitsubishi robotic arm simulation software GX simulator. Then, the robotic arm
performs path following, and the actual path is shown in Figure 16. From Figure 16, it can be
seen that the robotic arm can follow a smooth path with obstacle avoidance. These simulation
results verify that the scheme of the SDS algorithm is effective and feasible.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 16

Figure 16. Simulation experiment.

To further validate the feasibility of the SDS algorithm, a physical experiment is con-

ducted on the robotic arm RV-2F-D. Figures 17 and 18 illustrate the transient profiles of

the robotic motion from the front and side views, and it can be seen that the robotic arm

successfully performs the path-tracking task without any lag. These results demonstrate

that the path can be followed smoothly by the robotic arm and is suitable for physical

applications.

Figure 17. Main view of the robotic arm performing the path following.

Figure 18. Side view of the robotic arm performing the path following.

5. Conclusions

In a 3D underwater environment, an SDS strategy based on neural networks is pro-

posed in this paper in order to make the paths planned by AUVs safer and more efficient

when facing multiple obstacles. Neural networks are employed to construct collision en-

ergy models for stationary obstacles. The generated paths are optimized by adjusting the

search step length and reducing the number of path nodes, which effectively decreases

the number of iterations and total energy. Based on the simulation and physical verifica-

tion, the results indicate that the proposed SDS algorithm successfully avoids obstacles

and achieves efficient 3D path planning. For future research, potential improvements will

include simplifying the path search direction, optimizing the iteration process, and ex-

tending the algorithm to underwater environments with dynamic obstacles.

Figure 16. Simulation experiment.

To further validate the feasibility of the SDS algorithm, a physical experiment is conducted
on the robotic arm RV-2F-D. Figures 17 and 18 illustrate the transient profiles of the robotic
motion from the front and side views, and it can be seen that the robotic arm successfully
performs the path-tracking task without any lag. These results demonstrate that the path can
be followed smoothly by the robotic arm and is suitable for physical applications.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 16

Figure 16. Simulation experiment.

To further validate the feasibility of the SDS algorithm, a physical experiment is con-

ducted on the robotic arm RV-2F-D. Figures 17 and 18 illustrate the transient profiles of

the robotic motion from the front and side views, and it can be seen that the robotic arm

successfully performs the path-tracking task without any lag. These results demonstrate

that the path can be followed smoothly by the robotic arm and is suitable for physical

applications.

Figure 17. Main view of the robotic arm performing the path following.

Figure 18. Side view of the robotic arm performing the path following.

5. Conclusions

In a 3D underwater environment, an SDS strategy based on neural networks is pro-

posed in this paper in order to make the paths planned by AUVs safer and more efficient

when facing multiple obstacles. Neural networks are employed to construct collision en-

ergy models for stationary obstacles. The generated paths are optimized by adjusting the

search step length and reducing the number of path nodes, which effectively decreases

the number of iterations and total energy. Based on the simulation and physical verifica-

tion, the results indicate that the proposed SDS algorithm successfully avoids obstacles

and achieves efficient 3D path planning. For future research, potential improvements will

include simplifying the path search direction, optimizing the iteration process, and ex-

tending the algorithm to underwater environments with dynamic obstacles.

Figure 17. Main view of the robotic arm performing the path following.

Sensors 2024, 24, 1193 14 of 15

Sensors 2024, 24, x FOR PEER REVIEW 14 of 16

Figure 16. Simulation experiment.

To further validate the feasibility of the SDS algorithm, a physical experiment is con-

ducted on the robotic arm RV-2F-D. Figures 17 and 18 illustrate the transient profiles of

the robotic motion from the front and side views, and it can be seen that the robotic arm

successfully performs the path-tracking task without any lag. These results demonstrate

that the path can be followed smoothly by the robotic arm and is suitable for physical

applications.

Figure 17. Main view of the robotic arm performing the path following.

Figure 18. Side view of the robotic arm performing the path following.

5. Conclusions

In a 3D underwater environment, an SDS strategy based on neural networks is pro-

posed in this paper in order to make the paths planned by AUVs safer and more efficient

when facing multiple obstacles. Neural networks are employed to construct collision en-

ergy models for stationary obstacles. The generated paths are optimized by adjusting the

search step length and reducing the number of path nodes, which effectively decreases

the number of iterations and total energy. Based on the simulation and physical verifica-

tion, the results indicate that the proposed SDS algorithm successfully avoids obstacles

and achieves efficient 3D path planning. For future research, potential improvements will

include simplifying the path search direction, optimizing the iteration process, and ex-

tending the algorithm to underwater environments with dynamic obstacles.

Figure 18. Side view of the robotic arm performing the path following.

5. Conclusions

In a 3D underwater environment, an SDS strategy based on neural networks is pro-
posed in this paper in order to make the paths planned by AUVs safer and more efficient
when facing multiple obstacles. Neural networks are employed to construct collision
energy models for stationary obstacles. The generated paths are optimized by adjusting the
search step length and reducing the number of path nodes, which effectively decreases the
number of iterations and total energy. Based on the simulation and physical verification,
the results indicate that the proposed SDS algorithm successfully avoids obstacles and
achieves efficient 3D path planning. For future research, potential improvements will in-
clude simplifying the path search direction, optimizing the iteration process, and extending
the algorithm to underwater environments with dynamic obstacles.

Author Contributions: Conceptualization, K.L. and L.L.; methodology, K.L.; software, L.L. and W.L.;
validation, C.T.; investigation K.L., L.L. and W.L.; writing—original draft preparation, L.L. and C.T.;
writing—review and editing, L.L. and K.L.; supervision, C.T. and X.F.; funding acquisition, X.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Guangxi Science and Technology Major Program (AA23062091,
AA22068064), National Natural Science Foundation (NNSF) of China (No.61663003) and PhD Start-up
Foundation of Guangxi University of Science and Technology under Grant (No.12Z05).

Institutional Review Board Statement: Not available.

Informed Consent Statement: Not available.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cheng, C.; Sha, Q.; He, B.; Li, G. Path Planning and Obstacle Avoidance for AUV: A Review. Ocean. Eng. 2021, 235, 109355.

[CrossRef]
2. Kot, R. Review of Collision Avoidance and Path Planning Algorithms Used in Autonomous Underwater Vehicles. Electronics

2022, 11, 2301. [CrossRef]
3. Patle, B.K.; Babu, L.G.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A Review: On Path Planning Strategies for Navigation of Mobile

Robot. Def. Technol. 2019, 15, 582–606. [CrossRef]
4. Yu, X.; Chen, W.-N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling in

Environments With Dense Obstacles. IEEE Trans. Evol. Computat. 2019, 23, 617–631. [CrossRef]
5. Wang, Z.; Xiang, X.; Yang, J.; Yang, S. Composite Astar and B-Spline Algorithm for Path Planning of Autonomous Underwater Ve-

hicle. In Proceedings of the 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications
(USYS), Kuala Lumpur, Malaysia, 18–20 December 2017; pp. 1–6. [CrossRef]

6. Dhulkefl, E.; Durdu, A.; TerzïOğlu, H. Dijkstra Algorithm Using Uav Path Planning. Konya J. Eng. Sci. 2020, 8, 92–105. [CrossRef]
7. Lai, X.; Wu, D.; Wu, D.; Li, J.H.; Yu, H. Enhanced DWA Algorithm for Local Path Planning of Mobile Robot. Ind. Robot Int. J.

Robot. Res. Appl. 2022, 50, 186–194. [CrossRef]
8. Fan, X.; Guo, Y.; Liu, H.; Wei, B.; Lyu, W. Improved Artificial Potential Field Method Applied for AUV Path Planning. Math. Probl.

Eng. 2020, 2020, 6523158. [CrossRef]

https://doi.org/10.1016/j.oceaneng.2021.109355
https://doi.org/10.3390/electronics11152301
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1109/TEVC.2018.2878221
https://doi.org/10.1109/USYS.2017.8309463
https://doi.org/10.36306/konjes.822225
https://doi.org/10.1108/IR-05-2022-0130
https://doi.org/10.1155/2020/6523158

Sensors 2024, 24, 1193 15 of 15

9. Xing, T.; Wang, X.; Ding, K.; Ni, K.; Zhou, Q. Improved Artificial Potential Field Algorithm Assisted by Multisource Data for
AUV Path Planning. Sensors 2023, 23, 6680. [CrossRef] [PubMed]

10. Cui, R.; Li, Y.; Yan, W. Mutual Information-Based Multi-AUV Path Planning for Scalar Field Sampling Using Multidimensional
RRT*. IEEE Trans. Syst. Man Cybern, Syst. 2016, 46, 993–1004. [CrossRef]

11. Li, J.; Yang, C. AUV Path Planning Based on Improved RRT and Bezier Curve Optimization. In Proceedings of the 2020 IEEE
International Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October 2020; pp. 1359–1364. [CrossRef]

12. Wu, J.; Song, C.; Ma, J.; Wu, J.; Han, G. Reinforcement Learning and Particle Swarm Optimization Supporting Real-Time Rescue
Assignments for Multiple Autonomous Underwater Vehicles. IEEE Trans. Intell. Transport. Syst. 2022, 23, 6807–6820. [CrossRef]

13. Phung, M.D.; Ha, Q.P. Safety-Enhanced UAV Path Planning with Spherical Vector-Based Particle Swarm Optimization. Appl. Soft
Comput. 2021, 107, 107376. [CrossRef]

14. Shao, S.; Peng, Y.; He, C.; Du, Y. Efficient Path Planning for UAV Formation via Comprehensively Improved Particle Swarm
Optimization. ISA Trans. 2020, 97, 415–430. [CrossRef] [PubMed]

15. Chen, Y.; Bai, G.; Zhan, Y.; Hu, X.; Liu, J. Path Planning and Obstacle Avoiding of the USV Based on Improved ACO-APF Hybrid
Algorithm With Adaptive Early-Warning. IEEE Access 2021, 9, 40728–40742. [CrossRef]

16. Yan, S. Research on Path Planning of AUV Based on Improved Ant Colony Algorithm. In Proceedings of the 2021 4th International
Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 28–31 May 2021; pp. 121–124. [CrossRef]

17. Hao, K.; Zhao, J.; Li, Z.; Liu, Y.; Zhao, L. Dynamic Path Planning of a Three-Dimensional Underwater AUV Based on an Adaptive
Genetic Algorithm. Ocean. Eng. 2022, 263, 112421. [CrossRef]

18. Tao, W.; Yan, S.; Pan, F.; Li, G. AUV Path Planning Based on Improved Genetic Algorithm. In Proceedings of the 2020 5th
International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 19–20 September 2020;
pp. 195–199. [CrossRef]

19. Liao, B.; Han, L.; He, Y.; Cao, X.; Li, J. Prescribed-Time Convergent Adaptive ZNN for Time-Varying Matrix Inversion under
Harmonic Noise. Electronics 2022, 11, 1636. [CrossRef]

20. Liao, B.; Wang, Y.; Li, W.; Peng, C.; Xiang, Q. Prescribed-Time Convergent and Noise-Tolerant Z-Type Neural Dynamics for
Calculating Time-Dependent Quadratic Programming. Neural Comput. Appl. 2021, 33, 5327–5337. [CrossRef]

21. Wang, J.; Jia, X.; Zhang, T.; Ma, N.; Meng, M.Q.-H. Deep Neural Network Enhanced Sampling-Based Path Planning in 3D Space.
IEEE Trans. Automat. Sci. Eng. 2022, 19, 3434–3443. [CrossRef]

22. Guo, D.; Zhang, Y. Li-Function Activated ZNN with Finite-Time Convergence Applied to Redundant-Manipulator Kinematic
Control via Time-Varying Jacobian Matrix Pseudoinversion. Appl. Soft Comput. 2014, 24, 158–168. [CrossRef]

23. Kroumov, V.; Yu, J. 3D Path Planning for Mobile Robots Using Annealing Neural Network. In Proceedings of the 2009 International
Conference on Networking, Sensing and Control, Okayama, Japan, 26 March 2009; pp. 130–135. [CrossRef]

24. Bertino, A.; Bagheri, M.; Krstić, M.; Naseradinmousavi, P. Experimental Autonomous Deep Learning-Based 3D Path Planning
for a 7-DOF Robot Manipulator. In Volume 2: Modeling and Control of Engine and Aftertreatment Systems; Modeling and Control of
IC Engines and Aftertreatment Systems; American Society of Mechanical Engineers: Park City, UT, USA, 2019; p. V002T14A002.
[CrossRef]

25. Li, K.; Yuan, C.; Wang, J.; Dong, X. Four-Direction Search Scheme of Path Planning for Mobile Agents. Robotica 2020, 38, 531–540.
[CrossRef]

26. Jiang, W.; Lyu, Y.; Li, Y.; Guo, Y.; Zhang, W. UAV Path Planning and Collision Avoidance in 3D Environments Based on POMPD
and Improved Grey Wolf Optimizer. Aerosp. Sci. Technol. 2022, 121, 107314. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s23156680
https://www.ncbi.nlm.nih.gov/pubmed/37571463
https://doi.org/10.1109/TSMC.2015.2500027
https://doi.org/10.1109/ICMA49215.2020.9233842
https://doi.org/10.1109/TITS.2021.3062500
https://doi.org/10.1016/j.asoc.2021.107376
https://doi.org/10.1016/j.isatra.2019.08.018
https://www.ncbi.nlm.nih.gov/pubmed/31416619
https://doi.org/10.1109/ACCESS.2021.3062375
https://doi.org/10.1109/ICAIBD51990.2021.9458959
https://doi.org/10.1016/j.oceaneng.2022.112421
https://doi.org/10.1109/CACRE50138.2020.9230339
https://doi.org/10.3390/electronics11101636
https://doi.org/10.1007/s00521-020-05356-x
https://doi.org/10.1109/TASE.2021.3121408
https://doi.org/10.1016/j.asoc.2014.06.045
https://doi.org/10.1109/ICNSC.2009.4919259
https://doi.org/10.1115/DSCC2019-8951
https://doi.org/10.1017/S0263574719000821
https://doi.org/10.1016/j.ast.2021.107314

	Introduction
	Problem Description
	Formulation of Collision Energy Function
	Formulation of Path Energy Function

	Simulation Studies
	Fixed-Iteration Step Length Studies
	Variable Iteration Step Length Studies
	Path Node Reduction Studies
	Path Planning Studies for Multiple Obstacles

	Physical Experiment Verification
	Conclusions
	References

