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Abstract: Photosensitive materials are widely used for the direct fabrication of surface relief gratings
(SRGs) without the selective etching of the material. It is known that the interferometric approach
makes it possible to fabricate SRGs with submicron and even subwavelength periods. However,
to change the period of the written SRGs, it is necessary to change the convergence angle, shift a
sample, and readjust the interferometric setup. Recently, it was shown that structured laser beams
with predetermined, periodically modulated polarization distributions can also be used to fabricate
SRGs. A structured laser beam with the desired polarization distribution can be formed with just
one polarizing optical element—for example, the so-called depolarizer, a patterned micro-retarder
array. The use of such stacked elements makes it possible to directly control the modulation period
of the polarization of the generated laser beam. We show that this approach allows one to fabricate
SRGs with submicron periods. Moreover, the addition of q-plates, elements effectively used to
generate cylindrical vector beams with polarization singularities, allows the efficient formation
of fork polarization gratings (FPGs) and the fabrication of higher-order fork-shaped SRGs. Full
control of the parameters of the generated FPGs is possible. We demonstrate the formation of FPGs
of higher orders (up to 12) by only adding first- and second-order q-plates and half-wave plates
to the depolarizers. In this work, we numerically and experimentally study the parameters of
various types of SRGs formed using these stacked polarizing elements and show the significant
potential of this method for the laser processing of photosensitive materials, which often also serve as
polarization sensors.

Keywords: surface relief gratings; depolarizer; q-plate; polarization gratings; chalcogenide glasses

1. Introduction

Surface relief gratings (SRGs) are widely used in spectroscopy [1–4], laser beam split-
ting [5,6], laser material processing [7], and solar cells [8,9]. Subwavelength versions of
SRGs are used for polarization transformation and the generation of vector optical vortex
beams [10–14]. The most common way to manufacture SRGs is the interferometric ap-
proach. The interference of two laser beams generates a periodically modulated intensity
distribution for the processing of materials [15–17]. Laser-induced periodic surface struc-
tures (LIPSSs) formed using pulsed laser radiation [18,19] are used for the fabrication of
subwavelength SRGs. To change the period of the formed periodic relief in these cases, it is
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necessary to change the wavelength of the illuminating laser radiation or change the pa-
rameters of the elements in the optical laser-writing setup. This is possible by changing the
convergence angle of the superimposed laser beams in the interferometric setup or by using
micro-objectives with different magnifications and numerical apertures. In our recent work,
we proposed the use of the so-called depolarizer for the fabrication of SRGs in thin films of
photosensitive chalcogenide glasses (CGs) [20]. Depolarizers are patterned micro-retarder
arrays capable of converting the initial linear polarization of a laser beam into a periodically
modulated polarization distribution [21]. It is well known that photosensitive materials
can change their structures under the action of laser radiation, depending not only on the
amplitude but also on the polarization distribution of the radiation [22]. Because of this,
we have shown the possibility of controlling the relief height, the period of the formed
SRGs, and the orientation of the grating grooves using a single depolarizer. However, the
proposed approach had a certain limitation regarding the period of fabricated SRGs—the
minimum period of the fabricated structures was only 4 µm. To overcome this limitation,
we propose the use of a combination of two depolarizers. Each of these depolarizers per-
forms the same polarization transformation; however, the rotation of one of them relative
to the other leads to a change in the polarization modulation period in the transformed
laser beam. Note, the generated intensity distribution remains the same. The period of
these changes can either increase or decrease depending on the angle between the axes
of the depolarizers. In the experimental testing, we applied thin films of nano-multilayer
structures (NMLSs) based on the CGs’ As2S3 and a-Se [23,24]. For the laser writing of the
SRGs, we used a laser radiation with a wavelength of 532 nm, which is in a region of a
significant decrease in the transparency of the film (450–650 nm) because of an increase in
the absorption.

We have also explored the possibility of using other polarizing elements in combination
with depolarizers. Combinations of a depolarizer and q-plates of different orders have
been proposed to form fork-shaped polarization gratings (FPGs) [25]. Among the useful
applications of FPGs are laser beam generation with the orbital angular momentum (OAM)
and mode transformation [26,27]. It is well known that q-plates allows one to generate
the so-called cylindrical vector beams (CVBs), beams with polarization singularities [28].
Our results show that the use of depolarizers combined with q-plates of the q = 1/2 and
q = 1 orders leads to the formation of second- and fourth-order FPGs. These FPGs were
effectively used for the laser processing of NMLSs based on CGs. In addition, the possibility
of forming FPGs of the sixth, eighth, tenth, and twelfth orders using a combination of a
depolarizer, q-plates with the orders q = 1/2 and 1, and half-wave plates was demonstrated.
Thus, the combinations of low-order q-plates, depolarizers, and half-wave plates can be
used for the effective generation of higher-order FPGs, which can be used for the laser
patterning of thin films of photosensitive materials and fabrication fork-shaped SRGs [29].
Fork-shaped SRGs are well-studied elements for the generation of optical vortex (OV)
beams with OAM [14,30–33]. Such elements are widely used in modern applications [34]
and make it possible to generate OVs in the extreme ultraviolet region [35], as well as
realize a white-light vortex coronagraph with sub-resolution detection [36].

2. Methods
2.1. Two Stacked Depolarizers

The depolarizer used in our study is an array of wave plates with varying retardation
and fast-axis orientation imprinted in the liquid crystal polymer (LCP) material [37]. It is
well known that a wave plate can be used as a continuously adjustable polarization rotator;
the polarization direction of the transmitted linearly polarized light is rotated by a double
angle between the axis of the plate and the polarization direction of the incident light (see
Figure 1(a1)). In terms of the Jones calculus, such a transformation of x-polarized light can
be defined as follows [38]:

J1 =

[
cos 2θ1 sin 2θ1
sin 2θ1 − cos 2θ1

][
1
0

]
=

[
cos 2θ1
sin 2θ1

]
, (1)
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where θ1 is the angle between the fast axis of the plate and the horizontal.
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Figure 1. Polarization transformations carried out by (a1) a single half-wave plate and (a2) two stacked
half-wave plates. (b) Fast-axis orientation of the depolarizer used in the study. (c) Schematic of the
proposed principle for controlling the polarization modulation period using a double depolarizer–
rotation of one of the used depolarizers relative to the other. (d) Focusing of a light field created
by a linear polarization grating formed by a depolarizer. The three components of the electric field
(red—x-component; green—y-component; and blue—z-component) of the input field and the total
intensity distribution formed in the focal plane are shown. The arrows indicate local polarization
directions. The ellipses with arrows are polarization ellipses. The size of the input field distributions
is 200 × 200 µm. (e) Crossed-polarizer images of two stacked depolarizers obtained with various
angle differences (α) between their axes.

If a second half-wave plate is used, then the Jones vector of the laser beam at the
output of the second plate with the axis rotated by θ2 relative to the horizontal has the
following form:

J2 =

[
cos 2θ2 sin 2θ2
sin 2θ2 − cos 2θ2

][
cos 2θ1
sin 2θ1

]
=

[
cos(2θ2 − 2θ1)
sin(2θ2 − 2θ1)

]
. (2)

Thus, the polarization plane of the linearly polarized light passing through two stacked
half-wave plates is rotated by the angle 2θ2 − 2θ1. Compared to the case of using one
half-wave plate, the second plate additionally rotates the polarization plane of the light
transmitted through the first plate by an angle of 2(θ2 − 2θ1) (see Figure 1(a2)).

The patterns of varying the retardation and fast-axis orientation imprinted in depo-
larizers make it possible to realize different transformations of the initial uniform linear
polarization of the incident radiation. Because of this, it is possible to generate various
patterns of the polarization distribution. For widely used commercially available depolariz-
ers [21], the angle of the fast axis increases by a constant value across each consecutive strip
section in the element (see Figure 1b). Let us assume that the angle of the axis increases
along the x-axis. Then, the Jones matrix of such an element is defined as follows:
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Jdpe =

[
cos 2θ(x) sin 2θ(x)
sin 2θ(x) − cos 2θ(x)

]
. (3)

A linear polarization grating formed from an initial linearly polarized Gaussian beam
using this element acts like a conventional linear diffraction grating. Focusing of the
generated light-field results in the generation of two light spots in the ±1 diffraction orders.
However, these light spots have orthogonal circular polarizations (see Figure 1d). Therefore,
in the regions before and after the focal plane, the interference of two Gaussian beams
with right and left circular polarization occurs. As mentioned in [23], the interference of
two such circularly polarized laser beams is widely used for the fabrication of linear SRGs,
including subwavelength SRGs.

The Jones matrix of two stacked depolarizers with the distributions of the angles
of the fast axis (θ1(x) and θ2(x) for the first and second element, respectively) has the
following form:

Jdd =

[
cos 2[θ2(x)− θ1(x)] sin 2[θ1(x)− θ2(x)]
sin 2[θ2(x)− θ1(x)] cos 2[θ1(x)− θ2(x)]

]
. (4)

With a single depolarizer, the polarization transformation from a linear polarization
into a spatially variant polarization occurs regardless of the element’s rotation angle.
However, with two stacked depolarizers, if the orientations of the elements coincide, then,
as follows from Equation (4), the Jones matrix is transformed into the following:

Jdd =

[
1 0
0 1

]
(5)

and there is no polarization modulation of the incident x-linearly polarized light. The
rotation of the second depolarizer relative to the first one leads to the transformation of the
total Jones matrix and results in a change in the period of the polarization modulation of
the transmitted light (see Figure 1c,d).

Let us assume that θ(x) has a linear dependence of the angle on the coordinate:

θ(x) = θ0
x
T

, (6)

where T is a normalization constant and θ0 is the parameter corresponding to the rate of
change of the angle. In the case of identical depolarizers rotated by an angle α = θ2 − θ1:

θ1(x) = θ0
x
T

, (7)

θ2(x) = θ0
x cosα

T
. (8)

Taking into account that the local angle of rotation of the initial linearly polarized
field by two stacked depolarizers is determined as 2(θ2 − 2θ1) + 2θ1 = 2(θ2 − θ1), then the
period of the shaped polarization modulation is defined as follows:

ddd =
π

θ0
T
[

1
1 − cosα

]
=

ddpe

η
, (9)

where ddpe is the period of the polarization modulation shaped with a single depolarizer
and η is the ratio of the modulation periods formed by two stacked depolarizers and one
depolarizer. Thus, the period for two stacked elements decreases by a factor of η = 1 − cosα.
The maximum decrease, η = 2, is in the case when α = π.

This feature allows one to dynamically control the period of SRGs written in pho-
tosensitive materials. An additional advantage of using stacked depolarizers is that the
minimum achieved period can be significantly reduced. It should be noted that the polar-
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ization distributions generated in both cases, both when using a single depolarizer and
when using stacked depolarizers, have profiles that coincide with the case of the inter-
ference of two circularly polarized laser beams. Such light fields are widely used for the
fabrication of SRGs in CGs and azopolymers [20]. It is very convenient to use this approach
for controlling the precision laser processing of such materials.

2.2. Combinations of a Depolarizer and Higher-Order q-Plates

Let us study combinations of a depolarizer with other polarizing elements to generate
a structured polarized light field. Figure 2 shows an example of using the combination of
a depolarizer and a q-plate with an order of q. The Jones matrix of a q-plate in the polar
coordinates (r, ϕ) is defined as follows [39]:

Jq =

[
cos(2qφ) sin(2qφ)
sin(2qφ) − cos(2qφ)

]
. (10)
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A q-plate of the order q allows one to form a CVB of the order 2q. The combination of
such an element and a depolarizer with a linear dependence of the angle of the axis along
the x axis in the form αx has the following Jones matrix:

Jq_ f ork =

[
cos(αx) sin(αx)
sin(αx) − cos(αx)

][
cos(2qφ) sin(2qφ)
sin(2qφ) − cos(2qφ)

]
=

=

[
cos(αx) cos(2qφ) + sin(αx) sin(2qφ) cos(αx) sin(2qφ)− sin(αx) cos(2qφ)
sin(αx) cos(2qφ)− cos(αx) sin(2qφ) sin(αx) sin(2qφ) + cos(αx) cos(2qφ)

] (11)

or uses the well-known trigonometric relations:

Jq_ f ork =

[
cos(αx − 2qφ) − sin(αx − 2qφ)
sin(αx − 2qφ) cos(αx − 2qφ)

]
. (12)

In the case of an incident x-linearly polarized light field, this corresponds to the
following Jones vector of the transformed output light field:

JX−lin
q_ f ork =

[
cos(αx − 2qφ) − sin(αx − 2qφ)
sin(αx − 2qφ) cos(αx − 2qφ)

](
1
0

)
=

(
cos(αx − 2qφ)
sin(αx − 2qφ)

)
. (13)

Equation (13) can be represented as follows:

JX−lin
q_ f ork =

(
cos(αx − 2qφ)
sin(αx − 2qφ)

)
= 1

2

(
exp[i(αx − 2qφ)] + exp[−i(αx − 2qφ)]
−i exp[i(αx − 2qφ)] + i exp[−i(αx − 2qφ)]

)
=

= 1
2 exp[i(αx − 2qφ)]

(
1
−i

)
+ 1

2 exp[−i(αx − 2qφ)]
(

1
i

)
=

= 1
2 exp(iαx) exp(−i2qφ)

(
1
−i

)
+ 1

2 exp(−iαx) exp(i2qφ)
(

1
i

)
.

(14)

The field defined by Equation (14) allows one to form two OV beams of the orders
±2q with orthogonal circular polarizations in ±1 diffraction orders in the focal plane.

Figure 3 shows the intensities of the electric field components and polarization dis-
tributions of the light fields formed directly after the depolarizer, the q-plate, and their
combination. The further numerical analysis of the focusing of the formed vector light
fields was performed using the well-known Richards–Wolf equations [17,40] (input field
radius: 200 µm; numerical aperture of the focusing optical system: 0.15). In the case of the
combination of elements (a depolarizer with a q-plate, q = ½), OV beams of the ±1 order
are formed in the ±1 diffraction orders. The detailed analysis shows the formation of the
±1-order vortex phases in the x- and y-components of the field, and the ±2-order vortex
phases in the z-component. The polarization states of the formed beams are orthogonal
circular polarization, as in the case of Gaussian beams formed in the ±1 diffraction order
using a single depolarizer.

Equation (14) shows that as the order (q) of the polarizing plate increases, the order
of the formed vortex beams (m = 2q) also increases. However, high-order polarization
plates are exotic, so various methods are used to create high-order CVBs [41]. It is also
well known that higher-order CVBs can be formed using low-order q-plates and half-wave
plates [42]. For example, the combination of a first-order q-plate, half-wave plate, and
second-order q-plate converts the original x-linearly polarized light field into a third-order
CVB, as follows:

Eout = Jq=1HJq=1/2Ein =

=

[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

][
1 0
0 −1

][
cosφ sinφ

sinφ − cosφ

](
1
0

)
=

(
cos(3φ)
sin(3φ)

)
,

(15)

where H is the Jones matrix of a half-wave plate with a fast axis in the horizontal direction.
These calculations can be applied for various numbers of such combinations. A CVB with a
polarization order equal to the sum of the polarization orders of the CVBs formed by these
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q-plates individually is formed. This means that we can generate higher-order FPGs using
lower-order q-plates.
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Figure 3. Focusing of light fields generated by a linear polarization grating formed by a depolarizer
(left), a first-order CVB formed by a q-plate (q = 1/2), and an FPG formed by a combination of
the q-plate and depolarizer. Three components of the electric field (red—x-component; green—y-
component; and blue—z-component) and the total intensity distribution formed in the Fourier plane
are shown. The arrows indicate local polarization directions. The ellipses with arrows are polarization
ellipses. The size of the input field distributions is 200 × 200 µm.

We adapted these two approaches to create FPGs with orders from 2 to 12 simply using
commercially available first- and second-order q-plates from Thorlabs Inc. [43] and half-
wave plates. Figure 4 shows the amplitude and polarization profiles of a linearly polarized
light field transformed by such combinations of elements. As with conventional amplitude
or phase fork-shaped gratings, the focusing of the FPGs leads to the generation of optical
vortex beams with opposite signs of topological charges in conjugate diffraction orders.

In our experiments, the light fields defined by Equation (13) were used for the laser
patterning of thin films of NMLSs based on CGs. Previously, the holographic writing of fork-
shaped gratings in CGs was studied based on the interference of Gaussian and first-order
vortex beams with different polarizations [44]. In this case, fork-shaped gratings of the first
order were created, allowing the formation of two vortex beams of the ±1st order outside
the optical axis. In this work, we used light fields with the desired polarization distribution
on the film with photosensitive material. The intensities of the x- and y-components of the
fields defined by Equation (13) are defined as follows:

Ix(x, y) = cos2(αx − 2qφ) = 1
2 [1 + cos(2αx − 4qφ)],

Iy(x, y) = sin2(αx − 2qφ) = 1
2 [1 − cos(2αx − 4qφ)] .

(16)

At the same time, it is well known that the intensity of the superposition of an inclined
plane wave and an mth-order OV beam (exp(imϕ)) is defined as follows:

I(x, y) = |exp(iαx) + exp(imφ)|2 =
= [exp(iαx) + exp(imφ)][exp(−iαx) + exp(−imφ)] =
= 2[1 + cos(αx − mφ)].

(17)

From a comparison of Equations (16) and (17), it is clearly seen that the order of the
formed fork-shaped grating and the frequency of the lines are doubled when the q-plate
and the depolarizer are combined. This happens because, instead of a phase distribution,
an amplitude distribution is actually formed (i.e., field components are expressed through
cosine and sine functions but not through exponential functions).
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Figure 4. Focusing of light fields generated by FPGs of various orders. Three components of
the electric field (red—x-component; green—y-component; and blue—z-component) and the total
intensity/polarization distribution formed in the Fourier plane are shown. The arrows indicate local
polarization directions. The ellipses with arrows are polarization ellipses. The size of the input field
distributions is 200 × 200 µm.

Moreover, using the results of the works [45,46], it is possible to qualitatively pre-
dict the shape of the relief that will be formed in photosensitive materials. Taking into
account the dependence of the light field defined by Equation (13) only on the transverse
components, the following expression can be used to calculate the shape of the relief:

h(x, y) ∝ ∂2

∂x2 |Ex(x, y)|2 + ∂2

∂y2

∣∣Ey(x, y)
∣∣2+

+ ∂2

∂xy

(
E∗

x(x, y)Ey(x, y) + E∗
y(x, y)Ex(x, y)

)
.

(18)

Figure 5 shows the relief shape distributions calculated using Equation (18) for the
light field defined by Equation (13). As can be seen, the relief corresponds to the fork-
shaped SRG with the 4q order. Thus, during the diffraction of the incident beam on the relief
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formed in the CG (Figure 5), a pair of vortex beams of the m = ±4q order will be formed,
which corresponds to doubling the vortex orders compared to the field focusing (13) shown
in Figure 4. The major result of this analysis is the formation of fork-shaped gratings with a
doubled order in the transverse field components. Namely, these distributions can be used
for projection lithography techniques and the fabrication of fork-shaped SRGs in CGs.
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materials using FPGs with different orders.

3. Results

To experimentally study the proposed approaches, two LCP depolarizers from Thor-
labs Inc. (Newton, NJ, USA) [21] with the distribution of the fast-axis orientation shown
in Figure 1b were used. In both depolarizers, the angle of the fast axis increases by
2 degrees across each consecutive 25 µm strip. In this case, T = 25 µm, θ0 = 2 degrees, and
ddpe = πT/θ0 = 90T = 2250 µm directly after the element. The intensity profile of the laser
beam transformed by these elements does not change and remains the same as that of the in-
cident laser beam. The intensity distributions experimentally generated using two stacked
depolarizers for various orientations and obtained with/without a polarizer–analyzer for
various angles between the axes of the depolarizers are shown in Figure 6. These results are
in good agreement with the performed theoretical analysis: the polarization is linear when
the orientations of the stacked depolarizers coincide. The rotation of one of the elements
leads to a change in the polarization modulation period. The minimal period of the shaped
polarization modulation is obtained in the case of α = 180 degrees, and its value is half the
modulation period obtained for a single depolarizer. In addition, there is no polarization
modulation when α = 0 degrees; the transformed laser beam has a linear polarization in
accordance with Equation (5).

The optical setup used for the laser processing of NMLSs based on CGs is shown in
Figure 7. In the experiments, we used a continuous-wave solid-state laser (wavelength
λ: 532 nm; maximum output laser power (Pout): 90 mW) generating a linearly polarized
Gaussian beam. The laser beam was first extended and collimated with two lenses (L1
and L2 (focal lengths of 25 and 250 mm)). Mirrors (M1 and M2) were used to direct the
collimated beam onto a combination of depolarizers (D1 and D2). Lenses (L3 and L4 (focal
lengths of 150 and 25 mm)) that make up a 4-f optical system were used to reduce the
diameter of the formed laser beam. This was necessary to match the beam diameter and the
entrance pupil diameter of the MO1 micro-objective (60×, NA = 0.85). The use of this 4-f
optics system made it possible to form the same light field at the entrance pupil of the micro-
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objective directly behind the combination of depolarizers. The glass substrate (S) with a
thin film of NMLSs based on CGs was mounted on the three-axis XYZ translation stage and
located in the focal plane of the micro-objective MO1. For the illumination of the surface of
the used glass substrate with CGs, we used a light bulb (IB), spherical lens (L6) (focal length
of 50 mm), mirror (M6), and micro-objective (MO2) (8×, NA = 0.2). For the observation
of the surface of the sample during laser processing, we used a beam splitter (BS), lens
(L5) (focal length of 150 mm), and video camera (CAM) (TOUP-CAM UHCCD00800KPA;
1600 × 1200 pixels, with a pixel size of 3.34 µm). In order to simultaneously observe the
surface of the sample and the formed light field, we used a neutral-density filter (F) to
reduce the intensity of the light field.
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Figure 7. Laser printing of SRGs using two stacked depolarizers. (a) The optical setup used in
the experiments. Laser is a solid-state laser (λ = 532 nm); L1, L2, L3, L4, L5, and L6 are spherical
lenses (f 1 = 25 mm; f 2 = 250 mm; f 3 = 150 mm; f 4 = 25 mm; f 5 = 150 mm; and f 6 = 50 mm); M1,
M2, and M3 are mirrors; D1 and D2 are two depolarizers; BS is a beam splitter; MO1 and MO2 are
micro-objectives (NA = 0.85 and 0.2); S is a glass substrate with a thin film of NMLSs based on CGs;
xyz is a three-axis (XYZ) translation stage; IB is a light bulb; F is a neutral-density filter; CAM is a
ToupCam UCMOS08000KPB video camera. The inset shows an AFM image of a fabricated SRG.
(b) Dependence of the period of the formed SRGs on the angle θ2 − θ1 between two depolarizers.
The green circles indicate the experimental data. The black solid line is a linear approximation of the
experimental data.

In the experiments, the maximum output laser power was 80 mW. During the ex-
periments, we rotated the second depolarizer (D2) relative to the first depolarizer (D1) to
change the period of the polarization modulation of the converted laser beam. As men-
tioned above, a change in the angle between the axes of the depolarizers leads to a change
in the modulation period of the generated periodically changing polarization distribution.
The exposure time of the used sample for each of the studied angles of the rotation of
the depolarizers relative to each other was 1 s. The inset in Figure 7a shows an atomic
force microscopy (AFM) image of a section of one of the fabricated SRGs. The rotation of
the second depolarizer led to an almost linear change in the period of the written SRGs
(see Figure 7b). Thus, the experimentally obtained results are in good agreement with
the theoretical predictions. The minimum period of the fabricated SRGs was submicron
(approx. 0.95 µm) and was obtained for θ2 − θ1 = 180 degrees. The relief height of the
fabricated SRGs was in the range from 50 to 500 nm, depending on the output laser power.

Figure 8 shows the experimentally obtained intensity distributions for two different
orientations of the polarizer–analyzer, demonstrating the intensity distributions of the x-
and y-components in accordance with Equation (16). Some of these combinations were
used for the processing of the sample with a thin film of CGs and the fabrication of second-
and fourth-order fork-shaped SRGs (see Figure 9). In this case, the optical setup used
for the laser processing using two stacked depolarizers was slightly modified: lens L4
was removed, lens L3 was replaced with another lens with a focal length of 400 mm, and
micro-objective MO1 was replaced with another micro-objective (40×, NA = 0.65). In this
case, lens L3 and micro-objective MO1 make up a 4-f optical system for implementing
a projection lithography setup. The structure of the desired polarization distributions is
transferred to the used thin film of CGs.
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Figure 8. Intensity distributions of light fields obtained without and with a polarizer–analyzer for a
linearly polarized Gaussian beam transformed by a depolarizer, a q-plate (q = 1/2), a q-plate (q = 1),
and their combinations with half-wave plates, which allow the generation of FPGs of orders from 2
to 12. Two different orientations of the polarizer–analyzer were used.
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Figure 9. AFM images of the second- and fourth-order fork-shaped SRGs fabricated using a combina-
tion of a q-plate (q = ½ (left) and q = 1 (right)) and a depolarizer.

The next logical step is to study the possibility of controlling the period of FPGs formed
using a depolarizer and q-plate. To achieve this, one can add a depolarizer, as in the case of
the forming of linear gratings with different periods. In this case, the orientation of one
of the depolarizers relative to the other elements in the combination allows one to change
the period of the linear polarization modulation of the generated light field. The order of
the formed FPGs can be controlled using combinations of q-plates and half-wave plates.
The results obtained in the case of two q-plates of the order q = 1 and a half-wave plate
located between them are shown in Figure 10. The rotation of one of the depolarizers leads
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to a change in the period of the polarization modulation: the minimum period is achieved
for an angle of 180 degrees, as in the case of linear gratings formed using two stacked
depolarizers. In the case of an angle of 0 degrees between the axes of the depolarizers, there
is no polarization modulation of the original linearly polarized light field passing through
these two stacked depolarizers. Because of this, in the output plane after all the elements,
instead of forming an eighth-order HGT, only a fourth-order CVB order is formed.
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Figure 10. Intensity distributions of light fields obtained without and with a polarizer–analyzer for
a linearly polarized Gaussian beam transformed by a combination of a q-plate (q = 1), a half-wave
plate, a q-plate (q = 1), and two depolarizers. Various orientations of the depolarizer axes relative to
each other are shown. Two different orientations of the polarizer–analyzer were used.

4. Conclusions

In conclusion, we showed the possibility of using various combinations of polarizing
optical elements, such as depolarizers, low-order q-plates, and half-wave plates, for the
generation of linear and fork-shaped polarization gratings with modulated parameters.
This approach made it possible to transform only the polarization distribution of the input
linearly polarized laser beam, while the total amplitude distribution remained the same.
We applied the formed polarization gratings for the direct laser patterning of thin films of
NMLSs based on the CGs’ As2S3 and a-Se.

We showed the possibility of using stacked depolarizers for the implementation of the
non-interferometric laser writing of linear SRGs. The control of the period of the SRGs was
carried out by the simple rotation of one of the used depolarizers relative to another. The
obtained results showed the possibility of the formation of SRGs with submicron periods
(0.95 µm). The use of micro-objectives with larger magnification and numerical apertures
should result in even smaller periods. The use of a larger number of stacked depolarizers
could potentially also be used to further reduce the period of the fabricated gratings. In
addition, the period can be reduced by using depolarizers with a smaller strip size or a larger
increase in the angle of the fast axis across each consecutive 25 µm strip. In our opinion,
the maximum angle in this case is 90 degrees. The proposed technique makes it possible to
create more compact setups for the laser writing of SRGs and provides more convenient
control of the period of the fabricated SRGs compared to interferometric approaches.

We also modified the proposed approach and used combinations of depolarizers and
low-order q-plates (q = ½ and q = 1) to generate second- and fourth-order FPGs. The
additional insertion of half-wave plates between the used q-plates made it possible to
form FPGs with orders from 6 to 12. Control of both the frequency of the lines of the
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formed gratings and the number of their teeth was demonstrated. We applied the formed
FPGs for the patterning of thin films of CGs with projection lithography. The manufacture
of fork-shaped SRGs was successfully demonstrated. These results show the significant
potential of using structured polarized light fields for the laser processing of such materials
and can be adapted for the fabrication of other micro- and nano-optical elements.
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