
Citation: Pan, S.; Huang, C.; Fan, J.;

Shi, Z.; Tong, J.; Wang, H. Optimizing

Internet of Things Fog Computing:

Through Lyapunov-Based Long

Short-Term Memory Particle Swarm

Optimization Algorithm for Energy

Consumption Optimization. Sensors

2024, 24, 1165. https://doi.org/

10.3390/s24041165

Academic Editor: Charith Perera

Received: 31 December 2023

Revised: 28 January 2024

Accepted: 8 February 2024

Published: 10 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimizing Internet of Things Fog Computing: Through
Lyapunov-Based Long Short-Term Memory Particle Swarm
Optimization Algorithm for Energy Consumption Optimization †

Sheng Pan ‡ , Chenbin Huang ‡ , Jiajia Fan, Zheyan Shi, Junjie Tong and Hui Wang *

School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China;
person_er@zjnu.edu.cn (S.P.); ryenchen1@163.com (C.H.); jiajiaf@zjnu.edu.cn (J.F.); 1224412077@zjnu.edu.cn (Z.S.);
1375388402@zjnu.edu.cn (J.T.)
* Correspondence: hwang@zjnu.cn
† This paper is an extension of work originally presented in the 17th China Conference on Internet of Things

(Wireless Sensor Network) (CWSN), Dalian, China, 13–15 October 2023.
‡ These authors contributed equally to this work.

Abstract: In the era of continuous development in Internet of Things (IoT) technology, smart services
are penetrating various facets of societal life, leading to a growing demand for interconnected devices.
Many contemporary devices are no longer mere data producers but also consumers of data. As a
result, massive amounts of data are transmitted to the cloud, but the latency generated in edge-to-
cloud communication is unacceptable for many tasks. In response to this, this paper introduces a novel
contribution—a layered computing network built on the principles of fog computing, accompanied by
a newly devised algorithm designed to optimize user tasks and allocate computing resources within
rechargeable networks. The proposed algorithm, a synergy of Lyapunov-based, dynamic Long Short-
Term Memory (LSTM) networks, and Particle Swarm Optimization (PSO), allows for predictive task
allocation. The fog servers dynamically train LSTM networks to effectively forecast the data features
of user tasks, facilitating proper unload decisions based on task priorities. In response to the challenge
of slower hardware upgrades in edge devices compared to user demands, the algorithm optimizes
the utilization of low-power devices and addresses performance limitations. Additionally, this paper
considers the unique characteristics of rechargeable networks, where computing nodes acquire energy
through charging. Utilizing Lyapunov functions for dynamic resource control enables nodes with
abundant resources to maximize their potential, significantly reducing energy consumption and
enhancing overall performance. The simulation results demonstrate that our algorithm surpasses
traditional methods in terms of energy efficiency and resource allocation optimization. Despite the
limitations of prediction accuracy in Fog Servers (FS), the proposed results significantly promote
overall performance. The proposed approach improves the efficiency and the user experience of
Internet of Things systems in terms of latency and energy consumption.

Keywords: predictive allocation; fog computing; internet of things (IoT); system stability; Lyapunov;
LSTM; PSO

1. Introduction

In recent years, the proliferation of the Internet of Things (IoT) has led to a surge
in smart mobile devices [1]. The advent of IPv6 technology has made everything being
network-accessible a reality, and the commercialization of 5G technology further acceler-
ated the increase in edge devices. With every grain of sand potentially having its own IP
address, the deployment of numerous sensors to perceive the environment has become
feasible. IoT analytics data show a growth from 6.1 billion global IoT device connections in
2017 to 14.4 billion in 2022, with an 18% increase in 2022 alone. Shockingly, by 2027, IoT
connections might exceed 29 billion. However, this rapid expansion puts immense pressure

Sensors 2024, 24, 1165. https://doi.org/10.3390/s24041165 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041165
https://doi.org/10.3390/s24041165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0008-3384-1750
https://orcid.org/0000-0002-1564-4031
https://orcid.org/0000-0002-2197-2285
https://doi.org/10.3390/s24041165
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041165?type=check_update&version=2


Sensors 2024, 24, 1165 2 of 23

on IoT infrastructure. The massive amount of data generated by numerous terminal sensing
devices surpasses the processing capabilities of end-user devices. While cloud computing
significantly eases this situation, its latency still fails to meet current user demands. Com-
pared to the growth rate of terminal devices, the backbone network’s transmission speed
has grown less than 10% annually [2]. Hence, public cloud server latency often exceeds
100 milliseconds [3], which is disadvantageous for delay-sensitive applications.

Recent advancements in fog computing underscore its revolutionary impact on tra-
ditional cloud computing. By redistributing computing, storage, and network resources
to the edge and vicinity of IoT devices, fog computing effectively addresses the evolving
demands of various applications. This paradigm shift is feasible because not all tasks
necessitate the potent computing capabilities offered by cloud computing. Edge-based data
processing and analysis have emerged as critical components of fog computing, furnishing
real-time decision support and intelligence for IoT applications while optimizing latency
and bandwidth.Simultaneously, much of the current research in fog computing revolves
around real-time and near-real-time requirements [4]. The widespread adoption of this en-
vironment underscores the urgency for immediate data processing, emphasizing more than
just response time. In autonomous driving systems, fog computing substantially reduces
the transmission time between vehicles and remote cloud servers, achieving an ultra-low
latency of less than 1 millisecond, as opposed to the 150 milliseconds latency observed in
cloud computing [5,6]. This highlights the clear advantage of fog computing in enhancing
the efficiency and responsiveness of real-time applications. Furthermore, fog computing, by
elevating the Age of Information (AoI), significantly enhances the user experience in areas such
as online gaming and Virtual Reality (VR). These applications fully exploit ultra-low latency,
ensuring a seamless and immersive experience [7,8]. Consequently, future endeavors will
concentrate on designing and modeling fog computing environments to achieve near-real-time
response times, further aligning with the requirements of time-sensitive applications.

Task offloading involves transferring computational tasks from terminal devices or
edge nodes to more powerful edge or cloud servers. This occurs when terminal devices or
edge nodes lack sufficient computational resources or cannot complete specific tasks on time.
The system must decide whether to transfer these tasks and related data to other devices or
nodes for processing. While task offloading is a decision for the producer or the subsequent
handler, resource allocation is a core concern for upper-level managers in distributed
systems. They must assess the demands of various tasks and resources, considering
the current state of available resources. However, while fog computing enhances task
processing capabilities, it also faces potential latency increases due to the added burden
from connecting more devices. In the pursuit of performance and speed, this can lead to
device idleness and resource wastage.

In general models, total energy consumption for data processing includes both data
transmission and processing energy. Data transmission energy depends on the channel
status, which is influenced by the transmission time, power, and available bandwidth [9].
Higher transmission rates can be achieved by increasing power and reducing time but
this increases the energy consumption. Balancing transmission power and time is key
for minimal energy consumption, adjusting rates based on task latency requirements [10].
Computing energy is influenced by the computational capacity: increased resource input
leads to exponential energy growth. Thus, allocating tasks to appropriate nodes, ensuring
minimal resource input per unit while meeting latency requirements, is vital for energy
efficiency [11].

Fog computing systems enhance decision-making and services by collecting and ana-
lyzing data from various devices, integrating contextual information. Even if some nodes
or links fail, other nodes can continue operating. The focus in fog systems is on optimizing
task processing through fog offloading and fog node resource allocation. This approach
aims to improve overall resource utilization, thereby enhancing system performance and
end-user experience. The three key considerations distilled from this are as follows:



Sensors 2024, 24, 1165 3 of 23

(1) Effective Resource Management in Fog Nodes or Cloud Servers: Proper resource
scheduling is crucial due to the inevitable presence of idle or underutilized nodes.
Effective management can significantly amplify the impact of fog nodes.

(2) Task Time Sensitivity and Priority: Determining task priority is vital in current
applications. Reasonable decision-making is necessary to prevent task stacking and
enhance processing efficiency.

(3) Dynamic Resource Demand in Fog Environments: Fog systems often face dynamic
changes in resource demand, which can cause instability. Appropriate systemic inter-
ventions help reduce overall energy consumption and ensure long-term stability.

This paper presents our perspectives on several key factors in fog computing, with the
main contributions summarized as follows:

• Dynamic Fog Federation Formation: Considering the heterogeneity of fog device
resources and the slower hardware update cycles compared to software, we propose a
novel approach to establish dynamic fog federations. Utilizing heuristic algorithms,
specifically Particle Swarm Optimization (PSO), we rapidly sense fog processor re-
sources to form federations dynamically. These federations are tailored to each round
of tasks, focusing on devices with high data correlation and low data heterogeneity.

• Predictive Resource Allocation: We introduce the concept of predictive resource
allocation, driven by the unique data characteristics of end users. This approach
dynamically adjusts model training based on outcomes to optimize resource allocation
for task demands. It not only fulfills the need for tailored offloading solutions for
different user profiles but also enhances overall performance through optimized
prediction effectiveness.

• System Stability and User Experience: In consideration of long-term system stability,
we analyzed the overall system’s stable conditions to enhance the user experience and
quality on edge devices, thereby optimizing total energy consumption.

• Model Implementation and Task Prioritization: The model, depicted in Figure 1,
illustrates how geographically proximate fog nodes form clusters. These clusters,
possessing varied resources, are unified through virtualization technology and man-
aged by a central, high-performance fog server. The central server orchestrates the
workload distribution between fog servers and nodes, prioritizing tasks based on
latency constraints. High-priority tasks are allocated to more capable fog servers,
while medium-priority tasks are assigned later. To this end, we propose the Lyapunov-
based Dynamic Long Short-Term Memory Predictive PSO Algorithm (LDLPSO) for
the efficient management and prediction of task and resource allocation.

Figure 1. System architecture diagram.



Sensors 2024, 24, 1165 4 of 23

The structure of the paper is organized as follows. Section 2 introduces related work
and research motivations. Section 3 describes the system model, including the transmission
model, prediction model, priority assessment, energy consumption model, and algorithm
design. Section 4 discusses the reasoning and feasibility of system energy consumption
optimization. Section 5 presents the simulation results, analyzing the performance of the
proposed allocation protocol compared to other allocation protocols. Section 6 outlines the
conclusions of this paper.

2. Related Works

Since its inception in 2012 and formal definition in 2018 [12], fog computing has
been the subject of extensive research efforts focused on enhancing system performance.
The core of these efforts, as indicated in references [13–16], centers on optimizing task
offloading and resource scheduling within fog computing systems. As demonstrated by
references [10,17–25], these studies revolve around the stability of systems with limited
computational resources and energy. Subsequently, within [1,2], there is a shift from
passive to proactive, attempting to anticipate task request volumes and preparing for them
in advance based on responses. Although these studies were published at different times,
the direction of fog computing research is becoming more refined.

2.1. Works Focused on Optimizing Task Offloading

J. Flinn proposed that task offloading decisions should hinge on the resources accessi-
ble on mobile devices and the resources required for task execution [13]. Mainak Adhikari
and his team’s research in fog computing, focusing on efficient IoT task scheduling and
processing, inspired our work. They prioritized tasks based on deadlines and utilized
multi-level feedback queues for appropriate device allocation [14]. Shichao Guan and
colleagues developed an active hybrid offloading model for sustainable and heterogeneous
offloading management in active cloudlets. This model, aimed at energy and QoS-aware
heterogeneous offloading and resource allocation, adapts to various task and resource
types [15]. It collaborates with cloud resources for partition and migration-based offload-
ing, guided by task load and QoS demands. Xu Chen et al. investigated decentralized
computing offloading games in mobile cloud computing environments, aiming for effective
dispersed offloading via game-theoretic methods. Their approach focuses on the coor-
dination of task offloading among mobile cloud users to enhance system performance
and efficiency, reducing centralized management complexity and enabling self-organized
decision-making among users [16]. The methods mentioned above revolve around task of-
floading and resource allocation. Multi-level feedback queues, lateral migration offloading,
and decentralized management all provide references and inspiration for our subsequent
work. However, their methods are limited by static resource availability, do not consider
energy consumption, and are not suitable for delay-sensitive applications. On our study,
we re-designed the way fog nodes provide computing resource services. The task-centric
combination of fog computing allows for the dynamic adjustment of computing resources,
considering low-power fog processors, thereby reducing the overall energy consumption.

2.2. Works Focused on Optimizing Energy Consumption

With the improvement in fog computing system performance, the issue of energy
constraints on fog devices cannot be overlooked. Guowei Zhang and colleagues proposed
an energy-minimizing task offloading algorithm centered on fairness. This approach fo-
cuses on three main aspects: the energy consumption of task offloading, the historical
average energy consumption of fog nodes, and node priority [17]. They aim for fairness
and minimized energy consumption in fog computing IoT environments by optimizing
target fog nodes, transmission power, and sub-task sizes. Jianbo Du and colleagues de-
veloped the CORA algorithm, addressing computation offloading and resource allocation
in hybrid fog–cloud computing systems. This algorithm aims to minimize the maximum
weighted delay and energy consumption cost among user devices, ensuring user fairness



Sensors 2024, 24, 1165 5 of 23

and tolerable delay [18]. CORA coordinates offloading decisions and resource allocation,
like computational resources, transmission power, and wireless bandwidth. Yu Qiu and
colleagues focused on cost-effective optimization in FogC-IoMT (Fog Computing-based
Internet of Medical Things) for healthcare monitoring [19]. They addressed challenges like
time sensitivity, energy limitations, quality of service, and wireless constraints, breaking
the problem into three sub-problems: medical task offloading, sub-channel allocation, and
power distribution. They developed a sub-optimal, low-complexity algorithm to reduce
energy consumption and transmission delay. Arash Bozorgchenani et al. proposed a
method for multi-objective computation sharing in an energy- and delay-constrained mo-
bile edge computing environment. By designing an evolutionary algorithm (NSGA2), they
efficiently found the optimal balance between energy consumption and task processing
delay, achieving minimal energy consumption and minimal processing delay for tasks [20].
The inspiration from the above works was to decompose complex problems into smaller
ones, considering the joint optimization of energy consumption and task processing delay.
However, their research did not take into account the performance differences between fog
devices and overlooked the dynamic nature of fog computing systems.

Of course, to design a more robust system, it is necessary to consider the queue stability
of joint optimization. Therefore, in our subsequent related work, we studied Lyapunov
system control theory. Maganti Venkatesh et al. proposed an innovative deep learning
mechanism, focusing on addressing workload balancing issues in fog computing [21]. By
appropriately allocating workloads, they aimed to meet the QoS requirements of delay-
sensitive IoT applications as much as possible. They considered workload distribution
issues between fog nodes and the cloud, analyzing the stability of the IoT–fog–cloud
queue scheme using Lyapunov drift and penalty theory. Karimiafshar et al. proposed
the use of Lyapunov optimization techniques to ensure system stability while minimizing
energy consumption and deadline misses in the deployment of fog computing resources
in industrial IoT networks [10]. Yang Cai and Llorca, among others, made significant
contributions to the efficient delivery of emerging distributed cloud architectures (such
as fog and mobile edge computing) in real-time stream processing applications [22]. We
also previously conducted a study on related topics. Huang et al. proposed a heuristic
particle swarm optimization algorithm based on the Lyapunov optimization framework
for resource scheduling and energy consumption optimization in fog computing [23]. They
designed a novel queuing system that allows scheduling packets based on the current
destination set, and developed the first fully decentralized, throughput, and cost-optimal
multi-cast flow control algorithm using Lyapunov drift and penalty control theory. Their
methods reflect considering the fog computing system from the perspective of system
dynamics, which is achieved by controlling the stability of each optimization target queue.
However, their research still deals with passive systems and can only be considered quasi
real-time.

Subsequently, in order to improve the accuracy and scientific validity of our experi-
ments, we scrutinized some experimental models, power consumption calculations, and
fog server mode properties. Minghong Lin’s team addressed energy cost issues in data
centers, proposing a model for dynamically adjusting the data center size to save costs.
This model, based on an online algorithm for dynamic right-sizing, suggests shutting down
servers during low-load periods to achieve significant cost savings, assuming perfect future
workload prediction, which is a challenge in practical applications [24]. Y. Kim’s team used
Monsoon power monitors to measure the power consumption of Galaxy Note smartphones
with LTE chipsets across various mobile scenarios and Korean network operators. They
fitted parameters to a typical CPU energy model, providing a basis for computational
energy consumption and simulation in fog federations, highlighting the complexity and
sensitivity to dynamic network states in their proposed strategy for balancing cost and
latency in mobile edge computing environments [25].



Sensors 2024, 24, 1165 6 of 23

2.3. Works Focused on Prediction

In order to continue to improve the speed in processing latency, people find another
way toward predictive algorithm research, trying to analyze historical data to predict
the amount of task data, and prepare for resource allocation in advance. Zhibo Li and
colleagues developed a load prediction method for hybrid Mobile Edge Computing (MEC)
servers using Bidirectional Long Short-Term Memory Networks (BILSTM). Known for its
high predictive accuracy and minimal parameter configuration, this method is employed
to optimize computing task offloading decisions, aiming to reduce task response times [2].
Despite enhanced predictive performance, their approach does not fully consider the time
dependency of MEC server performance indicators and load levels, nor the resource energy
consumption in practical applications. This suggests that, while improving prediction
accuracy is crucial, balancing performance and resource efficiency in real-world deployment
is also essential. Xin Gao and colleagues focused on dynamic offloading and resource
allocation in multi-tier fog computing systems, based on traffic prediction. They introduced
a stochastic network optimization problem aimed at minimizing the time-average power
consumption while maintaining system stability [1]. Although their design reduced the
average delay via a dual-layer fog structure, it did not fully address the general settings, task
priorities, or resource availability, nor did it elaborate on how the prediction mechanism
enhances system performance. The high dependency on prediction outcomes suggests a
potential direction for future research.

Addressing the limitations identified in previous studies, this paper introduces the
LDLPSO algorithm, designed to maximize the benefits of low-performance devices in
a layered fog structure. It dynamically learns from historical data and assesses current
states to predict data flows and prepare responses in advance, ensuring real-time task
processing even under resource constraints. The optimized heuristic algorithm enables
rapid real-time resource sensing and efficient resource allocation. It also reduces the overall
energy consumption by integrating and utilizing resources effectively. Overall, there is still
relatively little research on predictive offloading in fog computing systems. We compare
this paper with the works in Table 1.

Table 1. Comparisons of related works.

Paper IoT-Fog 1 IoT-Cloud 2 Fog-Fog 3 Fog-Cloud 4 Dynamic Energy Prediction

[10] ✓ ✓ ✓ ✓

[13,14,18] ✓ ✓

[15] ✓ ✓

[16,19,20,24,25] ✓ ✓ ✓

[17] ✓ ✓ ✓

[21,22] ✓ ✓ ✓

[23] ✓ ✓ ✓ ✓

[2] ✓ ✓ ✓

[1] ✓ ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

Note: “IoT-Fog” 1 means offloading from IoT devices to Fog, “IoT-Cloud” 2 means offloading from IoT devices
to Cloud, “Fog-Fog” 3 means offloading between Fog tiers, while “Fog-Cloud” 4 means offloading from Fog
to Cloud.

3. System Model

In this chapter, we will introduce the system’s topology, environment, and the tech-
nologies implemented to meet the required specifications. In Section 3.1, we discuss the
system’s physical model and structure. In Section 3.2, we describe in detail the transmis-
sion model and the overall queueing model for tasks during transmission, including the



Sensors 2024, 24, 1165 7 of 23

evolution of predicted and actual queues. In addition, details related to the uplink delay
are shown. Section 3.3 explains the implementation principles of the prediction model and
its evolution in the system. Finally, in Section 3.4, we provide a detailed description of
the energy consumption calculation details for the entire system. Of course, some related
formula symbols can be analyzed in detail in Table 2.

Table 2. List of symbols.

Symbol Description

I, S, C, I for IoT device or edge server, S for fog server, C for fog processor node (CFCN).

Fk, FS, Fn Computing resources for devices Ik, FS, and Cn.

K Number of IoT nodes.

s Number of fog server nodes.

N Set of fog computing nodes (CFCNs).

Fk,n(t) The computed power assigned to Ik by device Cn at time slot t.

Fk,s(t) The computed power assigned to Ik by device FS at time slot t.

τk Transmission delay.

QR(t) The actual task queue at time slot t.

Ak,w(t) Prediction data for device when prediction window is w for device Ik at time slot t.

τt Delay at time slot t.

Ak(t) Prediction data for device for device Ik at time slot t.

Wk Prediction Window Size of Fs for device Ik.

τ Each time slot of its wireless channel.

λs
r(t) Tasks actually arriving at Fs at time t.

µr(t) The task delivered by Fs at moment t.

Ur(t) Tasks that time out at moment t on Fs.

Ps Consumption of fog server node.

λk(t) Arrival rate of tasks from Ik for time slot t.

σ Standard deviation of the calculated task volume for device Ik.

Di Average task size for device Ik.

Cj Downstream bandwidth of device FS.

Ls Local processing task latency.

P(t) Total energy consumption of time slot t.

Pn(t) Energy consumed by fog node Pn at slot t.

Ps(t) Consumption of fog server node at slot t.

Pc
k,j Energy consumption of device Ik to transfer tasks to FS.

Fc
k Transmit power of device Ik.

Ck,j Transmission rate from device Ik to FS.

α Offload rate.

w Inertial weighting of PSO.

Among these, the FS (Fog Server) is a core component of this system, and our algo-
rithm will be deployed at this structural level. The FS is not only responsible for predicting
the demand for computing resources but also for transmitting received data to the corre-
sponding Fog Processor Nodes (CFCN) cluster. The following are the three tasks that the
FS needs to perform:



Sensors 2024, 24, 1165 8 of 23

(1) FS records this data as both the training and testing datasets for predictive func-
tions.The dataset continuously updates with the ongoing reception by the FS. There-
fore, during the dynamic process of predicting results, the model iterates gradually;

(2) Based on predicted values, we use the Particle Swarm Optimization algorithm (PSO)
to rapidly search for suitable nodes or clusters of nodes and formulate a solution
in advance;

(3) Finally, by comparing predicted results with actual results, adjustments to the allo-
cation plan continue for those not in line with real values, while data that are in line
are directly distributed to the corresponding Fog Processor Nodes (CFCN) cluster
according to the plan.

In conclusion, the FS plays a crucial role in the model, dynamically predicting upcom-
ing task loads in real time and allocating idle resources reasonably to cope with these tasks.

3.1. System Basic Elements

In the proposed system architecture, the fog computing layer adopts a two-layer struc-
ture to meet the data processing needs from K edge devices (represented as I1, I2, . . . , Ik).
Edge devices generate data and transmit them to the fog layer wirelessly. The results are
then subsequently obtained from it.

(1) Fog Layer 1: Comprising Fog Servers (FS), it is responsible for coordinating task
assignment and scheduling. FS manages the status of each Fog Computing Node
(FCN) in the next layer, recording the power consumption and computing capacity.
When data from IoT devices reach this layer, the FS generates a cluster of Fog Pro-
cessor Nodes (CFCN) specific to the tasks and allocates data to them for processing.
The FS dynamically predicts the task load in real time and designs the allocated
resource quantity;

(2) Fog Layer 2: Comprising N different FCNs, each represented as Fn with n ranging from
1 to N. These nodes, arranged according to the fog processor Fs, dynamically combine
into a cluster of Fog Processor Nodes (CFCN) to ensure a low power consumption
and high-quality task completion. It is crucial to emphasize that the Fog Server (FS)
serves as a critical link between edge devices and fog processors, which are typically
connected through wired connections.

In summary, the Fog Server (FS) serves as a crucial link between edge devices and
fog processors, which are typically connected through wired connections. The FS com-
prehensively understands the state of the fog layer, determining the optimal allocation of
tasks among CFCNs to ensure the efficient utilization of computing resources and energy.
Although we considered the cloud, this design did not allow us to study much about the
offloading strategy between cloud and fog systems. The specific system model is illustrated
in Figure 1.

3.2. Transmission Model and Task Queue

To enhance the realism of the transmission channel emulation, we incorporated a
channel capacity calculation based on the Shannon capacity formula. This calculation
quantifies the channel capacity between IoT devices and servers in Fog Layer 1. The length
of each time slot for the wireless channel is denoted as τ, which remains constant within
time slot t and may vary across different time slots. The wireless channel’s gain experiences
decay over time, with decay power represented by Sk(t). The transmission delay Ck,s(t) is
determined by the following formula [23]:

Ck,s(t) = Wτ log2

(
1 +

Pk,s(t)Sk,s(t)

Wσ

)
(1)

where W signifies the wireless bandwidth; τ denotes the time slot length; Pk,s(t) represents
the transmitted power from IoT device k to FSs at time slot t; Sk,s(t) indicates the fading
gain of the wireless channel used by IoT device k to FSs; and σ signifies the noise power.



Sensors 2024, 24, 1165 9 of 23

In our system, a many-to-one relationship exists between user devices and fog servers.
Task request intervals from user devices follow a random exponential distribution, conse-
quently also making the service time provided by fog servers to user devices random and
follow an exponential distribution. For example, when an IoT device sends a data packet
to a fog server with no ongoing tasks, the server immediately handles the task. Fog server
nodes primarily handle allocation and management, where task arrivals and processing
are independent, adhering to the queuing theory M/M/1 model [26]. The queuing delay
Wq can be calculated using the following formula:

Wq =
λ

µ(µ − λ)
(2)

where λ represents the task arrival rate and µ represents the service rate.
Considering transmission delay further, we propose the transmission delay formula

τc [23]:

τc =
1

Ck,s(t)
αk(t)Dk(t)

− αk(t)λk(t)
(3)

where τc represents transmission delay; αk(t) represents the offloading ratio; Dk(t) represents
the average data size of device k tasks; and Ck,s(t) represents transmission capacity.

This model comprehensively considers the impact of the offloading ratio and task
data size on the transmission delay, providing crucial insights for task scheduling and
transmission decisions in the system.

Between time slots t, we assume Ii(t) (Ti(t) ≤ Tmax for some constant Tmax) for
the IoT device Ik arriving at Fs. Tasks usually arrive at different time slots with varying
processing sizes. Based on this, Fs records the information sent by the task and employs
an LSTM model algorithm to predict the future workload within a prediction window. Fs
deploys assigned tasks in advance based on the prediction, resulting in two types of queues
on Fs:

(1) Prediction data: Pi,Wk(t);
(2) Arrival data: λs

r(t);
(3) Offload data: µs

r(t).

Actual tasks arriving at Fs are arranged in the arrival queue and forwarded to the fog
processor for task processing. Local processing resources are prioritized for the manage-
ment of CFCNs.

Prediction Queue:
Ak,w(t + 1) = Ak,w(t) + λs

r(t) (4)

Actual Queue:

Q(R)(t + 1) = max{Q(R)(t) + λs
r(t)− µr(t)− Ur(t), 0} (5)

3.3. Prediction Model

Based on the characteristics of user devices in heterogeneous networks and data
analysis, it appears that a single device will periodically deliver packets, while delay-
insensitive tasks do not require a high quality of service and only need to be completed
within a given time frame. In this paper, we enhance LSTM by using sliding event windows
for predicting and estimating resource requests of IoT devices to reduce energy loss while
ensuring task completion. Long Short-Term Memory (LSTM) networks are a variant of
Recurrent Neural Networks (RNNs) for processing sequential data, designed to address the
long-term dependency problem prevalent in RNNs, all of which have a recurrent neural
network module in the form of chains. In standard RNNs, this recurrent structural module
only has a fairly common structure, such as a tanh layer. As the data are transformed while
traversing the RNN, some information will be discarded at each time slot. After a period of
time, the state of the RNN is almost devoid of any trace of the initial input. Therefore, when



Sensors 2024, 24, 1165 10 of 23

the conventional neurons are replaced by memory units, the LSTM will retain long-term
information to some extent and solve the gradient explosion problem. The memory unit
consists of three main controllers: the forgetting gate, input gate, and output gate. The
model of LSTM is shown in Figure 2.

Data predictability typically requires a discernible pattern or trend, enabling statistical
analysis and forecasting. Historical data are crucial for understanding system behavior, with
data quality determining predictive model accuracy. Adequate computational resources
are necessary for processing and analyzing large datasets. Stable systems or processes, with
consistent behavior patterns, are more predictable. However, such stability is not always
present in IoT edge computing. Certain sensors may operate stably over time, like those in
environmental monitoring or surveillance. Encapsulating data formats and using dynamic
LSTM models can stabilize predictions, optimizing performance and resource consumption.
For constantly changing scenarios, a sliding window approach (initially set as Wk) reduces
interference from large content variations. This dynamic training method sacrifices some
training time for improved outcomes, applying predictions to resource pre-allocation when
success rates reach a certain threshold.

Figure 2. The structure of LSTM.

3.4. Energy Model

The total power consumption P(t) of fog tiers in time slot t consists of the processing
power consumption and wireless transmit power consumption, where the processing work
number, in turn, contains the distribution power consumption of the fog server and the
computational power consumption of the fog processor, given a local CPU with frequency f.

In the previous section, the task queue in the energy consumption model for task
processing follows the M/M/1 pattern. The local computational delay τi can be expressed
using the following formula:

τi =
λi(t)(σF

i
2
+D2

i )

2(F 2
i − λi(t)FiDi)

+
Di
Fi

(6)

where λ denotes the probability of task arrival; σ represents the standard deviation of the
task size; and Fi denotes the computational resources of i. The total energy consumed in
performing a task is, therefore, represented as Pl

i :

Pl
i =

N

∑
i=1

pi(t) (7)

Therefore, in our system, delay-sensitive tasks are allocated processing based on
computational requirements: a perception of the current local resources is made, and if
there is the capacity to handle them, computational offloading is not considered. Otherwise,



Sensors 2024, 24, 1165 11 of 23

the task data that need to be processed are allocated according to the current resource status
of the fog node by the control node, and offloaded to the fog processor layer for processing,
as shown in Figure 1.

The total energy consumption of delay tasks can be expressed as:

P(t) =
S

∑
s=1

ps(t) +
N

∑
i=1

pc
i,j(t) +

N

∑
i=1

(1 − α)pi(t) (8)

where pi(t) represents the energy consumed by fog node s. Y. Kim et al. measured the
power consumption of a Galaxy Note smartphone equipped with an LTE chipset using
a Monsoon power monitor for three network operators and various mobile scenarios in
South Korea by fitting the parameters (κ, ϕ, ρ) to a typical CPU energy model in [16], where
δt denotes the duration of one time slot in the 15th second, as shown below [25].

Es(si(t)) = (κ(si(t))φ + ρ)∆t. (9)

The measured energy consumption of the LTE and Wi-Fi networks was 2605 mJ/s and
1225 mJ/s, respectively, and the CPU energy parameter was (κ, ϕ, ρ) = (0.33, 3.00, 0.10) [24].
So, as described in [27], pi(t) can be expressed as

ps(t) = τsζ(Fs(t))3 (10)

where ζ is a parameter depending on the deployed hardware and is measurable in practice.
In this paper, Pc

i,j(t) = τc pc
i (t) is defined as the energy consumption of the device

i transmitting tasks to j. M represents the set of IoT nodes, and N represents the set of
fog nodes.

4. Problem Formulation

The optimization of total energy consumption is a key concern in this study. We adopt
the Lyapunov approach to optimize total energy consumption. Ensuring the condition that
the queue is stable, the entire optimization problem can be transformed into a Lyapunov
optimization problem. That is, to guarantee the minimum average energy consumption
per time slot, it can be represented as:

p1:& lim
T→∞

1
T

T−1

∑
t=0

Pa(t) (11)

s.t. lim
T→∞

1
T

T−1

∑
t=0

N

∑
i=1

Fi,s(t) < Fs (12)

lim
T→∞

1
T

T−1

∑
t=0

N

∑
i=1

Ci,j(t) < Cj (13)

0 ≤ pi(t) ≤ Pb
i (14)

0 ≤ Fij(t) ≤ Fs (15)

0 ≤ Cij(t) ≤ Cj (16)

The objective of P1 is to reduce the long-term average energy consumption across all
IoT devices [28], necessitating full task offloading to computing nodes in the fog network,
as denoted by Fa. Decision variables include the partition of computing resources for
offloading αi(t), Fi(t), transmission power per time slot Pi(t), and computational resources
Fs of the computing layer nodes, with i ∈ N. These variables are influenced by the task size,
the required processing latency, and the objective function, under constraints of the channel
bandwidth, computational resources (P1 and Fs), and IoT nodes’ transmission power. It is
assumed that all time slots are equal in length.



Sensors 2024, 24, 1165 12 of 23

P1 also considers limitations on the computing resources allocated by device i (15) and
device i’s transmission speed (16). Over time, the allocated resources must be less than
the device’s capacity, which is constrained by Fs. Considering the device’s transmission
capability, the bandwidth occupied by tasks should be less than the total channel bandwidth,
ensuring energy usage remains below the battery’s total capacity. Local processing of tasks
only accounts for energy consumption.

4.1. Setting Up Lyapunov Virtual Pairs of Columns

In Lyapunov optimization, the satisfaction of long-term average constraints is equated
to the rate stability of the virtual queue. To be more precise, a virtual queue is introduced
to replace the computation resource constraint at edge node (11), and G(t) represents the
random process of the virtual queue length at time slot t. The channel constraint is denoted
by C(t), and the explicit form of G(t) and C(t) can be represented as follows:

G(t + 1)− G(t) = max

(
N

∑
i=1

Fi,s(t)−Fs,−G(t)
)

(17)

H(t + 1) = max

(
H(t) +

N

∑
i=1

Ci,j(t)− Cj, 0

)
(18)

This study assumes a stable environment, with a consistent transmission power from the
charging device. The estimated value of the charging amount Popt

i (t) can be expressed as:

Popt
i (t) =

1 − e−ψ(t)d

(ψ(t)d)2 (19)

where d denotes the distance between the sender and the receiver, and ψ denotes the decay
factor, often determined by the signal frequency and medium characteristics. If the virtual
queue is rate-stable, only limT→∞

A(T)
T can meet constraint (11) according to the definition

in [29]. Similarly, we can derive channel backlog virtual queue B, delay backlog virtual
queue C, and edge node energy backlog virtual queue D. The proof is as follows:

First, we prove the stability of the virtual queue:

G(t + 1)− G(t) = max

(
N

∑
i=1

Fi,s(t)−Fs,−G(t)
)

(20)

For t ∈ (0, 1, 2, ..., T − 1), there exists

lim
T →∞

G(T)− G(0)
T

≥ lim
T→∞

1
T

T−1

∑
t=0

N

∑
i=1

Fi,s(t)−Fs (21)

If A(0) = 0, then

lim
T→∞

G(T)
T

= 0 (22)

Hence, there is:

lim
T→∞

1
T

T−1

∑
t=0

N

∑
i=1

Fi,j(t) ≤ Fj (23)

Therefore, queue A is stable, and similarly, virtual queue B(t) is stable, yielding:

lim
T→∞

1
T

T−1

∑
t=0

N

∑
i=1

Ci,j(t) ≤ Cj (24)

After proving the above, we can translate problem P1 into problem P2.



Sensors 2024, 24, 1165 13 of 23

4.2. Constructing the Lyapunov Function

In this subsection, the specific Lyapunov derivation process and the translation of
problem P1 into problem P2 will be shown, as represented by the following equations:

P2 : lim
T→∞

1
T

T−1

∑
t=0

Pa(t)

s.t. G(t) is rate stable

H(t) is rate stable

(14)–(16)

(25)

Equations (14)–(16) set up the virtual queue vector, with the system state represented
as θ(t):

Θ(t) = [G(t),H(t)] (26)

L(θ(t))=
1
2 ∑

i=1
Qi(t)2

=
1
2
(G(t)2 +H(t)2)

(27)

∆θ(t) = E(L(θ(t + 1))− L(θ(t)) | θ(t)) (28)

When the rate in each queue is stable, problem P2 can be transformed into problem
P3, because the original problem with long-term average objectives and constraints can
be approximately transformed into a problem with drift plus penalty. In this paper, it
is assumed that:

P(t) =
T−1

∑
t=0

Pa(t) (29)

Based on the Lyapunov drift plus penalty algorithm, it can be converted into problem P3
as shown below:

P3: min ∆θ(t) + VE(P(t) | θ(t))

s.t. (12), (13)
(30)

where V represents the weight of the objective function, and ∆θ(t) represents the drift of
the queue, i.e., the stability of the queue. The following shows the specific form of A to
prepare for the upper bound of P4. First, we show G(t + 1)2 − G(t)2:

G(t + 1)2 − G(t)2

= max(G(t) +
N

∑
i=1

Fi,s(t)− Fs, 0)2 − G(t)2

≤ 2G(t)(
N

∑
i=1

Fi,s(t)− Fs) +

(
N

∑
i=1

Fi,s(t)− Fs

)2

≤ 2G(t)
N

∑
i=1

Fi,s(t)− 2G(t)Fs + (
N

∑
i=1

Fi,s(t))2

− 2Fs

N

∑
i=1

Fi,s(t) + F2
s

≤ 2(G(t)− Fs)
N

∑
i=1

Fi,s(t) +

(
N

∑
i=1

Fi,s(t)

)2

+ F2
s

≤ 2(G(t)− Fs)
N

∑
i=1

Fi,s(t) + (N + 1)Fs

2

= D1 + 2(G(t)− Fs)
N

∑
i=1

Fi,s(t)

(31)



Sensors 2024, 24, 1165 14 of 23

Here, the fixed value is represented by D1:

D1 = (N + 1)F 2
s (32)

Similarly, the virtual queue B under bandwidth constraints can be represented as:

H(t + 1)2 −H(t)2 = D2 + 2(H(t)− Cj)
N

∑
i=1

Ci,j(t) (33)

where D2 represents a fixed constant and is expressed by the following formula:

D2 = (N + 1)C2
j (34)

Problem P3 can be expanded to problem P4:

P4 : min VP(t) + (G(t)− Fs)
N

∑
i=1

Fi,s(t) + (H(t)− Cj)
N

∑
i=1

Ci,j(t)

s.t. (14), (15), (16)

(35)

To prove that virtual queues G and H are stable within the context of problem P4,
where P4 has an upper bound constant C, the proof involves demonstrating that these
queues do not grow indefinitely over time. This is typically achieved by showing that the
long-term average inflow rate to each queue is less than or equal to its outflow rate. By
establishing this condition, it can be inferred that the queues will remain bounded and
thus stable, ensuring that the system operates within its defined constraints. The proof is
as follows:

L(θ(t + 1))−L(θ(t)) + VP(t) ≤ C

L(θ(t + 1))−L(θ(t)) ≤ C

L(θ(T))−L(θ(0)) ≤ TC

(36)

This is obtained by making L(θ(0)) = 0:

1
2
(G(t)2 +H(t)2) ≤ TC

G (t)2 ≤ 2TC

G(t) ≤
√

2TC

(37)

Thus, continuing the derivation yields:

lim
T→∞

G(T)
T

≤ lim
T→∞

√
2TC
T

= 0 (38)

The following conclusions can then be drawn:

lim
T→∞

G(T)
T

= 0 (39)

Thus, we can assume that the queue is stable, and we will use an approximate analysis
to explore the upper bound of problem P4.

4.3. Upper Bound Analysis

The reasoning in the previous section proved that problem P4 to be solved has an
upper bound, and we will then solve it for the exact value of this upper bound. First,
it is necessary to prove the upper bound by substituting the computational drift into
Equation (40):



Sensors 2024, 24, 1165 15 of 23

lim
T→∞

1
T

T−1

∑
t=0

P′(t) ≤ P∗ + ζ (40)

where the specific deviation ζ is as follows:

ζ =
(N2 + 1)(Fj

2 + Cj
2) + 2NGmaxFj + 2NH maxCj

2V
(41)

According to the process of solving queuing network problems using the Lyapunov
optimization method, the queue length is usually regarded as a random process. Then,
the Lyapunov function is constructed to estimate the expected growth rate of the queue
length, and the queue length is controlled in a certain range. When the constructed function
meets certain conditions, it can be proved by stability theory that the queue length can
be controlled within a certain range, and the optimal solution can be obtained. Of course,
these results are subject to deviation. For the problem of deviation range, a penalty term
is introduced into the Lyapunov function to limit the fluctuation of the queue length to a
certain range, so that the problem can obtain an optimal solution within a certain deviation
range. This approach is called the Lyapunov drift-plus-penalty method [30]. The specific
proof is as follows:

∆Θ′(t) + VE(P′(t)|Θ(t))

≤ D1 + D2

2
+ VP′(t) + (G (t)− F j)

N

∑
i=1

F ’i,s(t)

+ (H (t)− Cj)
N

∑
i=1

C′
i,j(t)

≤ D1 + D2

2
+ VP∗ + N(GmaxFj +HmaxCj)

(42)

Subtracting ∆Θ′(t) from both sides and dividing by V at the same time reduces the original
equation to:

lim
T→∞

1
T

T−1

∑
t=0

P′(t)

≤ D1 + D2

2V
+ P∗

+
N(GmaxFj +HmaxCj)

V
− ∆Θ′(t)

V

(43)

The next expansion of ∆Θ′(t) yields the upper bound ζ

lim
T→∞

1
T

T−1

∑
t=0

P′(t)

≤ D1 + D2

2V
+ P∗

+
N(GmaxFj +HmaxCj)

V
− ∆Θ′(t)

V

=
D1 + D2

2V
+ P∗ +

N(GmaxFj +HmaxCj)

V

− lim
T→∞

L(θ′(T − 1))−L(θ′(0))
VT

= P∗ +
(N + 1)2Fj

2 + (N + 1)2Cj
2

2V
+

NGmaxFj

V

= P∗ +
(N2 + 1)Fj

2 + Cj
2) + 2NGmaxFj + 2NHmaxCj

2V

(44)



Sensors 2024, 24, 1165 16 of 23

Overall, we initially precisely defined the problem, aiming to optimize the total
energy consumption of the Internet of Things (IoT) system using the Lyapunov method.
Subsequently, we systematically established the Lyapunov function, transforming problem
P1 into P3 and introducing a virtual queue that encompasses aspects such as computing
resources, channels, delays, and energy. By penalizing the Lyapunov drift, we conducted an
upper-bound analysis of problem P4, providing crucial insights for the theoretical analysis
of problem solutions. This establishes a theoretical foundation for the algorithm design,
the construction of the fitness function, and the long-term operation of the system in the
subsequent fifth section.

5. Algorithm Design and Numerical Results

This section outlines and analyzes the algorithm. The Fog Servers (FS) pre-processed
data from edge or IoT devices, integrating types, volumes, and pre-processing times.
A predictive model was then built using Pytorch, trained on 90% of the data, with the
remaining 10% being used for model validation. A key consideration was selecting data
volumes, and setting Wk to 4–20% of the total time slot. The predictive window size was
adjusted based on feedback from each prediction, optimizing the results without affecting
the allocation. At Algorithm 1, The algorithm details the construction of a sliding prediction
model, predicting offloading data, and adjusting the prediction accuracy by using some
training costs as a trade-off. PSO-based resource allocation is described in the Algorithm 2,
also addressing system stability requirements.

Algorithm 1 Prediction and Allocation Algorithm using LSTM and PSO.

Require: Wk, Q(t), λs
r(t), Ur(t), Pc, Pi, Ps, TMAX

Ensure: 0 < t < TMAX
1: Initialize LSTM model with parameters
2: Initialize PSO algorithm for processor allocation
3: for t = 0 to TMAX do
4: Update {λs

r(t)}, {Aw(t)}
5: Q(t) = Q(t − 1) + λs

r(t)− µr(t)− Ur(t) ▷ update task queue
6: if t ≥ Wk then
7: Aw(t) = LSTM Prediction (Q(t − Wk : t − 1)) ▷ predict using LSTM
8: end if
9: Ur(t)

′
= PSO Allocation(Aw(t)) ▷ PSO based allocation

10: if Aw(t) ≈ λs
r(t) then

11: Ur(t) = Ur(t)
′

▷ use predicted allocation
12: else
13: Ur(t) = PSO Allocation(λs

r(t)) ▷ reallocate based on actual data
14: end if
15: Execute allocation based on Ur(t)
16: Update prediction accuracy Er
17: if (Er < 60%) and (Wk < 20% × Tmax) then
18: Wk+ = 5 ▷ increase window size if accuracy low
19: else if (Er ≥ 60%) and (Wk > 5% × Tmax) then
20: Wk∗ = 0.9 ▷ decrease window size if accuracy high
21: end if
22: end for



Sensors 2024, 24, 1165 17 of 23

Algorithm 2 Allocation Algorithm Based on Lya-PSO.

Require: Ik, Ak(t), P(t), F(k), F(j), F(n), Pk, Pc, Pn, Ur(t)
Ensure: 0 < F(k) < F(k)MAX , 0 < F(n) < F(n)MAX , 0 < Ck,n < Ck,n

MAX
1: // Initialize task allocation process
2: for i = 1 to K do
3: Initialize position Xk and velocity Vk for particle k
4: Define objective function min VP(t) + (G (t) − Fs)∑N

k=1 Fk,s(t) + (H (t) −
Cj)∑N

k=1 Ck,j(t)
5: Evaluate particle k and set pBest
6: Update parameters = Xk
7: end for
8: // Verification and Allocation
9: if Xk == null and F(j) ̸= null then

10: for n = 1 to N do
11: if Fn is free then
12: Allocate an idle fog processor
13: Recursive: Ak(t)+ = Allocation algorithm(Ik) ▷ Find the best matching fog

processor group
14: end if
15: end for
16: end if
17: return P∗(t), A∗

k (t) ▷ Return the optimal allocation

In this section, the performance of the proposed LLPSO algorithm is evaluated through
numerical simulations. The test was conducted on a Windows 10 system with a 2.3 GHz
Intel Core i5-8300H processor and 24 GB 2667-MHz DDR4 memory. The simulation
environment was built using Python 3.10. The section begins with the basic setup of
the simulation environment and then presents results and analyses of the algorithm’s
performance under different latency requirements for tasks.

5.1. Basic Settings

In the simulation, a fog computing system with 20 users, 50 computing nodes, and
one control node was modeled. Each control node corresponded to computing nodes,
all active with varying total resources. Each node had different available resources, and
available memory and CPU for dynamically processing change when offloading tasks.

Twenty users were randomly simulated to send task requests over an hour. The
bandwidth between users and fog control nodes was set at 10 Mb/s, with wired connections
to fog computing nodes. Tasks were uploaded to edge devices, which decided on local
processing or offloading. Users could also connect directly to fog servers. Users and edge
devices, which were treated as users, had initial CPU capacities of 500 Mhz and 500 M
of memory. Fog server nodes had higher bandwidths of 2 GHz and 4 G RAM. Processor
nodes started with 300 Mhz CPUs and 300 M RAM. The communication interference and
distances between users and computing nodes were constant, while noise between users
and the cloud varied. Task sizes ranged from 1–10 M, and the algorithm’s inertia weight
(w) was set at 0.6.

5.2. Comparative Analysis of Prediction Algorithms

Firstly, we present a partial data comparison graph between the optimized prediction
algorithm and real data. Prediction, as a task, is inherently challenging, considering it
deals with unknown events. The effectiveness of predictions becomes more evident when
the data exhibit certain patterns that can be predicted. In this experiment, we initially
conducted a comparison of predictions involving standalone LSTM, LSTM with a fixed
sliding window mode, and LSTM with a dynamic sliding window.



Sensors 2024, 24, 1165 18 of 23

Firstly, in Figure 3, you can see a comparative graph of the prediction accuracy for each
time slot among the three prediction methods. In general cases, the prediction started with
failure, resulting in a starting point at 0 and 1. At this point, the simulation represented
extreme conditions where user data were continuously changing, and this data variation
was influenced by the bandwidth, transmission rate, and processing latency. According to
the evaluation criteria in this paper, it was observed that the dynamic window, WK, which
adjusted its accuracy gradually with model training, exhibited a relatively higher precision.

Figure 4 illustrates the training time comparison for the three algorithms in each time
slot. Firstly, the general LSTM model could be used directly after training; thus, it did not
consume a significant amount of training time. The training time for LSTM optimized
under the dynamic sliding window was initially faster than that optimized using the static
window training, but later it took longer. The comparison between dynamic and static arose
because the algorithm adjusted during continuous operation, discovering that investing
some training time appropriately could enhance accuracy. Secondly, the training time
was determined by the channel rate as the lower limit and when to use these data as the
upper limit.

In summary, in this design, the prediction method of LSTM optimized under the
dynamic sliding window, compared to LSTM optimized under the static window, improved
our accuracy by approximately 3.28 times and the precision by over 18.02%. Compared
to the regular LSTM prediction method, our accuracy increased by 1.422 times, and the
precision improved by over 7.72%.

Figure 3. Accuracy trend at each time slot.

Figure 4. Training time under each time slot.



Sensors 2024, 24, 1165 19 of 23

5.3. Evaluation with Different Delay Requirement Task

We evaluated the performance of various algorithms for tasks with different latency
requirements and also presented a comparison of delays after incorporating prediction
algorithms. Additionally, we assessed the system performance, including the impact of
node expansion on system performance, tasks with the same number of nodes but different
arrival rates, and a comparison of error rates for tasks with different arrival rates.

In Figure 5, we can observe the total energy consumption variation for different
algorithms in each time slot, and Figure 6 illustrates the average energy consumption
variation in different time slots. Among them, the improved LDLPSO algorithm performed
the best, followed by the LPSO algorithm, the original PSO algorithm, the First-Come-First-
Served (FiFs) algorithm, and the Greedy algorithm. The reason for this phenomenon is that
our proposed LDLPSO algorithm takes into account the stability of the entire system queue,
making its line relatively clear with smaller fluctuations. Although the graph appears
relatively stable, the actual numerical changes are significant. After comparison, it can be
concluded that the LDLPSO algorithm saves an average of 9.44% in energy consumption
compared to the LPSO algorithm and 32.73% compared to the most energy-consuming
algorithm, i.e., the Greedy algorithm.

Figure 5. Total time consumption of various tasks.

Figure 6. Average energy consumption graph of time slots.



Sensors 2024, 24, 1165 20 of 23

In Figures 7 and 8, we further compare the energy consumption and latency between
the LDLPSO and LPSO algorithms for additional research. On one hand, although the
Full System (FS) energy consumption increased, the overall average energy consumption
did not, thanks to its dynamic combination fog processor scheme, which was designed for
tasks. Simultaneously, due to the effect of pre-allocation, our allocation speed increased
by 1.25 times compared to the original speed. On the other hand, with the increase in the
number of nodes, the variation in our average energy consumption remained relatively
stable. As for the other strategies, the First-Come-First-Served (FiFs) strategy led to queue
congestion and increased task delays, requiring more computational and communication
resources to meet the deadline and consequently increasing energy consumption. Finally,
the Greedy algorithm consumed more energy in an attempt to complete all tasks as quickly
as possible.

Figure 7. Performance of two algorithms: average energy consumption of FS with increasing number
of nodes.

Figure 8. Performance of two algorithms: round averaging latency distribution.

In Figure 9, we can observe that, even with the same arrival rate, our proposed LLPSO
algorithm still performed the best. This is because the combination of Lyapunov-based
system control and LSTM-based task prediction, while maintaining queue stability, signif-
icantly reduces the queue time and lowers system energy consumption. In contrast, the
other three algorithms focus solely on resource allocation without dynamic optimization.
Additionally, we compared the performance of different algorithms under different task



Sensors 2024, 24, 1165 21 of 23

arrival rates with the same number of user nodes, as shown in Figure 10. In these com-
parisons, the Greedy algorithm outperformed the LDLPSO algorithm. This is because the
Greedy algorithm allocates a significant amount of resources and energy, thereby increasing
the task completion rate. On the other hand, compared to LDLPSO, the performance of
the other two algorithms in terms of task completion rate is relatively poor. LDLPSO can
effectively utilize available resources, prioritize optimizing task allocation, and ensure
tasks are completed on time. However, the other two algorithms lack flexibility in resource
utilization and task allocation, thus they cannot fully leverage the available resources to
meet task demands, resulting in a lower task completion rate.

Figure 9. The energy consumption chart for different algorithms under different arrival rates.

Figure 10. The task-miss rate for different algorithms under different arrival rates.

In addition, we also compared the performance of different algorithms under different
task arrival rates with the same number of user nodes. In these comparisons, the Greedy
algorithm outperformed the LLPSO algorithm. This is because the Greedy algorithm
invests significant resources and energy, resulting in a higher task completion rate. On
the other hand, the other two algorithms performed relatively poorly in terms of the task
completion rate compared to LDLPSO. LDLPSO utilizes the available resources efficiently
and prioritizes optimal task allocation to ensure timely task completion. It allocates a
substantial amount of resources and energy to task execution, thereby improving the task
completion rate. However, the other two algorithms are less flexible in resource utilization



Sensors 2024, 24, 1165 22 of 23

and task allocation, thus they are unable to fully utilize the available resources to meet task
demands, leading to a lower task completion rate.

6. Conclusions and Future Works

This paper introduces a predictive offloading algorithm, LDLPSO, based on the Lya-
punov approach, optimized for charging scenarios. Even in environments with highly
random data leading to a relatively low prediction success rate, comparative experiments
revealed that the LDLPSO algorithm still outperformed the other four algorithms in terms
of the task completion rate and energy consumption. Specifically, compared to the LPSO
algorithm, we achieved an improvement of approximately 25% in response speed at the cost
of sacrificing some Fog Server (FS) performance. The overall average energy consumption
was reduced by approximately 9.44%, demonstrating good scalability. However, there are
still some limitations and areas for improvement. We did not consider the mobility of user
nodes or adequately address issues related to cloud collaboration. In real scenarios, user
nodes may move to different locations, and the frequent changes in users may impact the
prediction, allocation, and resource utilization of tasks. Therefore, in future research, we
need to consider how to adapt to the mobility of user nodes to enhance the algorithm’s
performance further, making it better suited for diverse system heterogeneity and data
heterogeneity in device scenarios.

In conclusion, although the LDLPSO algorithm in this paper achieved effective opti-
mization results, further improvements are still necessary. Our future efforts will focus on
researching the system heterogeneity and data heterogeneity of users, edge devices, and
fog devices, leveraging the advantages of wireless charging networks. We aim to further
enhance resource utilization efficiency, advance research in this field, and improve the
performance and applicability of the algorithm.

Author Contributions: Conceptualization, S.P.; Methodology, S.P. and C.H.; Software, S.P. and J.T.;
Validation, S.P. and J.T.; Formal analysis, S.P., J.F. and Z.S.; Investigation, S.P., C.H. and J.F.; Resources,
H.W.; Data curation, C.H.; Writing—original draft, S.P., C.H. and Z.S.; Writing—review & editing,
S.P., J.F., Z.S. and J.T.; Visualization, S.P.; Supervision, Z.S., J.T. and H.W.; Project administration, J.F.
and H.W.; Funding acquisition, H.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China under
Grant Nos. 62171413. The public welfare research project of Jinhua City of Zhejiang Province of China
under Grant 2022-4-063. The name of our project fund is Research on the Fundamental Theory and
Application of Compressed Data Collection for Large-scale Wireless Sensor Networks in Defective
Multi-modal Sampling Scenarios.

Data Availability Statement: Data are simulation realizations, already described in the text, no
additional datasets available.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gao, X.; Huang, X.; Bian, S.; Shao, Z.; Yang, Y. PORA: Predictive Offloading and Resource Allocation in Dynamic Fog Computing

Systems. IEEE Internet Things J. 2020, 7, 72–87. [CrossRef]
2. Li, Z.; Qian, Y.; Tang, F.; Zhao, M.; Zhu, Y. H-BILSTM: A Novel Bidirectional Long Short Term Memory Network Based Intelligent

Early Warning Scheme in Mobile Edge Computing (MEC). IEEE Trans. Emerg. Top. Comput. 2023, 11, 253–264. [CrossRef]
3. Gao, Y.; Tang, W.; Wu, M.; Yang, P.; Dan, L. Dynamic social-aware computation offload-ing for low-latency communications in

IoT. IEEE Internet Things J. 2019, 6, 7864–7877. [CrossRef]
4. Gomes, E.; Costa, F.; De Rolt, C.; Plentz, P.; Dantas, M. A Survey from Real-Time to Near Real-Time Applications in Fog

Computing Environments. Telecom 2021, 2, 489–517. [CrossRef]
5. Sasaki, K.; Suzuki, N.; Makido, S.; Nakao, A. Vehicle control system coordinated between cloud and mobile edge computing. In

Proceedings of the 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tsukuba,
Japan, 20–23 September 2016; pp. 1122–1127.

6. Alliance, N. 5G White Paper. Next Generation Mobile Networks; White Paper; NGMN: Frankfurt, Germany, 2015; Volume 1.

http://doi.org/10.1109/JIOT.2019.2945066
http://dx.doi.org/10.1109/TETC.2022.3202266
http://dx.doi.org/10.1109/JIOT.2019.2909299
http://dx.doi.org/10.3390/telecom2040028


Sensors 2024, 24, 1165 23 of 23

7. Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative
decisionmaking. Autom. Constr. 2018, 85, 51–64. [CrossRef]

8. Lv, H.; Zheng, Z.; Wu, F.; Chen, G. Strategy-Proof Online Mechanisms for Weighted AoI Minimization in Edge Computing. IEEE
J. Sel. Areas Commun. 2021, 39, 1277–1292. [CrossRef]

9. Dong, Y.; Guo, S.; Wang, Q.; Yu, S.; Yang, Y. Content caching-enhanced computation offloading in mobile edge service networks.
IEEE Trans. Veh. Technol. 2021, 71, 872–886. [CrossRef]

10. Karimiafshar, A.; Hashemi, M.R.; Heidarpour, M.R.; Toosi, A.N. An energy-conservative dispatcher for fog-enabled IIoT systems:
When stability and timeliness matter. IEEE Trans. Serv. Comput. 2021, 16, 80–94. [CrossRef]

11. Hazra, A.; Adhikari, M.; Amgoth, T.; Srirama, S.N. Joint computation offloading and scheduling optimization of IoT applications
in fog networks. IEEE Trans. Netw. Sci. Eng. 2020, 7, 3266–3278. [CrossRef]

12. Bonomi, F.; Milito, R.A.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16.

13. Flinn, J. Cyber Foraging: Bridging Mobile and Cloud Computing; Synthesis Lectures on Mobile & Pervasive Computing; Springer
Nature: Berlin/Heidelberg, Germany, 2012; Volume 7, pp. 1–103.

14. Adhikari, M.; Mukherjee, M.; Srirama, S.N. DPTO: A Deadline and Priority-Aware Task Offloading in Fog Computing Framework
Leveraging Multilevel Feedback Queueing. IEEE Internet Things J. 2020, 7, 5773–5782. [CrossRef]

15. Guan, S.; Boukerche, A.; Loureiro, A. Novel Sustainable and Heterogeneous Offloading Management Techniques in Proactive
Cloudlets. IEEE Trans. Sustain. Comput. 2021, 6, 334–346. [CrossRef]

16. Chen, X. Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 2015, 26,
974–983. [CrossRef]

17. Zhang, G.; Shen, F.; Liu, Z.; Yang, Y.; Wang, K.; Zhou, M.-T. FEMTO: Fair and Energy-Minimized Task Offloading for Fog-Enabled
IoT Networks. IEEE Internet Things J. 2019, 6, 4388–4400. [CrossRef]

18. Du, J.; Zhao, L.; Feng, J.; Chu, X. Computation Offloading and Resource Allocation in Mixed Fog/Cloud Computing Systems
with Min-Max Fairness Guarantee. IEEE Trans. Commun. 2018, 66, 1594–1608. [CrossRef]

19. Qiu, Y.; Zhang, H.; Long, K. Computation Offloading and Wireless Resource Management for Healthcare Monitoring in
Fog-Computing-Based Internet of Medical Things. IEEE Internet Things J. 2021, 8, 15875–15883. [CrossRef]

20. Bozorgchenani, A.; Mashhadi, F.; Tarchi, D.; Monroy, S.A.S. Multi-Objective Computation Sharing in Energy and Delay Con-
strained Mobile Edge Computing Environments. IEEE Trans. Mob. Comput. 2021, 20, 2992–3005. [CrossRef]

21. Venkatesh, M.; Polisetty, S.N.K.; Srilakshmi, C.H.; Satpathy, R.; Neelima, P. A Novel Deep Learning Mechanism for Workload
Balancing in Fog Computing. In Proceedings of the 2022 International Conference on Automation, Computing and Renewable
Systems (ICACRS), Pudukkottai, India, 13–15 December 2022; pp. 515–519. [CrossRef]

22. Cai, Y.; Llorca, J.; Tulino, A.M.; Molisch, A.F. Decentralized Control of Distributed Cloud Networks With Generalized Network
Flows. IEEE Trans. Commun. 2023, 71, 256–268. [CrossRef]

23. Huang, C.; Wang, H.; Zeng, L.; Li, T. Resource Scheduling and Energy Consumption Optimization Based on Lyapunov
Optimization in Fog Computing. Sensors 2022, 22, 3527. [CrossRef] [PubMed]

24. Lin, M.; Wierman, A.; Andrew, L.; Thereska, E. Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Netw.
2013, 21, 1378–1391. [CrossRef]

25. Kim, Y.; Kwak, J.; Chong, S. Dual-side optimization for cost-delay tradeoff in mobile edge computing. IEEE Trans. Veh. Technol.
2018, 67, 1765–1781. [CrossRef]

26. Zukerman, M. Introduction to queueing theory and stochastic teletraffic models. arXiv 2013, arXiv:1307.2968.
27. Jiang, Z.; Mao, S. Energy delay tradeoff in cloud offloading for multi-core mobile devices. IEEE Access 2015, 3, 2306–2316.

[CrossRef]
28. Lin, R.; Xie, T.; Luo, S.; Zhang, X.; Xiao, Y.; Moran, B.; Zukerman, M. Energy-Efficient Computation Offloading in Collaborative

Edge Computing. IEEE Internet Things J. 2022, 9, 21305–21322. [CrossRef]
29. Lin, R.; Zhou, Z.; Luo, S.; Xiao, Y.; Wang, X.; Wang, S.; Zukerman, M. Distributed Optimization for Computation Offloading in

Edge Computing. IEEE Trans. Wirel. Commun. 2020, 19, 8179–8194. [CrossRef]
30. Neely, M.J.; Huang, L. Dynamic product assembly and inventory control for maximum profit. In Proceedings of the 49th IEEE

Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 2805–2812. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.autcon.2017.10.009
http://dx.doi.org/10.1109/JSAC.2021.3065078
http://dx.doi.org/10.1109/TVT.2021.3128772
http://dx.doi.org/10.1109/TSC.2021.3114964
http://dx.doi.org/10.1109/TNSE.2020.3021792
http://dx.doi.org/10.1109/JIOT.2019.2946426
http://dx.doi.org/10.1109/TSUSC.2020.2980847
http://dx.doi.org/10.1109/TPDS.2014.2316834
http://dx.doi.org/10.1109/JIOT.2018.2887229
http://dx.doi.org/10.1109/TCOMM.2017.2787700
http://dx.doi.org/10.1109/JIOT.2021.3066604
http://dx.doi.org/10.1109/TMC.2020.2994232
http://dx.doi.org/10.1109/ICACRS55517.2022.10029081
http://dx.doi.org/10.1109/TCOMM.2022.3225186
http://dx.doi.org/10.3390/s22093527
http://www.ncbi.nlm.nih.gov/pubmed/35591216
http://dx.doi.org/10.1109/TNET.2012.2226216
http://dx.doi.org/10.1109/TVT.2017.2762423
http://dx.doi.org/10.1109/ACCESS.2015.2499300
http://dx.doi.org/10.1109/JIOT.2022.3179000
http://dx.doi.org/10.1109/TWC.2020.3019805
http://dx.doi.org/10.1109/CDC.2010.5717235

	Introduction
	Related Works
	Works Focused on Optimizing Task Offloading
	Works Focused on Optimizing Energy Consumption
	Works Focused on Prediction

	System Model
	System Basic Elements
	Transmission Model and Task Queue
	Prediction Model
	Energy Model

	Problem Formulation
	Setting Up Lyapunov Virtual Pairs of Columns
	Constructing the Lyapunov Function
	Upper Bound Analysis

	Algorithm Design and Numerical Results
	Basic Settings
	Comparative Analysis of Prediction Algorithms
	Evaluation with Different Delay Requirement Task

	Conclusions and Future Works
	References

