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Abstract: Estimation of temporospatial clinical features of gait (CFs), such as step count and length,
step duration, step frequency, gait speed, and distance traveled, is an important component of
community-based mobility evaluation using wearable accelerometers. However, accurate unsuper-
vised computerized measurement of CFs of individuals with Duchenne muscular dystrophy (DMD)
who have progressive loss of ambulatory mobility is difficult due to differences in patterns and
magnitudes of acceleration across their range of attainable gait velocities. This paper proposes a novel
calibration method. It aims to detect steps, estimate stride lengths, and determine travel distance.
The approach involves a combination of clinical observation, machine-learning-based step detection,
and regression-based stride length prediction. The method demonstrates high accuracy in children
with DMD and typically developing controls (TDs) regardless of the participant’s level of ability.
Fifteen children with DMD and fifteen TDs underwent supervised clinical testing across a range of gait
speeds using 10 m or 25 m run/walk (10 MRW, 25 MRW), 100 m run/walk (100 MRW), 6-min walk
(6 MWT), and free-walk (FW) evaluations while wearing a mobile-phone-based accelerometer at the
waist near the body’s center of mass. Following calibration by a trained clinical evaluator, CFs were
extracted from the accelerometer data using a multi-step machine-learning-based process and the
results were compared to ground-truth observation data. Model predictions vs. observed values for
step counts, distance traveled, and step length showed a strong correlation (Pearson’s r = −0.9929
to 0.9986, p < 0.0001). The estimates demonstrated a mean (SD) percentage error of 1.49% (7.04%)
for step counts, 1.18% (9.91%) for distance traveled, and 0.37% (7.52%) for step length compared to
ground-truth observations for the combined 6 MWT, 100 MRW, and FW tasks. Our study findings
indicate that a single waist-worn accelerometer calibrated to an individual’s stride characteristics
using our methods accurately measures CFs and estimates travel distances across a common range of
gait speeds in both DMD and TD peers.

Keywords: temporospatial gait clinical features; Duchenne muscular dystrophy; typically developing;
accelerometer; machine learning; gait cycle
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1. Introduction

There is a pressing need to overcome challenges in measuring key temporospatial
clinical features (CFs) of children with Duchenne muscular dystrophy (DMD) [1] in the
community using single mobile wearable acceleration sensors. Gait patterns of people
with DMD become progressively atypical with advancing disease, with reduced stride
lengths, cadence, and gait speed, reduced intensity of accelerations in the vertical and
anteroposterior axes of travel, and reduced vertical accelerations [2]. These changes lead
to alterations in patterns and magnitudes of acceleration that complicate computer-based
identification of individual steps, which then impairs researchers’ ability to measure gait
features in an unsupervised manner during community-based activities. Single-sensor
signals have been used to detect important gait events such as initial contact (IC) at
different walking and running speeds [3] in laboratory settings, but methods for combining
signals across an individual’s full range of attainable velocities to accurately measure
steps and distance traveled in the community have not been described. Our method
uses a combination of clinical observation and machine-learning- and regression-based
approaches to identify the weak patient’s novel patterns of acceleration associated with
their ambulation at different speeds.

Accelerometers can be more accurate than pedometers at slower walking speeds and
in populations with atypical gait patterns, making pedometers less suitable for evaluating
physical activity in such populations [4]. Estimating CFs of gait (step length, step duration,
step frequency, and gait speed) is a fundamental step in gait analysis, and detecting the IC
of the heel is crucial for identifying gait events and the beginning of the step cycle. In a
laboratory environment, detecting events and estimating CFs is typically accomplished by
measuring ground reaction forces (GRF) and verifying with visual observation. However,
using these methods to measure gait events in the community is often impractical.

Studies have described the potential of using acceleration signals to estimate CFs.
Several studies have demonstrated that step length, gait speed, IC, and incline can be
determined from acceleration signals of the lower trunk [3]. Aminian and colleagues
explored the feasibility of using a fully connected artificial neural network (ANN) with
accelerometers on the trunk and heel to predict incline and speed based on ten statistical
parameters extracted from the raw signal [5]. The results revealed that a negative peak in
the heel accelerometer signal indicates IC events in each gait cycle (two steps).

Studies comparing accelerometer signals from different body positions at various walk-
ing speeds demonstrate that positions near the body’s center of mass (trunk, waist, pelvis,
and sacrum) are suitable for capturing gait events [6–8]. In a study by Zijlstra et al., partici-
pants walked on a force-transducing treadmill and overground while trunk acceleration
data were recorded to estimate step lengths and walking speed. IC events were matched
with vertical ground reaction force (GRF) normalized by body weight to anteroposterior
acceleration. The start and end of gait cycles from the GRF corresponded with the time of
the peak amplitude value in the anteroposterior acceleration signal [3]. Further research by
Lee et al. and Mo et al. demonstrated that IC events can be determined from anteroposte-
rior acceleration measured at the pelvis and sacrum [9,10]. They collected accelerometer
signals from the pelvis/sacrum and GRF data and matched IC events on anteroposterior
acceleration with vertical GRF. Initial contact events on the force plate corresponded with
the instant of the positive peak pelvis/sacrum anteroposterior acceleration [10].

Detecting IC gait events and precisely measuring walking/running distance are vi-
tal components of gait analysis, offering invaluable clinical insights. Although GRF is
capable of detecting IC events, its dependence poses limitations in communities without
GRF availability. Therefore, there is a pressing need for alternative methods in IC event
detection. Additionally, accurate distance measurement is critical in gait analysis, especially
when dealing with muscle disorders. Traditional methods such as pedometers and wheel
measurements encounter challenges in communities, particularly for long distances and
low speeds, as observed in participants with muscular disorders. Consequently, a method
that ensures both accurate distance estimation and IC event detection is imperative.



Sensors 2024, 24, 1155 3 of 12

We present a machine learning (ML)-based method that automates detection of
IC events and CFs using raw accelerometer signals obtained from consumer mobile
devices [11,12]. We demonstrate that using a single accelerometer worn close to the body’s
center of mass is an accurate and reliable approach to estimate CFs and IC events across a
typical range of walking speeds. This method can be applied to healthy individuals and
those with gait disturbances without the need for GRF measurements.

2. Materials and Methods

Estimating distance using accelerometer signals is challenging due to inherent quadratic
error of accelerometers, which can result in deteriorating estimates even with short inte-
gration times and distances. Many methods attempt to estimate distance from accelerom-
eters by integrating acceleration twice with respect to time, despite incorporating error-
limiting mechanisms and setting restrictions, which can result in errors due to noise, drift,
and bias [13]. We propose an ML-based signal processing method that accurately estimates
an individual’s distance traveled, step length, and number of steps across varying walk-
ing/running speeds, outperforming the built-in pedometer function on iPhones, which
shows the highest error percentage in slow walking speeds [9].

Because different individuals have different walking/running behaviors that affect
acceleration, we built a regression model for each individual to estimate distance based
on their specific walking/running patterns. We developed a regression model using
data from five different speeds (SC-L1 to SC-L5) to map step length to the corresponding
anteroposterior acceleration amplitudes using pairs of distance and acceleration values
(Figure 1A). We calculated distance for a single speed by averaging the step distances, while
the acceleration was calculated by averaging the maximum values of acceleration in each
step (Figure 1B).

Acceleration (g) 

S
te

p 
le

ng
th

 (m
)

SC-L1

SC-L2

SC-L3

SC-L4

SC-L5

A B

S
pe

ed
 C

al
ib

ra
tio

n 

Input

Output

Regression model

Number of steps

Walk4me system

Low-pass filter

Peak detection

Signal processing 

Distance

Avg step length

Step-length Processing

6MWT

100MRW

FW

IC events

Step duration

R
aw

 A
ccelerom

eter 
(anteroposterior signal)

Step speed

Avg speed

Step-lengthStep-lengthStep-length

TD
DMD
TD (participant ID 2)

SC-L1

SC-L2

SC-L3

SC-L4

SC-L5
1.2

1.0

0.8

0.6

0.4

0.2
0 0.5 1.0 1.5 2.0 2.5

Figure 1. (A) The relationship between step length and acceleration of the body’s center of mass at
various speeds for TD individuals and those with DMD. The plotted curves depict the regression
model, with the black line representing all participants, the green line representing TD participants,
and the red line representing DMD participants. (B) The diagram depicts the data flow of our model
training and prediction process. In the training phase, the model uses five speed calibrations, SC-L1 to
SC-L5, with ground truth to predict the average step length. The input to our model is the acceleration
signal from unseen gait activities (6 MWT, 100 MRW, and FW).
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To ensure a fair comparison, we evaluated three sources of estimated data: first,
ground-truth data based on video observation of distance traveled and number of steps;
second, the pedometer sensor in the iPhone, which provided estimates of distance and
number of steps; and, third, our Walk4Me system [11], which includes calibration regression
models for estimating distance and a signal processing algorithm for measuring number of
steps. We estimated the speed, step length, and frequency as derivatives from the regression
and signal processing.

2.1. Participants

Fifteen children with DMD and fifteen TD peers participated in gait speed experiments.
The age of the participants ranged from 3 to 16 years, with a mean age of 8.6 years and a
standard deviation of 3.5. Their body weight ranged from 17.2 to 101 kg, with a mean weight
of 36 kg and a standard deviation of 18.8. Their height ranged from 101.6 cm to 165.5 cm,
with a mean height of 129 cm and a standard deviation of 15.8. All participants had at least
6 months of walking experience and were able to perform a 10-m walk/jog/run test in
less than 10 s. Participants with DMD had a confirmed clinical diagnosis and were either
naïve to glucocorticoid therapy or on a stable regimen for at least three months. Northstar
Ambulatory Assessment (NSAA) [14] scores for DMD participants ranged from 34 to 8,
indicating typical levels of function to clinically apparent moderate mobility limitation
(Table 1). The protocol was reviewed and approved by the Institutional Review Board
(IRB) at the University of California, Davis, and informed consent was obtained from each
participant prior to the initiation of study procedures. Measurements were taken at eight
different walking/running gait activities, including speed-calibration tests at slow walk to
running speeds (SC-L1, SC-L2, SC-L3, SC-L4, and SC-L5), a 6-min walk test (6 MWT) [15],
a 100-m fast-walk/jog/run (100 MRW) [16], and a free walk (FW). Participants engaged in
walking, jogging, or running within a 25-m corridor delimited by two cones, as illustrated
in Figure 2A,B.

25
 m

et
er

s

Cone 1

Cone 2

A B

Figure 2. (A) Diagram depicting the corridor layout with two cones positioned 25 m apart, guiding
walking, running, and jogging directions. Exception for free-walk (FW), allowing participants the
freedom to move within the building. (B) Image showcasing the real-life corridor environment.
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Table 1. Characteristics of the children included in the study.

ID Case Age Weight Height NSAA
(Status) (Years) (kg) (cm) (/34)

1 TD 15 101.0 165.5 34
2 TD 12 57.7 155.6 34
3 TD 11 46.4 146.0 34
4 TD 9 41.8 132.9 34
5 TD 8 29.6 126.5 34
6 TD 8 27.9 136.9 34
7 TD 7 32.8 139.0 34
8 TD 7 25.2 131.1 34
9 TD 7 22.7 122.0 34
10 TD 6 27.2 127.1 34
11 TD 6 20.1 114.8 34
12 TD 5 20.8 119.8 34
13 TD 4 18.7 114.0 34
14 TD 4 18.6 108.5 34
15 TD 6 23.2 122.4 31

16 DMD 3 20.0 101.6 34
17 DMD 9 36.2 128.4 31
18 DMD 6 17.2 106.2 30
19 DMD 14 50.0 147.0 27
20 DMD 10 54.5 142.0 24
21 DMD 10 31.7 131.5 24
22 DMD 5 22.9 111.8 24
23 DMD 12 40.0 129.0 22
24 DMD 11 67.7 145.0 20
25 DMD 15 63.7 153.3 15
26 DMD 11 37.5 125.0 15
27 DMD 8 30.7 133.0 13
28 DMD 7 28.5 120.4 12
29 DMD 16 46.7 130.1 9
30 DMD 5 18.2 102.5 8

2.2. Equipment

Acceleration data from each participant were sampled at a rate of 100 Hz using an
iPhone 11 and our Walk4Me smartphone application [11]. We utilized the iPhone 11, which
is equipped with a 3−axis MEMS accelerometer from STMicroelectronics. It recorded
g-force measurements within ±8 g along each axis, maintaining a data sampling rate of up
to 100 Hz. The phones were securely attached at the waist [17] with an athletic-style elastic
belt enclosure, positioned approximately at the level of the lumbosacral junction. The raw
accelerometer signal was synchronized with video recordings captured by a GoPro camera
at a rate of 30 Hz. An observer marked the events where a participant passed the start
or end of the duration or distance assigned to each activity using the web portal of the
Walk4Me system.

2.3. Gait and Events Detection and Data Analysis

We collected the raw accelerometer signal from 30 participants, which included the x,
y, and z−axes (vertical, mediolateral, and anteroposterior), along with the corresponding
timestamps. Based on the findings of Zijlstra [3], we observed that the IC events were more
distinguishable in the anteroposterior axis (z−axis) compared to the other axes. Therefore,
we used the anteroposterior signal from the raw accelerometer data to develop our method
for counting the number of steps, estimating step length, and calculating the total distance
individuals walked at different speeds.
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2.3.1. Method of Step Detection

Figure 3A presents a raw accelerometer signal of the anteroposterior movement
(z−axis) from a TD participant during fast-walk speed calibration (SC-L4) for 2.4 s. The steps
in the anteroposterior signal are characterized by long wavelengths (low frequency), while
other wavelengths (high frequency) represent noise signals. To extract the steps, a trained
clinical evaluator reviewed testing videos and applied a low-pass filter [18] to individual
participants’ data at each speed from a slow walk to a jog/run (range 0.5 Hz to 60 Hz) to
smooth the signal and remove short-term fluctuations while preserving the longer-term
trend indicating each step (Figure 3A,B).

We then identified the peak values of the filtered signal as the peaks occur only once
per step in the filtered signal (Figure 3C). The number of peaks corresponds to the number
of steps taken by the participant. Figure 4A shows the estimated number of steps using our
method as blue dots, compared to the ground truth represented by a black line. The built-in
pedometer steps estimation is shown in red.
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Figure 3. This figure presents the signal processing of the raw accelerometer signal of the antero-
posterior movement (z−axis) of participant ID 2 on fast-walk speed calibration (SC-L4) for 2.4 s.
(A) Original raw accelerometer signal. (B) Filtered signal. (C) Peak detection of the filtered signal.
(D) Locate the beginning and the end of each step. (E) Peaks detection of the original signal.
(F) Locate the highest peak in the original signal.
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Figure 4. Comparison between the estimates and ground-truth values for both pedometers and
our Walk4Me system to illustrate the accuracy across four key metrics: (A) the number of steps.
The adjusted R-squared of our Walk4Me is 0.9973, while the pedometer is 0.6826. (B) The distance in
meters. The adjusted R-squared of our Walk4Me is 0.9937, while the pedometer is 0.6987. (C) The
average step length in meters. The adjusted R-squared of our Walk4Me is 0.9595, while the pedometer
is 0.0094. (D) the average speed in meters per second.

2.3.2. Method of IC Detection

To detect the IC events, we find the midpoint between two peaks in the filtered signal
(Figure 3D), which corresponds to the toe-off (TO) events during the gait cycle based on
observation. We then identify all the peaks that occur within each step duration in the
original acceleration signal (Figure 3E). Next, we determine the maximum peak value
(anteroposterior G), which corresponds to the time point of each IC (Figure 3F).

2.3.3. Method of Step Length Estimation Using Regression

We create an individualized nonlinear regression model [19] for each participant
to associate average peak acceleration values with step lengths. Figure 1A depicts the
data flow of our model training and prediction process. Each model is trained using
five different participant-selected calibration speeds (SC-L1 to SC-L5). For each speed,
we calculate the average acceleration peak values by taking the mean of all the peaks as
described in Section 2.3.2. To calculate the average step length for training, we divide
the observed ground-truth distance by the number of steps obtained from Section 2.3.1.
This process is repeated for each of the five calibration speeds (e.g., point SC-L4
in Figure 1A). The resulting individualized equation through all five points allows us
to input the peak acceleration value of any step within the participant’s range of ambula-
tory velocity to estimate that step’s length (shown as the green line in Figure 1A).

2.3.4. Estimating the Distance

After establishing the individualized model, it can be used on unseen data.
We calculate the step lengths of all identified steps from a previously unseen event and
accumulate them to calculate the total distance traveled by the individual. In this project,
we used 100 MRW, 6 MWT, and FW as input signals during the inference stage, as shown in
Figure 4B, and compared the calculated distances with the ground-truth observed distances
and the device’s internal pedometer.

2.3.5. Calculating the Average Step Length

During the inference stage, to calculate the average step length of an individual, we
divide the distance estimated from Section 2.3.4 by the number of steps obtained from
Section 2.3.1. Figure 4C shows the estimated average step length using our ML model as
blue dots, compared to the ground-truth average step length represented by a black line.
The red dots represent the average step length estimated by the built-in pedometer.
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2.3.6. Error Percentage Rates

To compare observed ground-truth step counts, distance traveled, and average step
lengths with our model’s estimates and the pedometer estimates native to the mobile
devices, we employed two methods. First, we calculated the aggregated error for all
estimates by determining an error percentage rate (Errorrate) using Equation (1).

Errorrate =

∣∣∣∣∣∣∣∣∣
n

∑
i
|Vc − Vo|i −

n

∑
i
|Vo|i

n

∑
i
|Vo|i

∣∣∣∣∣∣∣∣∣× 100 (1)

The Errorrate is calculated by aggregating the residual values of all participants (i) for
all activities. The residual is the difference between the proposed methods (Vc) and the total
number of ground-truth observations (Vo). Then, the total aggregated is subtracted from
the total ground truth and divided by the total ground truth. Table 2 compares the error
percentage rate of step count, distance, and average step length between our Walk4Me
system and iPhone pedometer measurements.

Second, to evaluate the percentage error for each individual measurement and estimate
pair, we subtracted the model estimate from the observed ground-truth measure and
divided it by the ground-truth measure multiplied by 100 for each event. We computed
mean (SD) percentage error for step count, distance traveled, and step length parameters
for calibration events SC-L1 to SC-L5 combined, and separately for 6 MWT, 100 MRW,
and FW efforts combined, as well as for all efforts combined. We compared the mean
percentage error values between control participants and those with DMD using simple
t-tests for each contrast.

2.3.7. Gait Pattern Representation

After determining the boundaries between steps using the IC detection method dis-
cussed earlier, we generate a composite map of each step normalized to the gait cycle
percentage. This allows for visual examination of the determined steps for irregularities or
comparison of averaged accelerometer patterns between individuals (Figure 5). The gait
cycle is identified using peak detection at the IC event, marking the beginning and end of
each step. The average acceleration patterns are also calculated from all gait cycles across
all activities and at various speeds. The forward movement (x−axis) is normalized to a
time scale of 0 to 100%. Using this method, we can identify the IC of every single step and
estimate the step duration (Figure 3F) without the need to use GRF [3]. By comparing the
gait cycles of two participants (TD and DMD peers) at various speeds, distinctly different
patterns of acceleration magnitude emerge (Figure 5), highlighting differences in the gait
between the two participants.
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gait pattern.
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3. Results

In this study, we assessed the accuracy of step counts during walking, jogging, and run-
ning using our Walk4Me system compared to the iPhone pedometer [20]. We validated
our results by comparing both systems with ground-truth data. Our findings, as shown
in Table 2, indicate that the Walk4Me system had an average step count error rate of
3.46%, demonstrating reliable performance in accurately tracking steps at different speeds.
The combined error rates from participants with DMD and TD participants ranged from
1.26% during slow walk pace (SC-L2) to 7.26% during the fast 100 m run. In contrast,
the iPhone’s built-in pedometer showed an average error rate of 48.46% during short- to
moderate-distance tasks at varying gait velocities. The iPhone pedometer had the lowest
error rate of 36.35% during the longer-duration fast-walk 6 MWT task, and the highest
error rate of 85.26% during the short-duration jogging/running task SC-L5.

Table 2. The table compares the error percentage rate of the step count, distance, and average step
length between our Walk4Me system and iPhone pedometer measurements.

Number of Steps Total Distance Avg Step Length

GT * Sys. ** Pedometer *** GT * Sys. ** Pedometer *** Sys. ** Pedometer ***
Set Activities Case (Steps) (Error %) (Error %) (Meters) (Error %) (Error %) (Error %) (Error %)

Tr
ai

ni
ng

se
t

TD 976.0 1.64% 47.44% 359.30 5.37% 54.97% 6.43% 76.93%
SC-L1 DMD 506.0 1.58% 57.31% 149.90 4.64% 65.7% 6.03% 75.07%

All 1482.0 1.62% 50.81% 509.20 5.16% 58.13% 6.25% 76.1%

TD 782.0 1.41% 40.15% 359.80 4.48% 42.2% 5.38% 36.22%
SC-L2 DMD 410.0 0.98% 49.02% 149.55 6.6% 39.82% 6.28% 59.94%

All 1192.0 1.26% 43.2% 509.35 5.1% 41.5% 5.79% 46.88%

TD 670.0 1.64% 49.4% 358.00 3.29% 50.66% 3.03% 34.39%
SC-L3 DMD 347.0 1.15% 51.01% 149.80 3.79% 45.11% 4.47% 32.27%

All 1017.0 1.47% 49.95% 507.80 3.44% 49.03% 3.68% 33.44%

TD 562.0 1.96% 63.88% 358.70 2.93% 62.57% 2.86% 44.15%
SC-L4 DMD 305.0 1.97% 69.84% 150.10 3.82% 62.64% 4.91% 35.34%

All 867.0 1.96% 65.97% 508.80 3.19% 62.59% 3.76% 40.28%

TD 373.0 3.75% 88.2% 352.90 5.63% 87.49% 9.16% 34.32%
SC-L5 DMD 326.0 1.84% 81.9% 178.90 6.38% 72.78% 7.74% 24.62%

All 699.0 2.86% 85.26% 531.80 5.88% 82.54% 8.64% 30.76%

Te
st

se
t

TD 10,934.0 2.32% 35.44% 7745.50 5.02% 27.92% 4.87% 34.62%
6 MWT DMD 7478.0 3.81% 37.68% 4949.00 5.48% 26.63% 5.85% 48.73%

All 18,412.0 2.93% 36.35% 12,694.50 5.2% 27.42% 5.24% 39.87%

TD 1729.0 8.68% 62.81% 1543.50 10.95% 57.67% 6.97% 55.9%
100 MRW DMD 1906.0 5.98% 56.24% 1134.00 3.38% 50.41% 5.0% 54.62%

All 3635.0 7.26% 59.37% 2677.50 7.74% 54.59% 6.4% 55.53%

TD 4460.0 3.27% 60.09% 3232.50 4.96% 58.39% 3.11% 64.92%
FW DMD 3767.0 5.07% 72.87% 2408.50 9.58% 67.05% 8.02% 81.02%

All 8227.0 4.1% 65.94% 5641.00 6.93% 62.09% 5.14% 71.57%

All All 35,531.0 3.46% 48.46% 23,579.95 5.83% 42.23% 5.8% 46.4%
∗ Ground truth. ∗∗ Walk4Me system using our method. ∗∗∗ Built-in pedometer in iPhone.

For distance measurement, our Walk4Me system showed an average error rate of
5.83%, with the lowest error rate of 3.9% during the fast-walk SC-L4 pace and the highest
error rate of 7.74% during the fast 100 m run. The iPhone’s built-in pedometer had an
average error rate of 42.23%, with task-specific error ranging from 27.42% during the
6 MWT to 82.54% during the SC-L5 jogging/running task.

For step length measurement, our Walk4Me system showed an average error rate of
5.80%, with the lowest error rate of 3.68% at a comfortable walking pace (SC-L3) and the
highest error rate of 8.64% during the short-term jog/run SC-L5 task. The iPhone’s built-in
pedometer demonstrated an average error rate of 46.40%, which varied from 30.76% during
SC-L5 to 76.10% during SC-L1.
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In contrast to overall aggregate accuracy, the mean (SD) accuracy of model predictions
for individual events compared to ground-truth observations for step counts, distance
traveled, and step lengths is presented in Table 3 and depicted in Figure 4A–C. The pre-
dicted and observed values for all three parameters showed a strong correlation (Pearson’s
r = −0.9929 to 0.9986, p < 0.0001). The estimates demonstrated a mean (SD) percentage error
of 1.49% (7.04%) for step counts, 1.18% (9.91%) for distance traveled, and 0.37% (7.52%) for
step length compared to ground-truth observations for the combined 6 MWT, 100 MRW,
and FW tasks. There were no statistically significant differences in mean error percentages
between control participants and those with DMD (data not shown).

Table 3. The table shows the percentage error (correlation, p-value, means, and SD) of the predicted
and observed values for step counts, distance traveled, and step length vs. ground-truth observations.

Percentage Error of Calculated vs. Observed

Ground Truth Calculated vs. Obs. Steps Calculated vs. Obs. Distance Calculated vs. Obs. Step Length

Activities # Act. # Steps Correlation
(p-Value) Mean (SD) Correlation

(p-Value) Mean (SD) Correlation
(p-Value) Mean (SD)

SC-L1 to SC-L5 150 5257 0.9986
(p < 0.0001) 1.2% (2.87%) 0.9946

(p < 0.0001) −3.16% (4.81%) 0.9929
(p < 0.0001) −4.23% (5.34%)

6 MWT, 100 MRW, FW 69 30,274 0.9972
(p < 0.0001) 1.49% (7.04%) 0.9933

(p < 0.0001) 1.18% (9.91%) 0.9652
(p < 0.0001) 0.37% (7.52%)

All 219 35,531 0.9987
(p < 0.0001) 1.29% (4.59%) 0.9969

(p < 0.0001) −1.59% (7.37%) 0.9796
(p < 0.0001) −2.78% (6.46%)

The level of significance was set at 0.05.

4. Discussion

The use of travel distance and step length as gait metrics is essential for clinical
gait assessment in the community setting. However, accurately measuring step length
traditionally requires a clinical facility or gait lab with a trained observer present during
the assessment session. Clinical assessment methods are considered the most detailed
and ideal, but their availability may be limited due to factors such as facility availability,
staff availability, difficulties with patient travel to assessment locations, or public health
restrictions such as those related to COVID-19. Additionally, clinical observation methods
can be susceptible to human error, such as observer fatigue or distraction, as well as
instrument errors, failed video recordings, or obstructed views, which can limit the utility
of the collected data. An alternative option to overcome these limitations and facilitate
more frequent and convenient collection of gait data in the community setting is to use
off-the-shelf technologies such as pedometers, which are commonly built into smartphones
and widely used in sports. However, it is crucial to assess the reliability of these devices,
particularly when used for clinical purposes. Therefore, we conducted experiments to
clinically validate the reliability of using a pedometer and compared the results with those
obtained by observers.

We propose an ML-based signal processing method using our Walk4Me system, which
can estimate step counts, distance traveled, and step lengths with increased levels of
accuracy. The advantage of our method is that it requires less observed interaction, only
necessitating a short duration of time for five speed-calibration tests. Our system can
automatically estimate distance and step length without the need for human interaction.
Some of the source code and a demo of this paper can be found at https://albara.ramli.
net/research/ic (accessed on 28 May 2023) along with some additional results.

5. Conclusions

This study introduces a novel signal processing and machine learning technique that
accurately identifies steps and step length based on the individual’s gait style. Our findings
demonstrate that using a single accelerometer worn near the body’s center of mass can
be more accurate than a standard pedometer. Our method can be applied to both healthy
individuals and those with muscle disorders without the need for ground reaction force
(GRF) measurements. To our knowledge, this is the first study to propose a method that

https://albara.ramli.net/research/ic
https://albara.ramli.net/research/ic
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extracts CFs from raw accelerometer data across the attainable range of gait speeds in
healthy participants and those with muscle disease. On average, our method of counting
steps and estimating stride length and distance traveled performs well when applied to
longer structured sub-maximal clinical testing efforts and free-roaming self-selected pace
travel. In these settings, our methods surpass the pedometer functions native to the mobile
devices we use. This will allow us to extend basic elements of gait analysis to community
settings using commonly available consumer-level devices.
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