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Abstract: This article explores the implementation of high-accuracy GPS-denied ad hoc localization.
Little research exists on ad hoc ultra-wideband-enabled localization systems with mobile and station-
ary nodes. This work aims to demonstrate the localization of bicycle-modeled robots in a non-static
environment through a mesh network of mobile, stationary robots, and ultra-wideband sensors. The
non-static environment adds a layer of complexity when actors can enter and exit the node’s field
of view. The method starts with an initial localization step where each unmanned ground vehicle
(UGV) uses the surrounding, available anchors to derive an initial local or, if possible, global position
estimate. The initial localization uses a simplified implementation of the iterative multi-iteration
ad hoc localization system (AHLos). This estimate was refined using an unscented Kalman filter
(UKF) following a constant turn rate and velocity magnitude model (CTRV). The UKF then fuses
the robot’s odometry and the range measurements from the Decawave ultra-wideband receivers
stationed on the network nodes. Through this position estimation stage, the robot broadcasts its
estimated position to its neighbors to help the others further improve their localization estimates and
localize themselves. This wave-like cycle of nodes helping to localize each other allows the network
to act as a mobile ad hoc localization network.

Keywords: ultra-wideband (UWB); unscented Kalman filter (UKF); ad hoc localization

1. Introduction
1.1. Overview

Due to the GPS’ constant need for high-accuracy and fidelity in global localization,
issues arise when GPS access is limited in some environments. This could happen due
to inadequate GPS accuracy or unavailability in indoor or urban environments, such as
tunnels [1,2]. Some sensors complement GPS-denied systems, such as LiDARs , camera
systems (mono or stereo), inertial measurement sensors, velocity sensors, altimeters, com-
passes, and more; however, most of the solutions are expensive or prone to more significant
errors over time with no way to calibrate [3,4]. Ultra-wideband sensors are ideal for imple-
menting a local GPS because they provide centimeter range accuracy, high range reliability,
and low latency [5–7]. Despite GPS being affordable and reliable, several issues can make
its use suboptimal. Issues include GPS being unavailable in indoor environments and only
having five meters of precision, which is not ideal for a higher level of accuracy. This can be
most readily noted in a lawn mower example, where 5 m can be a substantial error relative
to the robot’s workspace area. Additional issues in a lawn-mower-type application are
the potential of trees obstructing the GPS signal and the GPS’s low update rate of 1 Hz,
which is insufficient to track fast vehicles. Thus, systems such as UWB, which can provide
centimeter-level accuracy at higher rates, are more effective solutions. An RTK solution
could be implemented to use centimeter-level accuracy for GPS; however, these are not
cost-effective for such situations.
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Ultra-Wideband Sensors

The use of ultra-wideband (UWB) in localization is a popular technology due to
its accurate positioning capabilities, immunity against multipath fading, and resilience
against active and passive interferences [5,8]. UWB sensors utilize a large frequency
spectrum, from 3.1 to 10.6 GHz, and bandwidths of 500+ MHz to implement localization
techniques. This means that UWB radar sensors can, compared to traditional optical or less
powerful radar sensors, maintain their accuracy in more challenging terrain, such as indoor
situations, where multipath and interference errors are more prevalent. Thus, they retain
the ability to sense and communicate in obstacle-heavy terrain and allow for more robust
localization systems [9]. There are three node types in UWB sensors: the transmitters,
which only transmit their operations; the anchor nodes, which are usually static with a set
and verified location to help the other nodes in localizing; and mobile nodes, which contain
a combination of transmitting antennas and receiving antennas.

1.2. Related Works

UWB localization problems were approached through different configurations of
anchors and tags, combining stationary and mobile tags. Two main groups of UWB lo-
calization approaches were found in the current literature. The first approach, followed
by [10–17], used a combination of initial location estimates using the UWB ranging mea-
surements and a regression method followed by the use of a type of Kalman filter to further
improve the estimate over time. The second approach followed a Monte Carlo-based
simulation similar to particle filters [18].

To simplify communication issues and improve network robustness, decentralized
sensors were most commonly utilized to perform the computation [16]. The decentralized
initial location estimates follow a linear regression problem to solve triangulation or trilater-
ation to obtain a robust position estimate [12,17]. However, the issue was that these systems
assumed that the robot was constantly able to achieve communication with a minimum
number of nodes before adequately operating. The robot was also assumed to be stationary
during this period.

Current literature has explored more noise-robust extensions of nonlinear least squares
for triangulation. Systems using robust statistical techniques can mitigate the impact of
outliers in measurements [19–21]. Some employ reformations of the reweighed least
squares (IRLS) methods [22], while others transform the LSQ problem using a majorization–
minimization (MM) approach [23]. While these methods usually look at static environments,
some mobile beacon-based location methods track the anchor’s messages and localize
themselves based on the message history [24,25]; however, even in these cases, the tracked
nodes are static.

Multiple tags and anchors were placed on the robot to improve the understanding of
its position and orientation estimates. This helped constrain its position and provided more
reliability in its measurements [15,17]. An issue with previous work was that the systems
localized each other in a relative sense; the nodes were localized relative to a base node.
This was, however, not ideal for long-distance or multi-mesh scenarios as it did not ensure
that each node was constrained to the same coordinate frame.

Once the position estimate was calculated, the system transitioned to position refine-
ment techniques to improve further the time-varying sensor noise provided to the robot.
The extended Kalman filter (EKF) and the unscented Kalman filter (UKF) have been used
extensively in the literature [15,16]. The UKF is sensitive to the inherent time invariant
multipath effect and non-line-of-sight (NLOS) noise. To reduce the inherent error, different
types of filter approaches have been used [6,10,14,26]. The noise increase was relatively
significant for indoor scenarios because so many obstacles could block the direct line of
sight of the UWB sensors. As such, using UWB sensors only for localization was not ideal.
The noise inherent in the system was reduced, as demonstrated in this research, with the
fusion of the wheel encoders and inertial measurement units (IMUs) to smooth out the
position estimate.
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In contrast to the aforementioned methods, the second method for position estimation
found in the literature followed a Monte Carlo approach [18]. The algorithms followed
a repeated random sampling process to arrive at a computationally convergent solution
or solutions [27,28]. This sampling technique does provide possible issues with multi-
ple equilibrium points and can be more computationally expensive than other options,
depending on the number of sampling points. Efforts to enhance wireless network local-
ization techniques have delved into integrating machine learning within the localization
engine [29]. Semi-supervised particle swarms have been augmented to improve the data
point selection; however, currently, these systems still assume that the anchor nodes are
static [28]. The following section introduces this research problem formulation.

1.3. Contribution

This article focused on the localization of moving unmanned ground vehicles (UGV)
using stationary and moving UGV and unmanned aerial vehicles (UAV). These vehicles
had UWB sensors attached, enabling peer-to-peer ranging communication and allowing the
robots to improve their respective localization using a cooperative network. The network
helped provide a broad reach and create a local GPS network for the nearby robots.

The main contributions from the research are highlighted below:

1. Developed an initial localization framework where all agents could be non-stationary,
and the UWB tags are offset from the center of the robot. This novel initial localization
enables a fully mobile global localization system, where the localizing nodes do not
need to maintain a stationary position to derive initial position estimates in their
environment. This method also reduces the number of required nodes to fully localize
as compared to a static environment.

2. Designed a global/relative localization system based on the UKF for ground-based
robots that could leverage ground and aerial range measurement data. This capability
allows for a large variety of input sources for improved accuracy in the tracking of
ground-based robots.

3. Created a pipeline for a mobile ad hoc localization system. This wave-like self-
expanding mesh network of UWB nodes enables the deployment and maintenance of
a large mobile localization engine.

The rest of the article was organized as follows. The environment and problem
are described in Section 2, where the agents of the environment, the assumptions of the
environment, and the detailed derivations of the proposed system are laid out. Section 3
contains the simulation results and interpretation. Finally, the work summary is presented
in Section 4.

2. Method

The ad hoc mesh network definition and implementation, including the explanation
of the information propagation throughout the network, are explained in the following
subsection. The remaining sections derive the initial position transform through a nonlinear
least squares regression, starting in Section 2.3 and ending in Section 2.4, followed by
the position refinement using an unscented Kalman filter, starting in Section 2.5 and
ending in Section 2.5.4.

2.1. Ad Hoc Network

The proposed ad hoc mesh network followed a mobile decentralized, absolute local-
ization ad hoc system. The nodes in the network would consist of both stationary and
mobile nodes. Due to the network’s mobile nature, a decentralized network was more
robust to the constantly changing topography of the network graph. The network was
fine-grained (range-based) thanks to the incorporated sensors in this research, the UWB
sensors, measuring the range using ToF (time of flight). The system was also required to
converge to an absolute localization system; this means that the robot should be able to
transition from an initial relative localization system, and once it had reached the required
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threshold for transitioning, convert the relative coordinate system to become a global
localization problem.

The algorithm follows a similar but simplified version of the iterative multilateration
AHLoS (ad hoc localization system) [30]. The AHLoS is a method to implement the
localization of a mesh network in a flood-like fashion. The algorithm started with a
graph that combined localized and unlocalized nodes; when an unknown node lies in the
neighborhood of three or more anchors, the neighboring anchors’ positions and distances
were used to estimate its position. Once the position of an unknown node was estimated,
the node became an anchor and thus continued the cycle until all the nodes were localized.

This article modified the AHLoS system to account for mobile nodes coming out and
into the range of other localized nodes. The current and historical range measurements
were only collected from the localized anchors and their associated position at every time
step. The range measurements were then paired with the node’s odometry measurement at
the corresponding time. Linear extrapolation was employed if the odometry measurements
were too far apart.

The localized nodes communicate to the target robot the range measurement and
the localized node’s current global position. Given the distributed nature of the mobile
ad hoc network, each robot would maintain a history of measurement data from each
robot. With nodes frequently entering and exiting the robot’s view and with histories
stored locally, the system retains all information and remains unaffected by network
topography changes. Given that the range measurement uses ToF for its UWB range
estimation, no synchronization between nodes is required, thus making communication
more straightforward. As for transmission scheduling, the system would adopt a carrier-
sense multiple access with collision avoidance (CSMA/CA) protocol to communicate with
the other devices [31]. The device first listens to the UWB channel to check for transmitting
nodes. If another node is detected, the device waits a random interval for that node to finish
before checking again and then sending its data. This technique is known to be unreliable
due to the hidden node problem; however, given UWB’s low transmission rate, the UWB
range packets being of small size, and the expected sparsity of the robot at a specific time
(no more than ten robots at a time), the risk for package collision is low. The CSMA/CA
would be able to handle such traffic with acceptable system delay [32]. If, after sending,
packets are not returned within a time frame T, the ranging handshake would be sent again.

Following the data collection, several data processing checks were employed before
following through with the initial localization step:

1. If the current robot was stationary, then a minimum of three unique anchors
were required;

2. If the current robot was non-stationary and the anchors were stationary, then a mini-
mum of two anchors were required;

3. If the current robot was non-stationary and the anchors were non-stationary, then a
minimum of one anchor was required.

The anchors were determined to be mobile by looking at the reported robot’s positions
and ensuring the distances between points were above a certain tolerance. This provided
enough information for the nonlinear least square algorithm to work.

To mitigate issues with sensor noise, a minimum number of data points was enforced
to start the trilateration. Once the quota was fulfilled, the nonlinear least square algorithm
was performed as described in Section 2.4, the robot was defined as localized, and the
refining process using the UKF was started. However, if the node failed to localize within a
specific time frame, the robot relied solely on odometry for the localization process and
“positioned itself within its relative positioning system”. Suppose the node was at any
time able to satisfy all the conditions to localize due to it coming in range with other
localized nodes. In that case, the robot switched from using the relative positioning system
to localize itself in the new global reference frame and continued using the UKF to refine
the results. At this point, the robot switched from an unlocalized node to a localized
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node. By constantly localizing and changing status once localized, the robots eventually
converged to a network where all the nodes followed the same reference frame.

2.2. Parameter Definitions

A detailed definition of all parameters used in the system will be presented in this
subsection. For convention, the vectors p and χ, ϕ represented the global position, relative
position, and heading of the node, respectively. The heading was defined where 0 radians
points in the positive x-axis of p, and a counterclockwise motion represented an increase in
the heading. χ represented the inter distance between two points in an agreed reference
frame and can be formulated as,

χij =
ÐÐ→
PiPj = pj − pi = (xj − xi, yj − yi, zj − zi) (1)

The relative Euclidean distance between two nodes was thus denoted as

∥χij∥ = rij =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (2)

The environment consisted of a team of UAV, UGV, and static UWB anchors labeled
1, 2, ..., N. The calculated global transformation matrices of the UGV were defined as the
transformation from the established global origin point to the UGV’s odometry origin
point in the global reference frame. The origin point of the odometry was assumed to be
transformed by (0, 0, 0), with 0 heading, linear and angular velocity, to the robots’ initial
global position (χ0,0). The transformation thus translated and rotated the static odometry
frame of the robot. To solve the problem, each UGVi was able to access the odometry data,
denoted as (χxi ,0, χyi ,0, χzi ,0)with angular velocity ωi, linear velocity vi, heading ∆θi, also

represented as δθ = arctan( vy
vx
), and θ̇ represented the yaw rate. The robot had distance

measurements to its neighbor UGVj, i.e., rij = ∥χij∥. It was assumed that the robot was
moving on a flat 2D plane. As such, p̂z remained constant. The global position p was then
derived from (x0, y0, z0), θ0 by:

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos θ0 − sin θ0 0 0 x0
sin θ0 cos θ0 0 0 y0

0 0 1 0 z0
0 0 0 1 θ0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χx,i
χy,i
χz,i
∆θi
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Each UGVi denoted the set of its neighbors as UGVj where {j ∣ j ∈ Z and i ≠ j}.
The neighbor transmitted its range measurements and UWB anchor position, Ak. The posi-
tion measurement data were located in the robot’s global reference frame, i.e.,
pj = (xj, yj, zj). Each UWB anchor was annotated as Ak with a unique identification
k where {k ∣ k ∈ Z}, and similarly, each UWB tag was denoted as Tw with a unique identifi-
cation w, where {w ∣ w ∈ Z}.

2.3. Initial Localization

An initial position estimate was made on the target node. The proposed algorithm
solved this problem by structuring the estimate as a nonlinear least square (NLS) problem.
To simplify the construction of the NLS, the odometry and neighboring range data of a
single robot node were used to calculate (x0, y0, z0), θ0. The position estimate was later
refined using the UKF.

The geometry of the robot is defined and elaborated on below. There were two tags
on the robot, which were separated by a fixed distance d. In the global reference frame,
the tags were defined as Tw. In the static inertial reference frame of the robot, the position
of the tags was represented as tw, where the left tag was at tl = (0, d

2), and the right tag
was at tr = (0,− d

2). In addition, the odometry position was measured from the robot’s
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defined origin, (0, 0), which was the midpoint of the right and left tags. pi =
Tl,w1+Tr,w2

2 ,
and therefore, (0, 0) = tl+tr

2 . The range recorded by the UWB tags was represented as
∥Aj − Tw∥ = djw, where Aj was a UWB anchor located on a UGV neighbor.

The robot’s heading ϕi was considered when solving the nonlinear least squares
problem by compensating the target distance by rotating the tag pose. The relative tag
position, defined as (Tw − pi), was represented as the vector tw rotated about the center of
the robot (pi) by the heading global heading ϕi.

2.4. Nonlinear Least Squares

The nonlinear least squares optimization method seeks to minimize the following:

S =
m
∑
i=1

r2
i (4)

where ri was the residual given by:

ri = d2
jw,calculated − d2

jw,measured (5)

The range measurement djw was defined as a function of pi, ϕi, tw and Aj. In addition,
∆θi represented the current heading measured from the odometry and χi represented the
odometry position (χx,i, χy,i, χz,i):

djw = ∥A⃗j − T⃗w∥

=
XXXXXXXXXXXXXX

A⃗j −
⎛
⎜
⎝

p⃗i +
⎡⎢⎢⎢⎢⎢⎣

cos ϕi − sin ϕi 0
sin ϕi cos ϕi 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
t⃗j

⎞
⎟
⎠

XXXXXXXXXXXXXX

= ∥A⃗j − ((p⃗0 +
⎡⎢⎢⎢⎢⎢⎣

cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
χi)+

⎡⎢⎢⎢⎢⎢⎣

cos (θ0 +∆θi) − sin (θ0 +∆θi) 0
sin (θ0 +∆θi) cos (θ0 +∆θi) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
t⃗w)∥

(6)

d2
jw = (Ajx − (x0 + [χx,i cos θ0 − χy,i sin θ0]+ (7)

[twx cos (θ0 +∆θi)− twy sin (θ0 +∆θi)]))2+
(Ajy − (y0 + [χx,i sin θ0 + χy,i cos θ0]+

[twx sin (θ0 +∆θi)+ twy cos (θ0 +∆θi)]))2+

(Ajz − (z0 + twz))
2

The minimum value of S could be found when the gradient was 0. As a result, a
Jacobian was used to calculate the partial derivative of all the n variables needed, where β j
represented the optimization parameters that were optimized—in this case, x0, y0, z0, θ0.

δS
δβ j
= 2

m
∑
i=1

ri
δri

δβ j
= 0 (j = 1,⋯, n) (8)

Due to the gradient equations not having a closed solution, the variables β j were
solved iteratively with Newton’s iteration method.

f (xi, β) ≈ f (xi, βk)+∑
j

Jij∆β j (9)
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The Jacobian is a matrix of partial derivatives as a function of constants, the indepen-
dent variable, and the parameter. It was constructed as such:

δri

δβ j
= Jij (10)

A single row of the Jacobian ( J ) was derived from the d2
iw function below. In this

matrix c, s represent cos(⋅) and sin(⋅), respectively.

JT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δd2
jw

δx0

δd2
jw

δy0

δd2
jw

δz0

δd2
jw

δθ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2(Ax − txc(θ0 +∆θi)+ tys(θ0 +∆θi)
−c(θ0)χx,i − x0 + s(θ0)χy,i)

2(−Ay + txs(θ0 +∆θi)+ tyc(θ0 +∆θi)
+s(θ0)χx,i + c(θ0)χy,i + y0)

2(−Az + tz + z0)

2(txc(θ0 +∆θi)− tys(θ0 +∆θi)+
c(θ0)χx,i − s(θ0)χy,i)

(−Ay + txs(θ0 +∆θi)+ tyc(θ0 +∆θi)+
s(θ0)χx,i + c(θ0)χy,i + y0)

−2(txs(θ0 +∆θi)+ tyc(θ0 +∆θi)+
s(θ0)χx,i + c(θ0)χy,i)

(−Ax + txc(θ0 +∆θi)− tys(θ0 +∆θi)+
c(θ0)χx,i + x0 − s(θ0)χy,i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Using Newton’s iteration algorithm for minimizing the error, the Jacobian in Equation (11)
and the residual functions ri were calculated at each step. The residual function was redefined
as fi = djw,i(x0, y0, z0, θ0)2 − d2

jw,i,measured, and the vectors f and β were introduced as:

J = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ f1
δx0

δ f1
δy0

δ f1
δz0

δ f1
δθ0

δ f2
δx0

δ f2
δy0

δ f2
δz0

δ f2
δθ0

⋮ ⋮ ⋮ ⋮
δ fn
δx0

δ fn
δy0

δ fn
δz0

δ fn
δθ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
⋮
fn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x0
y0
z0
θ0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Thus, the Newton iteration became:

βk+1 = βk − (JT
k Jk)

−1
JT

k fk (13)

where βk+1 represented the new estimated parameters, and βk was the last approxima-
tion. The initial estimate needed for the Newton approximation (β0) was provided in the
simulation. The parameter β0 can be initialized in one of two ways: it can either be set
to an initial state of 0, or it can be provided as a coarse estimate of the robot’s geographic
area. The algorithm terminated when ∣βk+1 − βk∣ ≤ ϵ, where ϵ was a defined a termination
tolerance criterion.

This was this paper’s approach to solving the nonlinear least square optimization.
Additional extensions to the NLLS could be used to improve the solution depending on
the particular problem. The scipy.optimize.least_squares function was used in this work to
implement the nonlinear least square calculations.

Monte Carlo Simulation

A Monte Carlo simulation was developed to demonstrate the convergence characteris-
tics of the initial localization process. This simulation involved the manipulation of two
critical variables: the number of robots traversing the environment, ‘N’, and the time hori-
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zon for the odometry history, ‘T’. In the simulation, ‘N’ random robots were created, each
adhering to a differential drive motion model. At each time step (0.1 s), these simulated
robots moved with a random linear velocity selected from the range of [−vmax/2, vmax],
favoring forward motion, and an angular velocity sampled from [−wmax, wmax], where
both vmax and wmax were set to 2. The control inputs were sampled uniformly within
their respective ranges. Simultaneously, one robot was randomly selected to transmit its
range measurements at each time step.

The parameter ‘T’ governed the duration before the localization process was conducted
using the collected data. Random noise was introduced to the acquired odometry data,
affecting both anchor poses and the target robot’s measurements. The noise levels were
standardized using a zero mean Gaussian distribution with standard deviations set to 0.5 cm
for the x and y coordinates of the odometry anchor poses, 2 cm for the range measurements,
and 1/1000 radians for angular measurements. These noise standard deviations were
deemed appropriate given the sensors available for the following reasons. Assuming that
the anchor poses were using an RTK or a similarly high-accuracy localization engine for
their positioning, a standard deviation of 0.5 cm was deemed appropriate. The Decawave
DWM1000 Modules were observed to have an approximately 2 cm deviation in their range
measurements, and onboard Microstrain IMU was estimated to have an approximate noise
of 1/1000 radians. The target robot was uniformly randomly placed within a 10 × 10 m
world with a randomly assigned orientation, as demonstrated in Figure 1. Additionally,
the nonlinear least squares’ initial guesses were set to zero.

Figure 1. Monte Carlo simulation example with ‘T’ = 10 and ‘N’ = 10 (Green robot is the target robot).

Each parameter combination was simulated with 1000 samples to collect the aggre-
gated information. These simulations generated values of ‘T’ from 1 s to 10 s and an ‘N’
ranging from 1 to 5 robots. The results, as depicted in Figures 2 and 3, indicated that as
the time horizon ‘T’ increased, the Euclidean error relative to the target transformation
matrix diminished significantly. In the figures below, the median error was used to demon-
strate the error over the runs with the light-shaded regions representing the interquartile
range of the error. Furthermore, a higher number of robots present led to less variation
in the error relative to the target across runs, and the system was less likely to reach an
incorrect solution.

Figures 4 and 5 demonstrate the robustness of the system relative to noise levels.
The Monte Carlo simulations were generated again; however, this time, assuming a constant
‘T’ of 10 s and a varying scale of the noise levels listed above at different magnitudes.
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Figure 2. Monte Carlo simulation of the Euclidean distance error.

Figure 3. Monte Carlo simulation of the absolute angle error.

Figure 4. Monte Carlo of Euclidean distance error with varying noise scale.

Figure 5. Monte Carlo of angle error with varying noise scale.
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When N = 2, the maximum error is often larger than at N = 1. This may be due to
the fact that when optimizing with N = 2, it is more likely to reach a local minimum along
an approximate axis of symmetry due to the angle’s nonlinearity. This causes an invalid
solution to be returned. Further research in using quaternions instead of Euler angles when
optimizing, which follows a more linear mapping, could help reduce the nonlinearities in
the system. This would allow for different, more robust optimization methods.

2.5. UKF Position Refinement

In the following sections, the robot has already been localized and given an initial
position estimation. Further refinement of the results by reducing the sensor noise was
achieved using a UKF [33,34]. Two types of data were used in the UKF. The first came from
the ranging measurements at time step k, djw

k , between the tag Tw on the target node and
a localized neighbor anchor Aj. The second piece of data came from the robot’s onboard
odometry. The following sections go through the UKF model for the CTRV motion model.

2.5.1. Motion Model

The UKF motion model that this article followed was the constant turn rate and
velocity magnitude model (CTRV). This nonlinear motion model assumed that the node
could move straight but turned following a bicycle turn model with constant turn rate
and linear velocity [35]. Other types of motion models were available, as illustrated
in Figure 6. The constant velocity (CV) motion model was the simplest one available,
a linear motion model where the linear acceleration was defined to be 0. The constant
turn rate and acceleration (CTRA) is an expanded version of the CTRV motion model
where the acceleration is accounted for and determined. Similarly to the CTRA motion
model, the constant curvature and acceleration (CCA) model replaces the yaw rate of the
model with the curvature instead. The constant steering angle and velocity (CSAV) model
returns to having the acceleration constant and replacing the assumed constant steering
angle instead.

CTRV

CV

CSAV

CTRA

CA

CCA

ω
= 0

ψ
=

0 a = 0
ω
= 0

a = 0

ψ
=

c
=

0

a = 0

Figure 6. Motion model hierarchy [36].

Each model has its own set of advantages and disadvantages; however, the CTRV
motion model was chosen thanks to the balance in computation speed and accuracy in
comparison with each different model [35]. The CTRV was also selected because the odom-
etry sensor output contained the same state variables. This research problem formulation
assumes the nodes of interest are ground robots; however, a general motion model could
be used. As long as the robot’s dynamics can be derived, the system’s motion model can
be used with this implementation. For drones, the motion model is linear. This eliminates
the need for an unscented Kalman filter model, allowing the use of a linear Kalman filter
instead. The state vector of the CTRV model was defined to be (Figure 7):

x = [px py pz υ ψ ψ̇]T (14)
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where υ was the node’s speed, ψ was the yaw angle, which described the orientation
according to Figure 7, and ψ̇ represented the yaw rate. The change in rate in the state was
expressed as:

ẋ = [ṗx ṗy ṗz υ̇ ψ̇ ψ̈]T

= [υ ⋅ cos ψ υ ⋅ sin ϕ 0 0 ψ̇ 0]T
(15)

Figure 7. Mobile robot motion state.

The current step in the process was denoted by k and the subsequent step by k + 1.
Consequently, the time difference was expressed as ∆t = tk+1 − tk. The process model, which
predicted the state at k + 1, could be decomposed into the deterministic and stochastic parts.
To derive the deterministic part:

xk+1 = f2(xk)

= xk +∫
tk+1

tk
[ υ⋅cos ψ(t) υ⋅sin ϕ(t) 0 0 ψ̇ 0 ]Tdt

= xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υk ∫
tk+1

tk
cos ψ(t)dt

υk ∫
tk+1

tk
sin ϕ(t)dt
0
0

ψ̇∆t
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υk ∫
tk+1

tk
cos (ψk + ϕ̇k ∗ (t − tk))dt

υk ∫
tk+1

tk
sin (ψk + ϕ̇k ∗ (t − tk))dt

0
0

ψ̇∆t
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υk
ψ̇k
(sin (ψk + ψ̇k∆t)− sin ψk)

υk
ψ̇k
(− cos (ψk + ψ̇k∆t)+ cos ψk)

0
0

ψ̇∆t
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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However, problems arose when ∣ψ̇∣ ≈ 0 as this would cause a division by 0. A modified
version of the motion model was thus defined for when ∣ψ̇∣ ≤ ε:

f2(xk) = xk + [ υk cos ψk∆t υk sin ψk∆t 0 0 ψ̇∆t 0 ]T (17)

Next, the stochastic component was designated as the noise vector, encompassing
the linear and yaw acceleration noises in a CTRV model. At time step k, the noise ν was
characterized as follows:

νk = [νa,k νψ̈,k]
T

(18)

where νa,k was the linear acceleration noise defined as a normal distribution, νa,k ∼ N (0, σ2
a )

and νψ̈,k were the yaw acceleration noise defined as a normal distribution, νψ̈,k ∼ N(0, σ2
ψ̈
). It

was assumed that the linear and angular acceleration would remain relatively constant dur-
ing small time intervals, resulting in approximately linear motion between two timesteps
(this assumption was valid unless the yaw rate was excessively high). As a result, the noise
function was expressed as follows:

f2(νk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2(∆t)2 cos ψk ⋅ νa,k
1
2(∆t)2 sin ψk ⋅ νa,k

0
∆t ⋅ νa,k

1
2(∆t)2 ⋅ νψ̈,k

∆t ⋅ νψ̈,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The full motion model was characterized as follows:

f (xk, νk) = f1(xk)+ f2(νk) (20)

2.5.2. State Prediction

• Sigma Points

The first step to the unscented Kalman filter was the sigma point generation. Using
sigma points is the main difference between the EKF and the UKF. The EKF linearizes
the system through a Taylor-series expansion around the mean of the relevant Gaussian
random variable (RV) [34]. Using multiple points to sample the state distribution improved
the linearization of the nonlinear space [34]. When greater accuracy was required, a UKF
was recommended compared to an EKF. Due to the addition and the linear scaling of the
number of sigma points required based on the dimensionality of the state vector, UKFs
are known to be more computationally expensive. Following a Gaussian distribution,
the sigma points were generated from the last updated state and covariance matrix.

First, the augmented state and covariance matrix were formulated, with the normal
state vector denoted by:

xk = [px,k py,k pz,k υk ψk ψ̇k]
T

(21)

Having a dimension of nx = 6, the covariance matrix Pk∣k took the form of an nx × nx
matrix. Meanwhile, the noise vector was characterized as:

νk = [νa,k νψ̈,k]
T

(22)

with dimension nν = 2, the augmented state matrix was represented as follows:

xaug = [x∣νk]
T

(23)

= [ px,k py,k pz,k υk ψk ψ̇k νa,k νψ̈,k ]T (24)
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The augmented state dimension, determined as na = nx + nν, yielded a total of eight
dimensions for the CTRV model, specifically na = 8. Subsequently, the process noise
covariance matrix was constructed, incorporating the expected acceleration and yaw rate
Gaussian distribution into the matrix Q, resulting in the following representation:

Q = E{νk ⋅ νT
k } = diag([σ2

a σ2
ψ̈]) (25)

The augmented covariance matrix was thus represented as:

Pa,k∣k = diag([Pk∣k Q]) (26)

The augmented covariance matrix became a square matrix with size na × na = 8 × 8.
By convention, it was recommended to have at least nσ = 2na + 1 sigma points; in the case
of the illustrated model, this would be nσ = 2(8) + 1 = 17. The sigma points were then
calculated as a list

Xk∣k = [ xk∣k xk∣k+
√
(λ+na)Pk∣k xk∣k−

√
(λ+na)Pk∣k ] (27)

where λ was the scaling factor defined as λ = α2(nx + 3− na) − nx, where λ dictated how
far away from the mean the sigma points would be positioned [37]. The parameter α
defined the spread of the sigma points around xk and was set to a small positive value
between 0 and 1. By default, it was set to 1; however, this could be tuned if necessary.
When taking

√
Pk∣k for the sigma points, there were multiple ways to take the square root

of a matrix; however, Cholesky decomposition was recommended due to its computation
speed. The output of this list should be in the format na × nσ.

• Prediction Step

Once the sigma points were calculated and transformed into their respective predicted
state, each was transformed using the process model and then saved to another list now of
format nx × nσ. This process is demonstrated in Algorithm 1. The processed state sigma

points were in the format xk+1∣k = [px,k+1 py,k+1 pz,k+1 υk+1 ψk+1 ψ̇k+1]
T

.

Algorithm 1 Sigma point transformation

Require: Xa,k∣k, the sigma points of the augmented
Require: f (xk, νk), the process model function

Xk+1∣k = ∅
for all xa,k∣k,i ∈ Xa,k∣k do

xx,i ← xa,k∣k,i[0 ∶ nx]
xν,i ← xa,k∣k,i[nx ∶ na]
xk+1∣k,i ← f (xx,i, xν,i)
Append xk+1∣k,i to Xk+1∣k

end for
return Xk+1∣k

• Calculate Mean and Covariance from the Predicted Points

In this step, the predicted state mean vector and the predicted covariance matrix were
calculated by aggregating the sigma points using a weighted average of the points. There
were multiple ways to initialize the weights for this part; however, this paper sticks to a
standard Gaussian distribution.

ωm
i =

λ

(λ + na)
i = 0 (28)

ωc
i =

λ

(λ + na)
+ (1− α2 + β) i = 0 (29)

ωi = ωm
i = ωc

i =
1

2(λ + na)
i = 1,⋯, 2 ∗ nσ (30)
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where λ and α were the same from the sigma point calculation in Section 2.5.2. β was
an extra parameter used to incorporate any prior knowledge of the distribution of the
state. In most cases, this paper’s β was left to be 0. Once the weights were calculated,
the predicted mean and covariance were calculated, respectively:

xk+1∣k =
2nσ

∑
i=0

wm
i Xk+1∣k,i (31)

Pk+1∣k =
2nσ

∑
i=0

wc
i (Xk+1∣k,i − xkk+1∣k)(Xk+1∣k,i − xkk+1∣k)T (32)

2.5.3. Measurement Prediction

The measurement stage processes the sigma points into predicted measurement outputs.
To accomplish this, a measurement function h(xk+1)was developed for each of the sensor
types, where xk+1 was the output of the process model in the prediction step in Section 2.5.2.
The measurement vector was zk+1, and ωk+1 was the inherent measurement noise.

xk+1 = f (xk, νk) (33)

zk+1 = h(xk+1)+ωk+1 (34)

Due to this paper tackling the fusion of two sensor types, the odometry data and the
UWB range data, two different h(xk+1) functions needed to be defined. For the odometry
data, the state vector was defined as:

zk+1∣k = h(xk+1) = [ px,k+1 py,k+1 pz,k+1 υk+1 ψk+1 ψ̇k+1 ]T (35)

The measurement transformation function for the UWB ranging sensors took a similar
format to the nonlinear least square djw derivation (Section 2.4) where the predicted UWB
range measurement was derived given the estimated sigma point state (xk+1), the known
anchor point position (Aj), and the tag position relative to the node’s reference frame (tw).

zk+1∣k = h(xk+1, Aj, tw)

= ∥A⃗j − T⃗w∥

=
XXXXXXXXXXXXXX

A⃗j −
⎛
⎜
⎝
⃗pk+1 +

⎡⎢⎢⎢⎢⎢⎣

cos ψk+1 − sin ψk+1 0
sin ψk+1 cos ψk+1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
t⃗j

⎞
⎟
⎠

XXXXXXXXXXXXXX

=

¿
ÁÁÁÁÁÀ

(Ax,j − (px,k+1 + [tx,w cos ψk+1 − ty,w sin ψk+1]))
2
+

(Ay,j − (py,k+1 + [tx,w sin ψk+1 + ty,w cos ψk+1]))
2
+

(Az,j − (pz,k+1 + tz,w))
2

= [djw]

(36)

The set of measurement sigma points was denoted as Zk+1∣k. If the measurement used
odometry, the output shape should be nx × nα, and if it was UWB range data, the output
should be 1 × nα.

Once the measurement sigma points were collected, the weighted predicted measure-
ment means (zk+1∣k), and the predicted measurement covariance (Sk+1∣k) were calculated,
similar to how the mean and the covariance from the predicted state sigma points were
calculated. The weights were defined in Section 2.5.2.

zk+1∣k =
2nσ

∑
i=0

ωm
i Zk+1∣k,i (37)
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The measurement noise covariance was also defined R = E{wk ⋅wT
k }, where the vector

wk was the measurement noise for the sensor’s state. For the odometry sensor, R would be
defined as:

R = diag([σ2
x σ2

y σ2
z σ2

v σ2
v σ2

ψ σ2
ψ̇]) (38)

While the R matrix for the UWB range sensor would be defined as:

R = [σ2
d] (39)

Using the defined R matrices, the predicted measurement covariance could be defined.

Sk+1∣k =
2nσ

∑
i=0

ωc
i (Zk+1∣k,i − zk+1∣k)(Zk+1∣k,i − zk+1∣k)

T + R (40)

2.5.4. State Update

The actual state vector could be updated after defining the predicted state and mea-
surement. First, the cross-correlation between the state points in state space and the
measurement space (Tk+1∣k) had to be computed:

Tk+1∣k =
2nσ

∑
i=0

ωc
i (Xk+1∣k,i − xk+1∣k)(Zk+1∣k,i − zk+1∣k) (41)

From there, the Kalman gain was calculated:

Kk+1∣k = Tk+1∣kS−1
k+1∣k (42)

The current state and covariance matrix were then updated, respectively, where zk+1
was the currently retrieved measurement data:

xk+1∣k+1 = xk+1∣k +Kk+1∣k(zk+1 − zk+1∣k) (43)

Pk+1∣k+1 = Pk+1∣k −Kk+1∣kSk+1∣kKT
k+1∣k (44)

3. Simulation Results

ROS Melodic using Gazebo 9 was used to simulate the described environment and
used a set of three objects/robots to model the world. The first object was a simple static
UWB beacon represented by a solid cylinder meant to represent a generic UWB anchor,
such as a tripod-mounted Decawave DWM1000 Module. This object would be given an
agreed-upon location in global coordinates, such as GPS, and as such, the estimated position
would be static and with high precision. Decawave claims they can support up to 6.8 Mbps
data rates with frequencies of 3.5–6.5 GHz, a centimeter-level accuracy, and maintain a
connection for up to a range of 290 m.

The second object was a Hector quadrotor, in Figure 8, with a UWB anchor mounted
on the bottom of the drone [38]. This drone was meant to represent a moving UWB anchor.
The drone would also be assumed to have been localized using GPS or cameras to represent
a high-precision localization estimate. Instead of GPS, drones could use feature positioning
based on public geographical information to remove the need to utilize GPS and generate
high-accuracy localization [39,40]. In addition, as previously demonstrated in the Monte
Carlo simulations in Section 2.3 in Figures 4 and 5, even when noise is present in the
system, if the time horizon is sufficiently large, the system will be able to derive its initial
position parameters relatively accurately. Thus, even if the "localized nodes" contain noise
information, the system will be able to provide an initial estimate of the position.
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Figure 8. Hector drone.

The final object was the implementation of the Clearpath Jackals robots depicted
in Figures 9 and 10 with two UWB tags on the top of its hood, equally spaced from the
center axis of the robot with an extra centrally located UWB anchor. The tags allowed
the robot to position itself, while the anchors allowed information propagation to help
other robots localize themselves. In this study, it was assumed that the initial position
and orientation of the Jackals were not provided. However, an initial estimate could be
provided in the initial localization step to improve and reduce the initial position estimate
error and thus improve the accuracy. As such, the localization of the Jackal was the main
focus of the presented work.

Figure 9. Simulated Jackal robot with UWB tags (left and right) and an anchor (middle).

Figure 10. Jackal ground robot with DWMs mounted on the left and right sides [41].

The world consisted of two Jackals and three drones to simulate a mobile surveying
endeavor, as presented in Figures 11 and 12. The drones represented the mobile anchors as
they flew over the trees and had GPS to help localize themselves with acceptable accuracy.
The drones also helped the ground Jackals, who did not have GPS. The process proceeded
as such: initially, the drones flew over the trees to achieve GPS localization in a global
reference frame; once localized, the Jackals developed their initial position estimation based
on the Hector drones. Once the Jackals had localized themselves, they performed their
abstract task. Once the task was complete, the drones moved to another location to be
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surveyed, and the Jackals followed suit. When the Jackals moved to the new location,
the drones were too far or obstructed to send UWB range information, so to continue
the localization, the two Jackals sent their inter-robot range measurements and used their
onboard odometry. Once the Jackals approached the new survey site, the UWB range
measurements from the Hector drones helped correct any deviation during the offline path.
The simulated noise measurements were based on the empirical data collected from the
DWM1001-DEV in range increments of 1 m up to 141 m. The standard deviations of the
measurements were recorded. The measurements also included scenarios when the UWB
sensor was occluded by thin objects (<25 cm) and thick objects (≥25 cm). The distributions
can be found in the Gazebo UWB Plugin https://github.com/AUVSL/UWB-Gazebo-
Plugin/blob/master/src/UwbPlugin.cpp (accessed on 3 August 2023).

Figure 11. Jackal and drone position plotting.

Figure 12. Gazebo environment position overlay.

Two metrics were used to determine the accuracy of the unscented Kalman filter: the
RMSE (root mean squared error) and mean absolute error (MAE). As demonstrated through
the graphs in Figures 13–15, the unscented Kalman filter developed for the Jackals follows
the ground truth very closely with minimal RMSE values of no greater than 0.10921 m for
the positioning errors; however, it could be noted that the unscented Kalman filter had
a more significant difficulty estimating the velocity and the yaw rate, with larger errors
of 0.24959 m

s and 0.65856 rad
s , though due to the difference in scales of the measurement

https://github.com/AUVSL/UWB-Gazebo-Plugin/blob/master/src/UwbPlugin.cpp
https://github.com/AUVSL/UWB-Gazebo-Plugin/blob/master/src/UwbPlugin.cpp
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values, this error was deemed to be acceptable. The MAE measurement values were
relatively consistent, hovering around between 0.27 m

s and 0.3 rad
s , which informs of a

possible issue of systematic bias introduced in the system where the position of the system
was consistently offset from the actual target. As noticed through the x, Figure 13, and
y, Figure 14, position graphs, if noticed closely, the estimated values for the x and y position,
when the values seem steady, tend to lag below the ground-truth value. Further tuning
of the unscented Kalman filter model’s parameters, such as the sensor noise matrix R,
and the sigma point generation parameters α and β, could increase accuracy in the model.
The MAE pose is the average position accuracy, a measure of how close, on average,
the position of the robot was to the actual position of the robot using Euclidean distances

(
√
(xexp − xact)2 + (yexp − yact)2 + (zexp − zact)2). Thus, on average, the robot was about

15 cm away from its target position, as noticed by the RMSE, which was often with errors
that had lower magnitudes. The confidence error was calculated as the margin of error
defined as m = z∗ σ√

n , where z∗ is the level of confidence (1.96 for a 95% confidence interval),
σ was the standard deviation of the variable, and n was the sample size. In Table 1,
the confidence interval was calculated using a sample size of five runs.

Figure 13. X position plot.

Figure 14. Y position plot.

Table 1. Drone and mobile Jackal simulation results with a 95% confidence interval.

Gazebo Worlds

Metrics Metrics

RMSE x 0.0867 m ± 0.024 m MAE x 0.2812 m ± 0.028 m
RMSE y 0.1092 m ± 0.025 m MAE y 0.3074 m ± 0.03 m
RMSE z 0.0784 m ± 0.001 m MAE z 0.2789 m ± 0.001 m
RMSE v 0.2496 m

s ± 0.269 m
s MAE v 0.3481 m

s ± 0.14 m
s

RMSE ψ 0.0347 rad ± 0.077 rad MAE ψ 0.1498 rad ± 0.027 rad
RMSE ψ̇ 0.6586 rad ± 8.203 rad MAE ψ̇ 0.8114 rad ± 0.809 rad
RMSE pose 0.02559 m ± 0.01 m MAE pose 0.15617 m ± 0.022 m
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Figure 15. ψ plot.

The current literature does not provide a good reference comparison to this system.
This is due to systems assuming a static environment or a static leader. However, no system
exists where all anchors can move simultaneously and still remain localized.

4. Conclusions and Future Work

This article discussed UWB localization using both stationary and mobile nodes.
Specifically, it introduced an ad hoc method to implement localization through a modified
version of the AHLoS system. In this system, each node starts unlocalized or localized,
and the localized nodes serve as reference points to the unlocalized nodes. Once there
was enough information, the unlocalized nodes could determine a translation–rotation
matrix from the relative position to the global reference frame. This was performed using
a nonlinear least squares function, which also accounts for the tag sensor’s offset range
measurements. The second phase of the paper transitioned to the UKF-based measurement
data refinement stage, where both the globally translated odometry and the offset range
measurements were fed into a CTRV motion-based UKF model to improve the long-term
accuracy of the positioning system. Simulations were conducted to help provide proof of
validity to the algorithms.

The current system assumes a 2D setup for the robot, which would cause inaccuracies
in an inclined outdoor situation as the range estimation for the robot’s z value would not be
correctly estimated, and the robot’s 3D dynamics would not be reflected. Another problem
is that even though the possibility of obtaining an inaccurate initial position estimate
decreases over time, there are no guarantees that the system will converge with this current
system. More robust optimization systems will be explored in the future with explicit
guarantees. In addition, the system still requires fine-tuning of specific constants, such as
the initial P, Q, and R matrices of the UKF, the time horizon ‘T’, and the number of robots N
for the initial localization, as suboptimal performance would be achieved if the system is
not correctly estimated.

In the future, the UKF will extend the account for the robot’s yaw, pitch, and roll to
better account for the diverse terrain and not assume that it was on flat terrain. To further
improve the accuracy, additional sensors could be used, such as cameras and land-based
markers to obtain a better position estimate and optical flow sensors to improve the velocity
calculations, which will help further improve the UKF results. In addition, the development
of the initial position algorithm to account for a wider variety of scenarios and improve
the overall accuracy will be explored. Furthermore, a more robust adaptive Kalman filter
approach for UWB sensors could be used to account for multipath and non-line-of-sight
(NLOS) measurement error, which will be explored to account for a more extensive range
of terrain and reduce overall position error. Finally, the current results of the paper were
demonstrated in a simulated environment. Future work will be performed to demonstrate
the algorithm’s feasibility in the real world.
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5. Installation

The code for this repository for the simulated Gazebo environment can be found at
https://github.com/AUVSL/UWB-Jackal-World (accessed on 18 September 2023), and
the code for the UKF can be found at https://github.com/AUVSL/UWB-Localization
(accessed on 26 January 2024). Both repositories contain READMEs with instructions to in-
stall/run the programs/environments. Annotated video demonstrations of the algorithms
in question are located here: https://youtu.be/UbNkR3y-_S0 (accessed on 21 May 2021)
and https://youtu.be/S6px8JHvk-I (accessed on 22 April 2021).
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