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Abstract: In Internet of Things-based smart grids, smart meters record and report a massive number
of power consumption data at certain intervals to the data center of the utility for load monitoring
and energy management. Energy theft is a big problem for smart meters and causes non-technical
losses. Energy theft attacks can be launched by malicious consumers by compromising the smart
meters to report manipulated consumption data for less billing. It is a global issue causing technical
and financial damage to governments and operators. Deep learning-based techniques can effectively
identify consumers involved in energy theft through power consumption data. In this study, a hybrid
convolutional neural network (CNN)-based energy-theft-detection system is proposed to detect data-
tampering cyber-attack vectors. CNN is a commonly employed method that automates the extraction
of features and the classification process. We employed CNN for feature extraction and traditional
machine learning algorithms for classification. In this work, honest data were obtained from a real
dataset. Six attack vectors causing data tampering were utilized. Tampered data were synthetically
generated through these attack vectors. Six separate datasets were created for each attack vector to
design a specialized detector tailored for that specific attack. Additionally, a dataset containing all
attack vectors was also generated for the purpose of designing a general detector. Furthermore, the
imbalanced dataset problem was addressed through the application of the generative adversarial
network (GAN) method. GAN was chosen due to its ability to generate new data closely resembling
real data, and its application in this field has not been extensively explored. The data generated
with GAN ensured better training for the hybrid CNN-based detector on honest and malicious
consumption patterns. Finally, the results indicate that the proposed general detector could classify
both honest and malicious users with satisfactory accuracy.

Keywords: convolutional neural network; cyber security; deep learning; energy theft; generative
adversarial network; Internet of Things; smart grid

1. Introduction

The development of the Internet has enabled more effective and widespread use of
Internet of Things (IoT) applications. IoT enables the connection of different objects to
the Internet and the ability to communicate with devices in distant networks [1]. Critical
infrastructures such as electricity grids have become IoT-based [2]. Electricity generation,
transmission, distribution, and consumption processes have become more manageable in
this way. IoT-based electricity systems are called the smart grid. The advanced metering
infrastructure (AMI) is the communication network of smart grid applications [3]. The AMI
carries sensitive information, making it a potential target for attackers. Due to the inherent
vulnerabilities of communication networks, cyber-security emerges as a leading problem
in smart grid systems [4].

The daily life of humankind depends on electricity and requires effective management.
AMI helps this management by using control commands and real-time transmission of
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the data to utilities, customers, and third parties. Generally, an AMI system consists of
smart meters, gateways, communication networks, and a headend system [5]. The most
prominent component of AMI is smart meters. Smart meters increase the frequency of
collection of energy consumption data, enabling advanced data analysis that was not
possible before [6]. A smart meter records and transmits energy consumption of the
customers at specific intervals for billing and management [7]. Unauthorized access to a
smart meter may result in data tampering attacks called energy theft [8]. Energy theft is
a significant challenge for smart grid applications as malicious actors continue to exploit
potential vulnerabilities [9]. Unethical customers represent the highest probability of threats
to the AMI and smart meters. In the past, energy theft mainly involved physical disruptions
like cut-offs or damage. However, contemporary instances may encompass sophisticated
attacker models, including erasing log events, false data injection (FDI) attacks, intercepting
communication, and data manipulation [10].

Energy theft is a significant concern for utilities, and it has emerged as a global issue,
resulting in technical and economic losses for operators and governments [11]. Deep
learning (DL)-based models play a prominent role in the design of effective intrusion
detection systems (IDSs). Such IDSs are used to identify abnormal activities such as FDI
and data tampering [12]. Energy theft is an important issue that needs to be solved to
improve smart grid applications. Also, information and communication technologies (ICTs)
and correlated cyber-threats necessitate proactive measures. There are various studies on
energy theft detection handling the consumption data to achieve a high detection rate (DR)
and accurate results [13–17]. Many methods are used for energy theft detection, such as
statistics, data mining, machine learning (ML), and DL techniques [18]. DL-based IDSs
play a critical role in identifying energy theft attacks [19].

We focus on further investigating CNN-based architecture for energy theft detection
within real smart meter consumption data. We also discuss balanced dataset generation,
which is important to increase performance in DL with GAN. We proposed a CNN-based
deterministic model to detect energy theft based on consumption patterns. The symptom
state parameters were used to assess the likelihood of energy theft incidents. Our model
monitors energy consumption patterns and performs with high accuracy in detecting
maliciously changed data in experimental results. Also, it can learn normal/abnormal
behaviors obtained from the consumption data of the smart meters and detect anomalies
based on deviation from the probability.

Unpredictable attack vectors may be considered zero-day attacks [15]. We address the
challenges posed by zero-day attacks and imbalanced data by generating synthetic attack
datasets, leveraging the predictable nature of theft patterns. Extensive trials demonstrate
a notable enhancement in the DR and the capability to detect various types of attacks.
In addition to detecting a thief, the proposed IDSs can also precisely identify the time of
the theft.

In this study, we employ a hybrid structure by combining CNN with shallow ML
techniques to develop an energy theft detector. This hybrid approach is applied to the
energy consumption dataset, addressing the classification problem and allowing us to
exploit irregular and abnormal consumption patterns for energy theft detection. The hybrid
structure includes CNN combined with Support Vector Machine (SVM), Random Forest
(RF), Decision Tree (DT), k-Nearest Neighbors (KNN), and Logistic Regression (LR). CNN
is used for feature extraction, while the other techniques are employed for classification.

1.1. Research Contributions

The main contributions of this paper can be summarized as follows:

• Data-driven energy theft detection solutions are reviewed for comparison. The results
verify the effectiveness of the proposed approach.

• An integrated CNN-based architecture is used to tackle miss-classification and high
False Positive Rate (FPR) issues.

• Real honest data are exposed to six attack vectors to create theft classes.



Sensors 2024, 24, 1148 3 of 21

• GAN technique is used to eliminate the imbalanced data issue.
• To overcome the over-fitting problem, k-fold cross-validation technique is opted for.
• Six balanced datasets containing the characteristics of only one attack vector were

created. Additionally, a single dataset combining these six attack vectors was designed.
Thus, both attack-vector-specific solutions and a general solution have been proposed.

• The performance of the hybrid CNN-based model was evaluated by comparing it
with other up-to-date approaches.

1.2. Organization of the Paper

This study emphasizes the importance of smart grid security, non-technical loss (NTL),
the design of a CNN-based energy theft detector, and the generation of a balanced dataset.
The structure of the remaining paper is as follows. Related works in the relevant literature
are presented in Section 2. Next, Section 3 presents the dataset, attack vectors, and GAN
methodology, along with a CNN-based hybrid approach. Then, Section 4 deals with the
experimentation and the results of the proposed model, providing detailed insights into
their outcomes and conducting a comparative analysis with other algorithms and studies.
Finally, Section 5 provides a conclusion after performing the experiments in this paper and
presents future work.

2. Related Works

Many vulnerabilities inherited from communication networks exist in AMI. The basic
requirements of cyber-security are availability, integrity, and confidentiality [20]. In this
study, we have examined data tampering attacks specifically designed to undermine the
integrity of consumption data. We aimed to detect attack vectors that reduce smart meter
readings. DL-based IDSs have provided high accuracy in detecting these attack vectors in
the literature [21].

Understanding the data flow in smart grid applications is significant, and this can be
achieved by examining their general structure. The overall structure of the smart grid envi-
ronment is shown in Figure 1. Energy generated from diverse sources is transmitted over
long distances through transmission lines and distributed to consumers via distribution
lines. Data transmission is provided through AMI in the context of the energy infrastructure.
While the Wide Area Network (WAN) is used in generation and transmission domains,
the Neighborhood Area Network (NAN) and Field Area Network (FAN) are used in the
distribution domain. Lastly, the Home Area Network (HAN) and Industrial Area Network
(IAN) are used in the consumption domain.

Figure 1. Overall structure of the smart grid environment [20].

Energy theft detection in smart grids has been an active research area in recent years.
The literature has introduced various strategies for detecting energy theft. These strategies
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include state estimation, game theory, and data-driven strategies. Data-driven strate-
gies [22] are more prevalent due to their scalability for handling large systems and their
cost-effectiveness in computational resources. Statistics, data mining, ML, and DL are
among the prominent data-driven methods extensively employed to extract knowledge
from consumption patterns, enabling inferential assessments. While detecting NTLs in-
volves challenges, smart meters allow the extensive storage of energy data, enabling various
analytical approaches. This has led to the development of various classification techniques.

In this section, we critically reviewed notable studies on energy theft detection that
utilize smart meter consumption data to identify potential attack vectors and malicious
customers. Due to their higher performance, we focused on the ML and DL approaches.

Jokar et al. [23] propose an energy theft detector within AMI based on consumption
patterns, utilizing the SVM approach. The detector enhances the classification accuracy to
94%. Moreover, it addresses a range of cyber-attack vectors associated with energy theft,
and these are widely acknowledged in the literature. The authors of [24] introduced a two-
step energy-theft-detection system utilizing DT and SVM, achieving an accuracy of 92.5%.
However, there is no information on whether the dataset is balanced or imbalanced. The
researchers in [25] present an energy-theft-detection method utilizing ensemble ML models.
The concept behind the models involves combining various ML methodologies into a
unified predictive model to increase DR and decrease the error rate. The results indicate
that a bagging-type ensemble ML approach, which aggregates the outcomes of independent
ML models in parallel through averaging, outperforms a boosting approach. However,
when compared to other approaches, the recommended model has not demonstrated
better success.

Despite the absence of a real dataset in [26], notable achievements in performance
were attained through the application of a neural network. They achieved an overall DR
of 93%. The authors of [27] have devised a novel approach for identifying and detecting
energy theft within distribution systems, employing the multilayer perceptron artificial
neural network (MP- ANN). They achieved a successful differentiation between malicious
and honest users, averaging a detection rate of 93.4%. However, there is no information
on whether the dataset is balanced or imbalanced. In [28], a hybrid deep neural network
(DNN) approach is proposed. The gated recurrent unit (GRU) technique was used, which
is an evolved variant of LSTM belonging to the category of recurrent neural networks
(RNNs). The hybrid DNN combines CNN, GRU, and particle swarm optimization (PSO).
However, when compared to other approaches, the recommended hybrid model has not
quite demonstrated better accuracy, and the proposed model tends to overfit. The work
referenced as [29] employed a deep RNN classifier using GRU to catch temporal correlations
within individual customer load profiles, thereby introducing a detector with a DR reaching
up to 93%. However, it is not clear whether the dataset is balanced or imbalanced. In [30],
the authors present a CNN model to detect energy theft, utilizing the State Grid Corporation
of China (SGCC) dataset. They illustrate energy consumption over four weeks for randomly
selected honest and malicious consumers. Initially, consumption is displayed by dates
and later by weeks. Date-based representation fails to differentiate between honest users
and thieves, but the weekly representation distinguishes them. Honest consumers show
periodic energy usage, while the thieves display less periodicity. However, there is no
information on whether the dataset is balanced or imbalanced. The researchers in [31]
presented a hybrid model on energy consumption patterns to detect energy theft with CNN
and long short-term memory (LSTM), using the SGCC dataset. The CNN autonomously
identified and categorized features, whereas the LSTM managed the sequential nature
of the time-based data. The authors solved the imbalanced dataset problem by applying
the synthetic minority over-sampling technique (SMOTE) method to augment the NTL
class, equalizing it with honest customer counts. While achieving an 89% accuracy, the
model demonstrated a lower DR of nearly 87%. Compared to other approaches, the
recommended hybrid model has not demonstrated better accuracy. Adil et al. [32] used
the CNN-LSTM approach on the SGCC dataset and achieved 87.9% accuracy. However,
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compared to other approaches, the proposed model is not very satisfactory. Kocaman and
Tümen [33] introduced an LSTM classifier for identifying malicious customers. They utilize
data selection, normalization, and weight updating as preprocessing steps. The LSTM
classifier architecture comprises LSTM cells, dropout layers, ReLu activation functions,
and a softmax classifier. Evaluation involves precision, accuracy, and recall metrics for
assessing model performance. However, it is unclear how they resolved the issue of the
imbalanced dataset.

The authors in [34] used the Irish Social Science Data Archive (ISSDA) dataset. They
employed cluster-based algorithms, specifically the fuzzy Gustafson–Kessel and fuzzy
c-means, achieving a 74.1% area under the curve (AUC). However, they achieved low true
positive rate (TPR) and high FPR, which are 63.6% and 24.3%, respectively. Lastly, the
authors of [35] describe an energy-theft-detection method using data about power provider
system consumption at the edge. Centralized data centers employ K-means clustering and
DNN to extract features. CNN refines daily, weekly, and monthly patterns. RF at the edge
data center classifies the characteristics, speeding up the edge computing processing. This
approach is more accurate and computationally efficient than previous methods, making it
suitable for edge data centers.

Approaches using only traditional ML models often face challenges in extracting
distinct consumption patterns due to the complex structure of power consumption data.
This situation leads to low performance and accuracy. On the other hand, DL models
can better explore complex structures, thus achieving higher success than ML models.
Table 1 summarizes prominent ML- and DL-based approaches for developing energy
theft detectors.

Table 1. Literature overview on energy theft detection based on consumption data.

Ref. Year Platform Proposed
Model

Dataset Accuracy Presented Main Contribution

[31] 2019 N/A CNN-LSTM
based

SGCC 89 The irregular and abnormal consumption patterns of con-
sumers are analyzed

[34] 2018 N/A Clustering
based

ISSDA 74
(AUC)

Malicious examples are not needed to train the method for
future detection

[28] 2020 Python 3.x CNN-GRU-
PSO

SGCC 89 Preprocessing steps, feature selection, feature extraction,
and classification are performed using a lot of techniques
and the proposed model outperforms imbalancing issue

[27] 2020 N/A MP-ANN ISSDA 93.4
(DR)

Self-organizing is used for clustering the consumers ac-
cording to similar consumption patterns, i.e., classification
as honest or malicious. The number of transformers that
have suspect consumers is reduced without the need to
install measurement units on all transformers

[32] 2020 Python 3.x CNN-LSTM SGCC 87.9 An efficient solution to overcome imbalanced data, overfit-
ting, and high-dimensional data limitations is introduced

[24] 2016 N/A DT-SVM OpenEnergy 92.5 The newly proposed system exhibits the capability to accu-
rately identify instances of energy theft in real time across
all stages of power transmission and distribution

[29] 2018 Python 3.x GRU (RNN-
based)

ISSDA 92.5
(DR)

Temporal patterns are utilized in energy consumption,
and a GRU-based RNN enhances detection performance,
optimizing hyperparameters through a random search
analysis in the learning phase

[23] 2016 N/A SVM-based ISSDA 94 (DR) Six different attack vectors are designed to obtain manipu-
lated consumption data
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Table 1. Cont.

Ref. Year Platform Proposed
Model

Dataset Accuracy Presented Main Contribution

[25] 2021 Python 3.x Ensemble ML ISSDA 90
(AUC)

Data pre-processing is used to address imbalanced data
with SMOTE and Near-miss techniques, achieving opti-
mal detection rates through bagging-type ensemble ML
demonstrated with diverse consumer samples

[30] 2018 N/A Wide and
Deep CNN

SGCC 80
(AUC)

Unlike existing methods tailored for one-dimensional data,
wide and deep CNN handles detecting electricity theft
by effectively capturing both periodic and non-periodic
consumption patterns in two-dimensional data

[33] 2020 N/A LSTM-based SGCC 93.6 A new technique is devised to streamline data, enhanc-
ing usability and facilitating the extraction of meaningful
insights from the dataset

[26] 2021 Python 3.x Neural Net-
work

Grid LabD
Tool

93 A novel method is introduced for detecting electricity theft,
focusing on “balance attacks” with prosumers manipu-
lating readings for total aggregated balance. A cluster-
based detection model is introduced as a middle-ground
approach, bridging the gap between using a single model
for all users and individual models for each user

[36] 2021 Matlab2019 CNN-
WeightedRF

Mathpower
Tool

95.71 An FDI intrusion-detection model combining CNN and
weighted RF is able to detect the spurious data more accu-
rately compared with other detection models

[37] 2015 N/A SVM ISSDA 75.8 The classification models simplify a demand-side manage-
ment study, analyze tariff methods, and offer insights for
policymakers

[38] 2010 VisualBasic SVM Tenaga Na-
sional

60 This work aims to aid Tenaga Nasional Berhad Distribu-
tion in Malaysia to reduce NTLs within the distribution
sector caused by electricity theft

[39] 2018 Python 3.x DNN-based ISSDA 92.6
(DR)

This work proposes a DNN-based customer-specific detec-
tor that can mitigate electricity theft cyber-attacks

[40] 2017 N/A Density-
based cluster-
ing

ISSDA 93.2 This work exhibits superior performance compared to al-
ternative methods across nearly all categories of theft

[41] 2022 Python 3.x Attention
LSTM Incep-
tion

SGCC 95 This work addresses the elevated FPR issue arising from
widespread misclassification, leading to financial burdens

[42] 2022 Python 3.x KTBoost Clas-
sifier

SGCC 93.38 Taking into account all minority sample regions in the
dataset, the robust-SMOTE technique generates minority
class samples with reduced susceptibility to overfitting
and the generation of noisy samples

[43] 2023 Python 3.7 Deep-CNN Researcher-
generated

95 The proposed theft detection method, utilizing the SMOTE
technique to generate minority class samples with reduced
susceptibility to overfitting and noise, attains the highest
accuracy compared to all other studied methods

Our
work

2024 Python 3.10 CNN-based ISSDA 95.34 CNN-based architecture is combined with traditional ML
methods. A detector that provides high success in detect-
ing all attack vectors has been designed. The imbalanced
data problem was solved using GAN.

Glancing at these noteworthy works, we studied novel CNN-based hybrid models for
energy theft detection and proposed a CNN-based deterministic model to detect energy
theft based on consumption patterns. CNN automatically captures the distinct features of
consumption behaviors from the data. It is very important for the effectiveness of energy-
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theft-detection models. We conducted a comparative analysis using ML and sigmoid
classifiers to detect consumption patterns based on extracted features, aiming to enhance
detection performance. Hybrid solutions using both CNN and traditional ML methods
have been observed to achieve higher TPR and lower FPR compared to pure DL solutions.
Our hybrid structure achieves a higher accuracy performance rate of up to 96% compared
to existing models. On the other hand, the data-balancing process is an inherently hard
mission, and working with imbalanced data typically reduces the performance of the
model. While the literature generally works on imbalanced datasets, our study addresses
this challenge using GAN.

3. Materials and Methods

Consumption data obtained from the ISSDA dataset were subjected to data analysis
and preprocessing. Malicious synthetic data were generated by exposing the real data to
the attack vectors. Real and malicious data were aggregated, and the prepared datasets
were used to train the proposed models. In this section, the ISSDA dataset, data analysis
and preprocessing processes, attack vectors, and recommended hybrid CNN-based ap-
proaches are presented. Additionally, the GAN method used in generating synthetic data
is presented.

3.1. Dataset

The dataset, released by ISSDA [44] in January 2012, comprises electricity consumption
data from over 5000 Irish residential and enterprise consumers during 2009 and 2010 in
kWh for 536 days. A vector of 48 readings was used to explain the everyday usage of a
consumer. This dataset, presenting a lot of samples from diverse consumers, serves as
an excellent resource for research in smart meter data analysis. The dataset contains only
honest profiles and reports the consumed real power data at a rate of 30 min. The daily
load profile of a customer is x = {x1, . . . , x48}. The dataset is scalar.

One of the challenges faced by this research is the absence of malicious data needed
to train the models. Applying the attack vectors described in the next section on the real
dataset solved this problem. We obtained balanced datasets to ensure the accuracy of the
proposed models. After data analysis, 2104 samples were selected from the ISSDA dataset.

The class distribution in a dataset associated with a classification problem should
be balanced; otherwise, it leads to an imbalanced data problem. When classes exhibit
significant numerical differences, it constitutes an imbalanced data issue. The issue prevents
the effective training of ML models. Furthermore, it can adversely affect the generalizability
of the model and performance.

The dataset denoted as H consists of 2104 samples representing honest data. When the
H dataset was exposed to the f1 attack, a final dataset was created containing 4208 samples.
The final dataset includes a balanced number of both honest and malicious samples. The
same scenario holds for the other five attack vectors. These six different datasets were used
only in training the proposed approaches to detect the relevant attack vector. Furthermore,
we aimed to design a more comprehensive IDS. So we generated a dataset containing all
attack vectors along with the H dataset. The dataset is structured as H + f1 + f2 + f3 + f4 +
f5 + f6. As observed, there is an imbalanced data problem since the number of H samples
is 2104 and the number of attack vector samples is 6 × 2104. The imbalanced data problem
was solved using the GAN approach. After that, we call the obtained dataset as the “hybrid
dataset”. To the best of our knowledge, there are limited studies that solve imbalanced data
problems with GAN in the energy-theft-detection field [45].

Data analysis and data preprocessing are some of the most important steps that affect
the accuracy of the system. Data preprocessing refers to transforming the initial data into
a standard format. It has three major phases: data cleaning, data standardization, and
feature engineering. Data cleaning is the discovery of faults or null values in the dataset.
Data standardization is the detection of outliers in the dataset and transforming them into
acceptable types using scaling ways. We do not use data standardization because our



Sensors 2024, 24, 1148 8 of 21

consumption data do not have outliers. The feature engineering process is used to extract
major features [46]. Since our dataset has limited attributes (SMID, readings (kWh), and
output), there is no need for a feature engineering process.

Data Analysis and Cleaning: To design a general IDS capable of detecting malicious
activities among residential consumers, a specific range of consumption values was chosen
for the samples. Industrial users and small/medium-sized enterprises were eliminated
to ensure a more normal distribution. So consumers were filtered as residential users.
Consumers with missing data were not used as samples. To prevent over-fitting and
under-fitting, users whose consumption data are zero for a very long time are eliminated.
Therefore, every consumption data point in 30 min is chosen between 0.001 kWh and
7 kWh. Consumers with a total consumption data between 536 kWh and 12,000 kWh for
536 days were selected as the samples. Additionally, consumers with missing data in the
536 days were not selected. As a result, data from 2104 customers were analyzed. A matrix
of size 536 × 48 was created for each customer. The input data were given to the CNN
network. Therefore, the choice of input data form in image processing [47] contributed to
achieving high accuracy.

3.2. Attack Vectors

The implementation of smart meters and the integration of a cyber layer into the
metering system have introduced novel attack vectors for energy theft. The main purpose
of attack vectors is to reduce the bill. Theft samples rarely exist or do not exist for customers.
Therefore, obtaining a real dataset with malicious samples to design an energy theft detector
is a challenge.

Along with their versions, the six attack vectors proposed by Jokar et al. are remarkably
well accepted in the literature [23]. We applied six attack vectors on honest consumption
data. The formulation of attack vectors is given in Table 2. Each honest half-hourly reading
is represented as xt. X represents all 536 days of a consumer’s readings as 1D and is
presented as X = {x1, x2, . . . , x(536×48)}. Attack vectors are represented as f (x). α and
λ are randomly generated numbers between 0.1 and 0.8. In the literature, a common
approach to prevent consumption data from dropping to zero and remaining unchanged is
by generating random values for parameters α and λ within the specified range of 0.1 to
0.8 [23].

Table 2. Mathematical representation of cyber attack vectors.

f1(xt) = α × xt, α = random(0.1 − 0.8)

f2(xt) =

{
0, (38 ≤ xt ≤ 43)
xt, otherwise

f3(xt) = λt × xt, λt = random(0.1 − 0.8)

f4(xt) =

{
0, (xt − λt) < 0
(xt − λt), otherwise λt = random(0.1, max(X))

f5(xt) =

{
xt − mean(X), (xt − mean(X)) ≥ 0
xt, otherwise

f6(xt) = x(49−t), t = {1, 2, 3, ..., 48}

The f1 attack multiplies all consumption readings by the same randomly chosen value
α. The f2 attack assigns zero to certain time interval readings of the day, and the others
remain the same actual value. We chose the time period between 38 and 43 due to the
peak electricity consumption during the evening hours. The f3 attack multiplies each meter
reading by a distinct random value λ. The f4 attack generates a random number between
0.1 and the max consumption value of each user. It subtracts this result from each reading
for that customer. If the result value is negative, it is set to 0; if it is positive, the difference
is written. The f5 attack subtracts the mean of all consumption data of each consumer from
each reading. If the result is greater than or equal to 0, the difference is written; otherwise,
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the consumption data remain the same. The f6 attack reverses the order of each customer’s
readings daily. Although the total consumption remains constant, the reporting of intensive
usage is shifted to low-tariff periods. The impact of the six attack vectors on the daily use
of an honest customer is shown in Figure 2.

Figure 2. Visualization of mentioned attack vectors in the daily consumption data of an honest user.

Our CNN-based approach is designed to detect anomalies within consumption pat-
terns. Considering that every attack leads to the manipulation of meter readings, our CNN-
based approach effectively detects all presented attack vectors. Furthermore, we solved the
imbalanced data problem for hybrid dataset using the GAN approach described below.

Since there were fewer real samples in the mentioned honest dataset, we used GAN
to produce honest samples. A GAN consists of a generator (G) neural network and a
discriminator (D) neural network. The aim is for the generator to create synthetic data that
are indistinguishable from real data, while the discriminator aims to correctly differentiate
between real and synthetic data [48].

The G component maps a latent noise vector z to a synthetic honest sample. G aims to
produce synthetic honest samples. G(z) represents the generated synthetic honest sample.

The D component distinguishes between real honest samples and synthetic ones. D(x)
represents the probability that x is a real honest sample. D(G(z)) represents the probability
that the generated instance G(z) is a real honest sample.

The objective function for the generator G and discriminator D in the context of honest
sample generation can be represented as

min G min DV(D, G) = Ex∼phonest(x)[log D(x)]

+Ez∼pz(z)[log(1 − D(G(z)))].

Here, phonest(x) is the distribution of real honest samples. pz(z) is the prior noise
distribution of z. E represents the expected value. x represents a real honest sample. z
represents a noise vector. G(z) generates a synthetic honest sample. D(x) is the output
of the discriminator for real honest samples. D(G(z)) is the output of discriminator for
synthetic honest samples.

Similar to the standard GAN setup, the objective is for the generator G to minimize
the probability of the discriminator D to correctly distinguish between real and synthetic
honest samples, while the discriminator aims to maximize this probability.

By training the GAN iteratively, the generator learns to produce synthetic honest
samples that capture the characteristics of honest data, contributing to the mitigation of
imbalanced datasets in energy theft detection.

3.3. The Novel CNN-Based Hybrid Approach

Confidentiality, integrity, and availability are the key elements of information security.
Energy theft attacks target the integrity of data. In this section, our goal is to create a
top-tier classifier capable of identifying cyber-attacks aimed at compromising the integrity
of the readings. The design of this detector relies on CNN, enabling the capture of complex
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patterns within the data. We utilized the empirical method for the selection of parameters.
The SVM, RF, DT, KNN and LR algorithms were used with CNN for classification.

We tested the performance of the proposed model on real data of 2104 customers
against six attack vectors of energy theft. We have compared each attack vector and
obtained the most successful hybrid model for that attack. This paper presents a robust
model for NTL detection in a smart grid using a CNN-based approach.

The architecture of the proposed CNN-based model is shown in Figure 3. The main
structure of our CNN model is given as follows:

Figure 3. The architecture of the proposed CNN-based model.

Convolution layers are used to learn feature representation of data. Also, convolu-
tion filters provide noise reduction. Filters are used to reduce network size. Thus, lower
computational complexity is provided. Our CNN model is designed using an input layer,
3 convolution layers, 3 max-pooling layers, 2 dropout layers, 2 fully connected layers, and
an output layer. The architecture of hybrid CNN-based model accepts consumption data
with a size of 536 by 48 in the input layer. The ReLU activation function and L2 regular-
ization layers were preferred to prevent over-fitting in the convolution layer. There are
max-pooling layers from each convolution layer. After the max-pooling process, dropout is
applied. Feature maps in the first fully connected layer were classified with ML algorithms.
In addition, feature vectors for the pure CNN model were classified by giving them to the
sigmoid activation function in the output layer.

The relevant equations of the operations are explained below. Convolution blocks are
connected to the max-pooling layers. The mathematical output of the convolution layers is
stated as

yconv

(
X fl

l

)
= δ

(
Fl

∑
fl=1

W fl
l ∗ X fl

l + b fl
l

)
,

where δ and ∗ show the activation function and convolution operation, respectively. b fl
l

and W fl
l show learnable parameters in the f-th feature filter. Dropout layers are located

between two convolution layers. These layers provide dimensional reduction by reducing
the number of parameters. Generally, the min-pooling and max-pooling approaches are
used for this aim. Our CNN model uses max-pooling. This operation generates more
efficient results. The mathematical definition of this operation is expressed as

ypool

(
X fl

l

)
= max

m∈M

{
Xl,m

}
,
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where M and m indicate a set of activations and the index of activations in the pooling
window, respectively. After the dropout layer, a fully connected layer is applied for
flattening feature maps into one feature vector as follows:

y fl
(Xl) = δ(Wl . Xl + bl),

where Wl and bl show the weight and bias of the l-th layer. We used the sigmoid classifier
for the output layer in the CNN. An example is a CNN that uses the RF classifier defined as

yout(XL) = sigm
(

Wr f . Xl + bl

)
,

where sigm(.) is the sigmoid function. It maps malicious values to 0 and honest values to 1.
A CNN-based IDS can identify data that deviate from expected patterns, assuming

that the patterns of energy theft differ from those of honest users. Achieving high accuracy
and DR in anomaly detection models includes selecting proper activation functions or
optimizing parameters.

Hybrid models are significant approaches for achieving high accuracy and DR in
energy theft detection. In our study, we focused on individually detecting each attack vector.
Additionally, we achieved high DR of all six attack vectors when they were collectively
present in the hybrid dataset. We show these different situations in two flow charts. The
overall flowchart is presented for individual attack vectors in Figure 4. Moreover, the
overall flowchart is presented for the combined set of all attack vectors in Figure 5.

Figure 4. Flowchart of energy theft detection for each attack vector.

Figure 5. Flowchart of energy theft detection for all attack vectors.

Figure 4 shows the NTL flowchart of the proposed model for each attack vector. Firstly,
the dataset obtained from ISSDA was subjected to preprocessing by performing data
analysis and cleaning. The obtained honest samples were exposed to each f attack vector
separately, and six balanced datasets were obtained. Five CNN-based ML models and a
pure CNN model were employed to classify users as honest or malicious. Each CNN-based
model was trained and tested on these balanced datasets. Finally, the performance of the
models was compared.
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Figure 5 shows the NTL energy theft detection for all attacks collectively. Firstly,
datasets for the six attack vectors were generated from the honest dataset. Afterward, the
honest dataset was augmented nearly sixfold using GAN to solve the imbalanced data
problem. Then, the honest dataset and the datasets containing f attacks were combined. A
five-fold cross-validation technique is used to prevent over-fitting. The obtained dataset
samples were classified as honest or malicious by CNN-based classifiers. Model perfor-
mances were evaluated using the confusion matrix and receiver operating characteristic
(ROC) curves. Finally, the models were compared.

As a result, the materials and methods employed in this study serve as the foundation
for our experimental framework, ensuring rigorous data collection, preprocessing, and
model implementation. The careful selection of datasets, the application of advanced
algorithms, and the systematic validation processes collectively supported the credibility
and reliability of our results. The utilization of state-of-the-art methods and the adherence
to standardized protocols underscored the robustness of our experimental setup, facilitating
a comprehensive analysis of the research objectives.

4. Results

Some of the experimental studies were conducted using an A5000 with 24 GB GPU and
128 GB RAM. Additionally, the data preprocessing and training processes utilized a V100
GPU with 50 GB RAM through Google Colab Pro. The Python 3.10 programming language
and the TensorFlow and Scikit-learn libraries were employed. The hyperparameters for the
designed models were set as follows: epoch value 100, batch size value 64, optimizer SGD,
learning rate 0.01, L2 regularization rate 0.001, and binary cross-entropy as the loss function.

4.1. Training and Testing

The dataset was subjected to certain analysis and preprocessing. As a result of the
processing, the generated datasets contain the electricity consumption data of 2104 honest
and 2104 malicious customers within 536 days with half-hour intervals. The datasets were
divided using a five-fold cross-validation technique into training and testing sets. Malicious
ones were generated synthetically. It is demanding to extract features based on experience
from the 1D electricity consumption data since daily consumption fluctuates in a relatively
independent way. Thus, we designed a CNN solution to process the electricity consumption
data in a 2D manner. We defined 2D data as a matrix of actual energy consumption values
for a specific customer, where the rows of the matrix represent days as D = {1, ..., 536}
and columns represent the time periods as T = {1, ..., 48}. The feature maps from the fully
connected layer were utilized as inputs for ML algorithms. Furthermore, classification was
carried out using the sigmoid function in the output layer of the CNN.

Consumption habits of customers can vary due to several non-malicious factors. These
variations can be temporary, periodic, or permanent, potentially leading to false positive
outcomes. Short-term changes may result from unusual behaviors, such as hosting an
event that lasts more than a day or two. Such examples are included in training and testing
datasets to mitigate this issue.

A DL-based architecture requires large amounts of data. In this study, datasets were
generated with large amounts of data in order to train the proposed CNN architecture
correctly. The number of samples in the datasets is presented in Table 3.
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Table 3. Generated datasets with f attacks.

Generated Dataset Number of Samples
(Honest + Malicious) Number of Readings

Honest + f1 attack 2104 + 2104 536 × 48 × 2104 × 2

Honest + f2 attack 2104 + 2104 536 × 48 × 2104 × 2

Honest + f3 attack 2104 + 2104 536 × 48 × 2104 × 2

Honest + f4 attack 2104 + 2104 536 × 48 × 2104 × 2

Honest + f5 attack 2104 + 2104 536 × 48 × 2104 × 2

Honest + f6 attack 2104 + 2104 536 × 48 × 2104 × 2

Hybrid Dataset 2104 × 6 + 2104 × 6 536 × 48 × 2104 × 12

4.2. Evaluation Metrics

In this section, the metrics used to evaluate the performance of the proposed energy-
theft-detection models are mentioned. The confusion matrix was used in the performance
analysis of the developed models. The confusion matrix is a prominent structure for
addressing the classification performances of the models [49].

The confusion matrix divides the entire dataset into True Positive (TP), False Posi-
tive (FP), False Negative (FN), and True Negative (TN). TP represents positives correctly
predicted as positives. FP represents negatives incorrectly predicted as positives. FN
represents positives incorrectly predicted as negatives. TN represents negatives correctly
predicted as negatives [50]. The structure of the confusion matrix is presented in Figure 6.

Figure 6. Confusion matrix utilized in energy theft detection.

The performance of the proposed approach on six different classifiers was tested
using the accuracy, precision, specificity, TPR, FPR, and F1-score. Moreover, the Highest
Difference (HD) is defined as the difference between the TPR and FPR. Additionally, Recall,
sensitivity, TPR, and DR refer to the same metric. Also, FPR and False Alarm (FA) generally
refer to the same metric in these studies. Since all of these concepts are used in these studies,
we have presented them to avoid conceptual confusion. The metrics defined to evaluate
the performance of the models are presented in Table 4.

The ROC curve is an another significant performance metric for evaluating binary
classification models. ROC curves depict the trade-off between TPR and FPR. As the
discrimination threshold of a binary classifier varies, the TPR and FPR change consistently.
The track of (FPR, TPR) is a curve connecting (0, 0) and (1, 1). The AUC metric is used in
evaluating classification models by measuring the area under the ROC curve. A higher
AUC indicates better overall performance. The AUC metric is commonly used to compare
different models or to select the best-performing model among several candidates for a
particular classification task.
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Table 4. Performance metrics obtained from the confusion matrix.

Metric Equation Short Description

TPR (DR) TP
TP+FN The performance of the CNN model in detecting malicious samples.

Specificity TN
TN+FP The performance of the CNN model in detecting honest samples.

Precision TP
TP+FP The ratio of malicious samples predicted as malicious to all malicious

samples.

F1-score 2TP
2TP+FP+FN Expressed as the harmonic mean between precision and sensitivity.

Accuracy TP+TN
TP+FP+FN+TN Measures the overall correctness of predictions by the model.

FPR TP
FP+TN Measures the proportion of actual honest that were incorrectly classi-

fied as malicious samples.

Each metric offers insights into different aspects of a model’s performance and helps in
understanding its strengths and weaknesses in making predictions in binary classification
tasks. Accuracy gives an overall view. Focusing on accuracy, precision, recall, F1-score, and
AUC can offer a comprehensive understanding of the model’s effectiveness in balanced
datasets. When dealing with imbalanced datasets precision, recall, F1-score, and AUC offer
a better insight. It was observed that performance metrics were chosen differently in many
studies examined within the scope of this study. In general, it has been observed that the
overall performance of the model is better when accuracy, DR, and HD are high and FPR
is low.

4.3. Evaluation of the CNN-Based Models

The overall detection performances were tested for each attack vector, as well as for the
hybrid dataset encompassing various attack vectors. Evaluation metrics were presented for
each algorithm. The performance of algorithms varied across different attack scenarios and
balanced datasets. We used five-fold cross validation and presented the mean of the folds
with standard deviation in the tables. SVM, LR, RF, KNN, DT algorithms were used with
CNN for classification. In order to determine the best CNN-based model, a comparative
analysis was performed. Since our hybrid models work on balanced datasets, the accuracy,
DR, F1-score metrics stand out in terms of evaluating the prominent performance metrics.

The performance metrics of the models and datasets with a single attack vector are
given in Table 5. While the all models were generally effective in detecting all attack vectors,
they performed poorly for #5. It was found that #2, #3, #4, #5 and #6 were detected with
99.81%, 98.04%, 99.48%, 81.42%, and 98.53% DR, respectively, using a CNN+RF model, and
#1 was detected with a DR of 96.14% by CNN+LR. The CNN+RF model nearly obtained
the best accuracy up to 99.83% except for #1. It closely followed by the CNN+LR up to
99.67%. The standard deviation values of the folds are generally close to each other, except
for CNN, and are between ±0.12 and ±1.85. The results show that the proposed model
can detect different attacks with high DR. It can also be seen that the detection in #5 is low.
A possible reason for the lower performance of #5 could include differences in training data
of the intrinsic property of zero overall theft.

The evaluation of our CNN-based model involves training on a hybrid dataset en-
compassing various attack types and subsequently testing it on different data comprising
new users not present in the training set. Table 6 illustrates the performance of models
within this particular scenario. Notably, the CNN+LR classifier demonstrated the highest
accuracy, DR, and F1-score. This classifier achieved 95.34% accuracy and 95.01% DR while
maintaining a low FPR of only 4.32%. Promising results indicate the effectiveness of our
model in detecting thefts from new users by relying on historical data. It shows that the
general performance of the model is promising according to the metrics.
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Table 5. All evaluation results of the CNN-based models for each f attack.

Dataset Model Accuracy Precision Sensitivity Specificity F1-Score FPR

Honest + f1 Attack (#1)

CNN 92.4 ± 3.04 99.71 ± 0.18 87.24 ± 4.72 99.67 ± 0.2 92.99 ± 2.64 0.33 ± 0.2

CNN+SVM 96.6 ± 0.95 97.2 ± 0.7 96.06 ± 1.22 97.16 ± 0.72 96.62 ± 0.93 2.84 ± 0.72

CNN+LR 97.15 ± 0.79 98.24 ± 0.7 96.14 ± 0.9 98.2 ± 0.72 97.18 ± 0.77 1.8 ± 0.72

CNN+RF 97.08 ± 0.79 98.67 ± 0.68 95.63 ± 0.87 98.62 ± 0.71 97.12 ± 0.77 1.38 ± 0.71

CNN+KNN 94.82 ± 0.78 99.71 ± 0.18 90.84 ± 1.24 99.68 ± 0.2 95.07 ± 0.71 0.32 ± 0.2

CNN+DT 93.23 ± 0.63 92.92 ± 1.25 93.5 ± 0.78 92.98 ± 1.15 93.2 ± 0.66 7.02 ± 1.15

Honest + f2 Attack (#2)

CNN 99.55 ± 0.12 99.81 ± 0.28 99.29 ± 0.45 99.81 ± 0.28 99.55 ± 0.12 0.19 ± 0.28

CNN+SVM 99.74 ± 0.14 99.76 ± 0.26 99.72 ± 0.28 99.76 ± 0.26 99.74 ± 0.14 0.24 ± 0.26

CNN+LR 99.67 ± 0.14 99.76 ± 0.37 99.58 ± 0.38 99.76 ± 0.36 99.67 ± 0.14 0.24 ± 0.36

CNN+RF 99.83 ± 0.14 99.86 ± 0.29 99.81 ± 0.23 99.86 ± 0.28 99.83 ± 0.14 0.14 ± 0.28

CNN+KNN 98.43 ± 0.43 98.86 ± 0.63 98.03 ± 0.81 98.85 ± 0.63 98.44 ± 0.43 1.15 ± 0.63

CNN+DT 99.67 ± 0.22 99.81 ± 0.23 99.53 ± 0.42 99.81 ± 0.23 99.67 ± 0.22 0.19 ± 0.23

Honest + f3 Attack (#3)

CNN 94.2 ± 2.17 99.86 ± 0.19 89.83 ± 3.29 99.83 ± 0.23 94.55 ± 1.91 0.17 ± 0.23

CNN+SVM 98.24 ± 0.57 99.1 ± 0.61 97.43 ± 0.55 99.08 ± 0.62 98.26 ± 0.56 0.92 ± 0.62

CNN+LR 97.96 ± 0.87 99.1 ± 0.55 96.89 ± 1.15 99.07 ± 0.57 97.98 ± 0.85 0.93 ± 0.57

CNN+RF 98.74 ± 0.24 99.48 ± 0.59 98.04 ± 0.42 99.47 ± 0.59 98.75 ± 0.25 0.53 ± 0.59

CNN+KNN 94.13 ± 1.85 99.9 ± 0.19 89.66 ± 2.94 99.9 ± 0.21 94.48 ± 1.63 0.1 ± 0.21

CNN+DT 96.48 ± 0.29 96.25 ± 0.57 96.71 ± 0.44 96.27 ± 0.54 96.47 ± 0.29 3.73 ± 0.54

Honest + f4 Attack (#4)

CNN 98.69 ± 0.92 97.91 ± 2.06 99.47 ± 0.32 97.99 ± 1.95 98.67 ± 0.95 2.01 ± 1.95

CNN+SVM 99.12 ± 0.29 99.24 ± 0.61 99.01 ± 0.37 99.24 ± 0.6 99.12 ± 0.29 0.76 ± 0.6

CNN+LR 99.31 ± 0.14 99.43 ± 0.41 99.2 ± 0.32 99.43 ± 0.41 99.31 ± 0.14 0.57 ± 0.41

CNN+RF 99.6 ± 0.18 99.71 ± 0.18 99.48 ± 0.27 99.71 ± 0.18 99.6 ± 0.18 0.29 ± 0.18

CNN+KNN 98.57 ± 0.67 97.72 ± 1.06 99.42 ± 0.36 97.77 ± 1.01 98.56 ± 0.69 2.23 ± 1.01

CNN+DT 99.05 ± 0.21 99.14 ± 0.12 98.96 ± 0.32 99.14 ± 0.12 99.05 ± 0.21 0.86 ± 0.12

Honest + f5 Attack (#5)

CNN 82.46 ± 4.1 82.09 ± 13.91 83.46 ± 3.95 83.98 ± 8.75 81.76 ± 6.71 16.02 ± 8.75

CNN+SVM 82.08 ± 0.32 80.94 ± 1.47 82.86 ± 1.09 81.39 ± 0.92 81.87 ± 0.39 18.61 ± 0.92

CNN+LR 83.2 ± 0.71 83.36 ± 0.99 83.14 ± 1.73 83.32 ± 0.51 83.23 ± 0.48 16.68 ± 0.51

CNN+RF 83.32 ± 0.92 86.41 ± 0.99 81.42 ± 1.62 85.52 ± 0.74 83.82 ± 0.72 14.48 ± 0.74

CNN+KNN 76.14 ± 0.35 75.71 ± 2.58 76.39 ± 1.63 76.05 ± 1.23 75.99 ± 0.61 23.95 ± 1.23

CNN+DT 75.9 ± 1.78 75.52 ± 2.52 76.12 ± 1.88 75.74 ± 2.05 75.8 ± 1.86 24.26 ± 2.05

Honest + f6 Attack (#6)

CNN 98.27 ± 0.46 98.15 ± 0.66 98.38 ± 0.65 98.16 ± 0.65 98.26 ± 0.46 1.84 ± 0.65

CNN+SVM 97.24 ± 0.68 97.24 ± 0.95 97.25 ± 0.97 97.25 ± 0.92 97.24 ± 0.68 2.75 ± 0.92

CNN+LR 97.98 ± 0.56 97.96 ± 0.56 98.01 ± 0.98 97.96 ± 0.54 97.98 ± 0.55 2.04 ± 0.54

CNN+RF 98.46 ± 0.49 98.38 ± 0.79 98.53 ± 0.74 98.39 ± 0.77 98.45 ± 0.49 1.61 ± 0.77

CNN+KNN 97.01 ± 0.56 97.01 ± 1.07 97.01 ± 0.75 97.02 ± 1.02 97 ± 0.56 2.98 ± 1.02

CNN+DT 95.75 ± 0.97 95.77 ± 0.55 95.74 ± 1.49 95.77 ± 0.57 95.75 ± 0.94 4.23 ± 0.57
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Table 6. Performance metrics of the proposed CNN-based models for the hybrid dataset.

Dataset Model Accuracy Precision Sensitivity Specificity F1-Score FPR

CNN 92.26 ± 0.94 89.54 ± 1.69 94.69 ± 0.74 90.11 ± 1.44 92.04 ± 1.02 9.89 ± 1.44

CNN+SVM 94.24 ± 0.41 94.23 ± 0.42 94.25 ± 0.59 94.24 ± 0.4 94.24 ± 0.4 5.76 ± 0.4

Hybrid CNN+LR 95.34 ±0.25 95.71 ± 0.34 95.01 ± 0.3 95.68 ± 0.33 95.36 ± 0.25 4.32 ± 0.33

Dataset CNN+RF 94.93 ± 0.38 97.34 ± 0.43 92.87 ± 0.65 97.21 ± 0.44 95.05 ± 0.36 2.79 ± 0.44

CNN+KNN 90.43 ± 0.96 98.24 ± 1.05 84.99 ± 1.37 97.94 ± 1.16 91.13 ± 0.84 2.06 ± 1.16

CNN+DT 91.11 ± 0.42 90.56 ± 0.76 91.59 ± 0.86 90.67 ± 0.64 91.06 ± 0.41 9.33 ± 0.64

Figure 7 presents the ROC graphs presenting TPR against FPR for CNN-based models.
The graphs demonstrate the relationship between the ability of models to detect positives
and their corresponding false alarm rates. The CNN+LR model achieves an average value
of 95.68%, marginally surpassing CNN+RF, which records an average AUC of 95.53%.
These AUC values signify the adeptness of both models in correctly classifying instances
involving malicious and honest consumers. CNN allows for the extraction of discriminative
features from raw data, endowing these models with enhanced generalization capabilities.
Furthermore, the CNN-RF model exhibits notable performance, nearing the top perfor-
mance among the models evaluated. The competitive performance of the CNN+RF model
positions it favorably among the hybrid models evaluated for classification efficiency with
CNN+LR.

Through the application of appropriate classifying techniques, our model is robust
against FDI attacks and non-malicious changes in consumption patterns and therefore
acquires high DR and low false alarm (FA).

4.4. Comparision with Different Models

Some studies have compared their proposed model with those running on different
datasets. It is clear that this is not a healthy comparison. Therefore, we preferred studies
using the ISSDA dataset in our comparisons. Also, in some studies, the success of the model
was evaluated based on a single attack vector. Since this does not provide a generalizable
model, we evaluate our model according to hybrid dataset performance metrics.

We make comparisons based on the most commonly used performance metrics in
the literature, which are shown in Table 7 with their percentages. Our CNN-based hybrid
model achieved the highest performance in accuracy, AUC, F1-score, and DR metrics. Since
our FPR metric is relatively high, our HD value is slightly lower than MP-ANN [27]. When
(-) is used, it means there is no information about that metric in the related article.

Table 7. The performance of our model and others in the literature.

Ref. Dataset Proposed Model Acc AUC F1 DR (TPR) FA (FPR) HD (TPR-FPR)

[34] ISSDA Clustering-based - - - 63.6 24.3 -

[27] ISSDA MP-ANN - - - 93.4 1.9 91.5

[29] ISSDA GRU RNN-based - - - 92.5 5 87.5

[23] ISSDA SVM-based - - - 94 11 83

[25] ISSDA Ensemble ML - 90 - - - -

[37] ISSDA SVM 75.8 80.2 - - - -

[39] ISSDA DNN-based - - - 92.6 2.3 90.3

[40] ISSDA Density-based clustering 93.2 74.3 32.2 - - -

[46] ISSDA Semi-supervised - 84.2 73.3 - - -

[51] ISSDA Feedforward ANN based 93.36 - - 92.56 5.84 86.72

Our work ISSDA CNN-based hybrid 95.34 95.68 95.36 95.01 4.32 90.69



Sensors 2024, 24, 1148 17 of 21

Figure 7. ROC graphs of CNN-based hybrid models on the hybrid dataset.

5. Conclusions

In this paper, robust CNN-based models are investigated to detect energy theft using
real power consumption data of 2104 residential consumers. The models rely on predicting
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both honest and malicious energy usage pattern of users. The CNN is used to identify
patterns of attacks within consumer behavior. In particular, six attack vectors are employed
to generate the malicious readings from honest samples from a real energy consumption
dataset. Then, CNN-based detectors are proposed for detecting energy theft. Furthermore,
the GAN algorithm is adopted to handle the imbalanced data issue. In the CNN-based
model, ML algorithms such as SVM, RF, LR, KNN, and DT are applied to the problem
as a benchmark. The results show that the proposed CNN+LR and CNN+RF models
are considerably promising classification methods in energy theft detection. The hybrid
model can automatically extract features with CNN and combine the advantages of RF
or LR into the model. In addition, the results indicate that the specified attack vector
detectors have better performance compared to the energy-theft-detection models for all
attack vectors. The results show the efficiency of models in accurately identifying various
attack vectors, marking it as a promising solution for addressing energy theft issues in
real-world applications, particularly within the domain of consumer-related threats. As
part of future work, investigating the extension of the proposed CNN-based hybrid models
to high-consumption data from industrial users is worth investigating.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AMI Advanced Metering Infrastructure
AUC Area Under the Curve
CER Commission for Energy Regulation
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
DR Detection Rate
DT Decision Tree
FA False Alarm
FAN Field Area Network
FDI False Data Injection
FP False Positive
FPR False Positive Rate
FN False Negative
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
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HAN Home Area Network
HD Highest Difference
IAN Industrial Area Network
ICT Information Communication Technologies
IDS Intrusion Detection System
IoT Internet of Things
ISSDA Irish Social Science Data Archive
KNN K-Nearest Neighbors
LR Logistic Regression
LSTM Long Short Term Memory
ML Machine Learning
MP Multilayer Perceptron
NAN Neighborhood Area Network
NTL Non-Technical Loss
PSO Particle Swarm Optimization
RF Random Forest
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SGCC State Grid Corporation of China
SMOTE Synthetic Minority Oversampling Technique
SVM Support Vector Machine
TP True Positive
TPR True Positive Rate
TN True Negative
WAN Wide Area Network
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