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Abstract: Studying soil composition is vital for agricultural and edaphology disciplines. Presently,
colorimetry serves as a prevalent method for the on-site visual examination of soil characteristics.
However, this technique necessitates the laboratory-based analysis of extracted soil fragments by
skilled personnel, leading to substantial time and resource consumption. Contrastingly, sensor
techniques effectively gather environmental data, though they mostly lack in situ studies. Despite
this, sensors offer substantial on-site data generation potential in a non-invasive manner and can be
included in wireless sensor networks. Therefore, the aim of the paper is to develop a low-cost red,
green, and blue (RGB)-based sensor system capable of detecting changes in the composition of the
soil. The proposed sensor system was found to be effective when the sample materials, including salt,
sand, and nitro phosphate, were determined under eight different RGB lights. Statistical analyses
showed that each material could be classified with significant differences based on specific light
variations. The results from a discriminant analysis documented the 100% prediction accuracy of
the system. In order to use the minimum number of colors, all the possible color combinations
were evaluated. Consequently, a combination of six colors for salt and nitro phosphate successfully
classified the materials, whereas all the eight colors were found to be effective for classifying sand
samples. The proposed low-cost RGB sensor system provides an economically viable and easily
accessible solution for soil classification.

Keywords: soil fertilizer; dryland agriculture; WSN; agricultural practices; soil properties; salinity;
optical sensor

1. Introduction

Dryland farming is the practice of growing crops solely with natural rainfall. It
involves cultivating crops exclusively through natural precipitation, abstaining from ir-
rigation. It represents a form of sustenance agriculture in regions where inadequate soil
moisture impedes crop growth. Sparse and uncertain rainfall, alongside unreliable irriga-
tion setups, delineate arid regions [1]. Dryland farming restricts crop growth to certain
periods because of insufficient moisture [2]. The main worries concerning arid regions and
soil deterioration revolve around farm output [3] and water accessibility [4–6]. Unstable
crop yields, recurring droughts, unpredictable weather patterns, substantial soil erosion,
deforestation, and diminished genetic diversity stand as the key concerns for dryland
farmers [7]. When soil accumulates higher concentrations of salt that impede plant growth
within the root zone in areas without irrigation, it leads to dryland salinity. The movement
of salt from saline soil often triggers subsequent effects on water resources downstream,
leading to the loss of accompanying infrastructure, environmental assets, and social values.
Salinity can directly harm agricultural systems [8–10].

Bioavailability and bioaccessibility were suggested to distinguish between the quantity
of a chemical compound that effectively crosses an organism’s cell membrane and its
potential to enter the organism. Diverse researchers employ different approaches, such as
the area under the curve (AUC) technique or concentration ratios in particular organ intakes,
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resulting in incomparable bioavailability outcomes [11]. Nevertheless, this technique
faces many challenges, such as a lack of standardized protocols and the need for better a
integration of multi-disciplinary techniques. Other techniques used include reconnaissance
maps to identify sediment samplings, personal observation methods, and taking pictures of
the site conditions [12]. These techniques, although useful for representing and identifying
the soil type, cannot be used to indicate in situ what type of soil an area has. For this, a
subsequent study must be carried out, which requires time and skilled personnel. Due to
its properties, soil can be identified using colorimetry techniques. The color of soils and
sediments has long been regarded as a fundamental factor and a primary visual attribute
for characterizing, describing, and comparing these geological substances. The hues of
sediments and soils primarily fall into two ranges: (a) green-gray to red and (b) olive-gray
to black [13]. Despite that, it is necessary to have the presence of qualified personnel and
laboratory-based analysis, which consumes a considerable amount of time.

Until now, the mapping and surveillance of soil have depended on four primary
methods: expert judgment, biophysical modeling, the traditional field-based method, and
satellite observation [14,15]. In recent years, the use of the Internet of Things (IoT) and
wireless sensor networks (WSN) has become a real option for soil monitoring in the frame-
work of smart agriculture [16]. These expert-based methods involve subjectivity, variability,
and challenges in ensuring accountability [15,17]. The traditional on-site method involves
practices like regional sampling and visual inspections like diagrams and volumetric as-
sessments. The advantage of this method is its ability to offer comprehensive, factual data
regarding soil deterioration on a plot-by-plot basis. Regardless, this method is frequently
criticized for being time-consuming, labor-intensive, expensive, and only applicable to
small areas. Through the integration of Synthetic Aperture Radars (SARs) and optical
sensors [18], it becomes feasible to ascertain the surface characteristics of the soil under
observation. Similarly, passive sensors providing information about ultraviolet, visible, and
infrared wavelengths of the electromagnetic spectrum possess limited spatial resolution,
offering data solely from the soil’s surface [19,20]. Regarding the WSN and IoT monitoring
solutions, their applications are mainly limited to soil moisture [16].

As a matter of fact, sensors like red, green, and blue (RGB)-based sensors have the
capability to discern various environmental parameters. Within agricultural crop fields,
color or RGB images play a crucial role in identifying signs of diseases, shortages in fertilizer,
damaged vegetation, and various weed and plant species. In RGB imagery, an object’s
color results from the interplay between reflected light from the source and its optical traits,
perceived by human vision. In farming, processing RGB-based images has proven effective
for tasks such as weed identification, visualizing fields, the optimized use of fertilizer, the
classification of soil texture, delineating physiological processes around plant surfaces,
measuring plant height, and counting plant stands [21–25]. Nevertheless, while applicable
to soil, these sensors cannot provide insights into the soil’s internal composition. Different
applications of RGB sensors can be explored through the utilization of RGB Light-Emitting
Diodes (LEDs). In employing this sensor, it becomes feasible to detect suspended particles
in water by directing a light beam from a sensor to a Light-Dependent Resistor (LDR),
gauging the water’s transparency [26]. Nevertheless, this approach is limited to aquatic
settings and cannot be utilized elsewhere.

The aim of the paper is to develop a low-cost RGB-based sensor to be integrated
into a WSN capable of detecting changes in the composition of the soil designed for dry
agriculture. To achieve this goal, a combination of three different materials together with
the soil has been carried out. The substances used to produce the mixtures were salt
(sodium chloride: NaCl), sand, and nitro phosphate (NO6P−2) in the form of ammonium
nitrate phosphate (H16N5O7P). By using a guide to redirect the beam of light, it has been
possible to observe whether the light beam, when reflected on the wall of a grounded
tank, is able to receive different values at the LDR photoreceptor. The data obtained by
the LDR receptor will be processed and analyzed. Furthermore, this study will provide
easier and faster methods for the identification of substances in soil. As a classification
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method, discriminant analysis (DA) is used to generate a series of centroids which will
be included in the sensor node coding. Thus, the node will be able to classify new data
without the need for running machine learning classification algorithms. These innovations
will provide not only high-speed and precise identifications of substances in soil, but also
remote and automatic techniques for soil management.

The rest of the paper is structured as follows: Section 2 outlines the related work. The
proposed system is fully described in Section 3. Following this, Section 4 details the test
bench. The results are presented in Section 5. Section 6 discusses the results obtained in
comparison with other authors and possible solutions. Finally, Section 7 summarizes the
conclusion and future work.

2. Related Work

This section provides an overview of antecedent research endeavors pertaining to the
non-destructive classification of soil. Subsequently, based on the identified limitations of
existing scientific studies, a potential motivation for investigating a low-cost RGB sensor
as a potential soil classification system to address and overcome some of these challenges
is proposed.

One of the most common methods of soil classification is image analysis. In this regard,
a study aimed to achieve cost-effective and quick soil-type prediction was undertaken
using a smartphone camera. The authors employed RGB extraction, V extraction from hue,
saturation, and value (HSV) bins, and adaptive histograms to highlight the texture features.
As a result, a novel lightweight convolutional neural network called Light-SoilNet, with
an overall accuracy of 97.2% in classifying five soil types, sand, clay, loam, loamy sand,
and sandy loam, was reported. Nonetheless, the proposed model might require a diverse
and representative dataset for accurate predictions and could face challenges associated
with the real-time implementation of the proposed model in agricultural settings [27].
Similarly, another study explored and compared the roles of visible-spectrum and machine
learning vision for soil classification based on a smartphone-based soil-color classification
sensor. Soil images were converted to RGB signals which were further processed, resulting
in an accuracy of over 90% in the discriminant analysis. Although the proposed model
addressed the portability and ease of access of the proposed system, challenges in varying
light conditions might need to be addressed. Furthermore, the utilization of this model
necessitates the drying of soil samples as a preliminary step, potentially posing challenges
for real-time or rapid applications [28]. Another interesting study employed RGB image
soil-color analysis and a feed-forward backpropagation neural network (ANN) to make
decisions on whether to irrigate the soil [29]. They took images at different distances,
time intervals, and levels of illumination throughout a four-week data acquisition period,
exploring the water requirements for loam soils. The results indicated mean square error
values of 1.616 × 106 for training, 1.004 × 105 for testing, and 1.809 × 105 for validation.
Nevertheless, the study might consider the need for validation across different soil types
and conditions. Environmental factors could also be important to consider for the scaling-
up or real-world deployment of this system. Whereas, a novel analytical method for
predicting and classifying soil texture (i.e., clay and sand) using multivariate image analysis
of 63 soil samples, grinded and sieved to <2 mm particle size, was reported. Authors
achieved a 100% match in the classification and prediction of soil texture when digital
image processing combined with multivariate image analysis was employed [24].

Considering the use of non-invasive sensor technologies for the classification and
prediction of fertilizers or nutrients, various studies have employed statistical and machine
learning approaches. For example, a study employing three types of sensors (JXBS-3001,
FC-28, and DHT11) introduced a framework specifically devised for the prediction of
three essential soil fertility components—organic matter (OM), potassium oxide (K2O),
and phosphorus pentoxide (P2O5) based on 400 soil samples. This framework employed
three distinct machine learning methodologies: multiple linear regression, support vector
machine (SVM), and random forest (RF). The results demonstrated the exceptional per-
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formance of the CatBoost classifier in this context, achieving an accuracy rate of 97.5%, a
precision value of 98%, a recall rate of 96%, and an F1-score of 97.5%. This underscores the
classifier’s efficacy in providing accurate classifications and informs the development of
a robust fertilizer recommendation model for improved soil fertility management strate-
gies [30]. A study focused on the effects of varying urea–nitrogen fertilizer application rates
on volatile organic compound (VOC) emissions investigated the use of an experimental
metal oxide semiconductor (MOS) electronic nose that was based on eight sensors of the
MQ and TGS series [31]. To be precise, the doses of urea fertilizer used on cucumber plants
were 0, 100, 200, 300, and 400 kg/ha. The results showed that quadratic discriminant
analysis (QDA) was the method of choice with an overall accuracy of 98.67%, among linear
discriminant analysis (LDA), SVM, and ANN. Similarly, in another study, a classification
accuracy of 95% and 97.78% was reported in discerning 12 distinct groups of basil plants
through the employment of LDA and QDA methodologies, predicated on the application of
urea fertilizer [32]. This investigation represented a unique nitrogen-related study pertain-
ing to basil, wherein the classification is contingent upon the quantity of nitrogen fertilizer
administered, facilitated by the utilization of an electronic nose. The study incorporated
diverse analytical approaches, namely artificial neural networks, principal component
analysis, linear resolution analysis, and quadratic statistical analysis, to comprehensively
examine the acquired data. Whereas, a Two-Coil Systems (TCSs) sensor based on the elec-
tromagnetic principle was developed by [25], in which the proposed model was reported to
successfully predict fertilizer concentration using an ANN model, achieving 100% correctly
classified cases. Nevertheless, the existing studies on fertilizer classification for fertilizers or
nutrients lack simplicity and fail to offer cost-effective solutions. The data acquisition proce-
dures reliant on the employed sensors are susceptible to diverse environmental influences.
Furthermore, the majority of these studies utilize intricate data analysis methodologies and
machine learning approaches, applicable only within the confines of the proposed models.

Monitoring salinity dynamics is crucial for decision making for ensuring higher gains
on crop production. In this regard, a study employed a digital camera for the estimation of
soil salt content and soil surface roughness, thereby developing a four-color component (red,
green, blue, and gray)-based prediction model [33]. The results showed an overall accuracy
(R2) of 0.90 and 0.71; and a ratio of performance to deviation (RPD) of 3.11 and 1.87 for
soil salt content and soil surface roughness, respectively. Furthermore, Jahangeer et al. [34]
employed HYDRO 21 and TEROS 12 sensors for measuring conductivity to track surface
water salinity and soil salinity in six selected saline wetlands. The results obtained through
the Pearson correlation, utilized to assess the relationship of soil salinity with soil moisture
(water content) and soil temperature, identified the degradation of topsoil by increasing
salinity. Whereas, another study predicted soil electrical conductivity (EC) using various
smartphone-based color coordinates (RGB, HSV, and CIE Lab*) and individual or combined
visible–near infrared (Vis–NIR) and portable X-ray fluorescence (pXRF) spectra [35]. The
results showed that combined Vis–NIR and pXRF spectra exhibited the highest prediction
accuracy (R2 = 0.93) for predicting EC, surpassing individual Vis–NIR or pXRF spectra
and smartphone-based and Vis-based color coordinates. Likewise, surface soil salinity in
coastal areas using digital photographs was reported with an overall accuracy of R2 = 0.75,
RMSE = 3.52, RPD = 2.02 based on the extraction of three-color components from RGB color
space and five color spaces (HIS, CIEXYZ, CIELAB, CIELUV, and CIELCH) through color
space conversion [36]. Specifically, authors conducted a correlation analysis between soil
EC and color parameters to develop a soil EC estimation model using RF and leave-one-out
cross-validation with 70% of the dataset for training and 30% for validation. In addition,
color parameters extracted from digital images were found to be an effective approach
for soil salinity estimation. Nonetheless, these studies on the monitoring of soil salinity
encompass challenges in generalizability across diverse environmental contexts, potential
issues related to the size and representativeness of training datasets, reliance on correlated
parameters without establishing causation, sensitivity to temporal variability, calibration
and maintenance requirements for sensors, concerns about model overfitting, resource in-
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tensity in terms of equipment and expertise, and the potential sensitivity of remote-sensing
techniques to environmental factors. Additionally, complexities in model interpretation,
data privacy, and security considerations in smartphone-based data collection present note-
worthy challenges. A tabular summary of the most recent and relevant studies, providing
an overview of the previous work, is presented in Table 1.

Table 1. Summary of previous studies.

Study Year Main Findings Methodology Limitations/Challenges

[28] 2016
Over 90% accuracy in DA for

soil classification based on
smartphone images.

Conversion of soil images to
RGB signal, DA.

Challenges in varying light
conditions and the drying of soil

samples as a preliminary step.

[24] 2019
100% match in soil texture

prediction using multivariate
image analysis.

Multivariate image analysis of
soil samples.

Limited validation datasets,
applicability to soils with higher

silt contents not tested.

[29] 2021
Successful decision making

about soil irrigation using RGB
image analysis using ANN.

RGB image analysis,
feed-forward backpropagation

neural network.

Need for validation across
different soil types and

conditions, consideration of
environmental factors for
real-world deployment.

[27] 2024
97.2% accuracy in classifying
sand, clay, loam, loamy sand,

and sandy loam using a camera.

RGB extraction, V extraction
from HSV bins,

adaptive histogram,
Light-SoilNet CNN.

Requires a diverse dataset,
challenges in real-time

implementation in agriculture.

[31] 2021
98.67% accuracy in VOC

emissions analysis based on
urea–nitrogen fertilizer rates.

MOS electronic nose,
quadratic DA.

Data acquisition susceptible to
environmental influences.

[32] 2021
95–97.78% accuracy in

classifying basil plants based on
urea fertilizer.

LDA, QDA, various
analytical approaches.

Only detects the nitrogen
volatile compounds in the plant.

[25] 2023
100% accuracy in predicting

fertilizer concentration using an
ANN model.

Two-Coil Systems
sensor, ANN.

Lack of simplicity, susceptibility
to diverse

environmental influences.

[30] 2023

97.5% accuracy in predicting
organic matter, potassium oxide,

and phosphorus pentoxide in
soil using CatBoost.

Multiple linear regression,
SVM, RF, CatBoost classifier.

Constraints associated with data
accessibility, susceptibility to
errors, system intricacy, cost

considerations,
and maintenance.

[33] 2019
R2 of 0.90 for soil salt content

and 0.71 for soil surface
roughness prediction.

Digital camera, four-color
component prediction model.

Limited generalizability to
different environments,

dependency on environmental
conditions, and challenges in

scaling up.

[36] 2021
Overall accuracy of R2 = 0.75

based on digital photographs for
soil salinity

Digital photographs,
correlation analysis, RF.

Generalizability challenges,
concerns about model

interpretation, data privacy,
and security.

[35] 2023
R2 of 0.93 for predicting EC

using Combined Vis–NIR and
pXRF spectra.

Smartphone-based color
coordinates, Vis–NIR, pXRF

spectra, RF.

Challenges in generalizability,
reliance on correlated

parameters, sensitivity to
temporal variability.

[34] 2024 Identified topsoil degradation by
increasing salinity.

HYDRO 21 and TEROS 12
sensors, Pearson correlation.

Point-level salinity measurement
and limited duration.

Where DA: discriminant analysis; RGB: red, green, blue; ANN: Artificial Neural Network; HSV: hue, saturation
and value; CNN: convolutional neural network; VOC: volatile organic compound; MOS: metal oxide semiconduc-
tor; LDA: linear discriminant analysis; QDA: quadratic discriminant analysis; SVM: support vector machine; RF:
random forest; VIS–NIR: visible–near infrared; pXRF: portable X-ray fluorescence.

In light of the previously proposed systems as outlined above, the incorporation of an
RGB sensor holds promise in mitigating concerns associated with environmental variables,
scalability, and practical applicability in real-world scenarios. In contrast to certain specialized



Sensors 2024, 24, 1140 6 of 20

sensors that may encounter difficulties across diverse situations, the inherent versatility of
an RGB sensor positions it as a prospective candidate for soil classification within varied
agricultural settings. The exploration of a low-cost RGB sensor is motivated by the objective
to furnish a more economically viable and easily accessible solution for soil classification,
with potential validation across diverse environmental conditions and soil typologies. The
RGB sensor, functioning by capturing data within visible light wavelengths, offers a blend of
simplicity and affordability. This strategic utilization of an RGB sensor has the potential to
surmount challenges linked to specific frequency ranges, thereby enhancing the practicality of
the system for widespread deployment in real-world agricultural contexts.

3. Sensor Proposal

In this section, we elaborate on the proposed system designed for the analysis of sam-
ple composition. Initially, we provide a comprehensive sensor description, encompassing
the details of all included devices. Subsequently, we identify the specific sensor and nodes
utilized in the system. Finally, we present the architecture of the proposed system in detail.

3.1. Sensor Description

The system consists of a union between an RGB light transmitter and an LDR light
sensor, whose overall prices oscillates between EUR 0.99 and 2. The technical detail of
each sensor is described. The transmitter is a digital sensor, with an operating voltage of
5 V. Its weight is approximately 1 g, with its dimensions being 2 cm long and 1.5 cm wide.
The LDR light sensor is an analog sensor integrated with a 10 kΩ in-line resistor and an
operating voltage between 3.3 and 5 V. Its weight is approximately 1 g, with its dimensions
being 2 cm long and 1.7 cm wide. The disposition is as follows. The RGB transmitter and
LDR sensor will be placed next to each other. Normally, these devices are placed opposite to
each other, in order to measure the amount of light passing through a sample. Nonetheless,
by having a solid, opaque piece in the center, the light beam might not be able to pass
through it. That is in accordance with the law of reflection, which dictates that the angle of
reflection is equal to the angle of incidence.

Therefore, our proposed system places the RGB and LDR modules as shown in
Figure 1a. This arrangement was selected since placing the devices at a 0◦ angle was not
possible due to the sensors’ large sizes and to avoid equipment overheating. By doing so,
the light beam will be emitted from the RGB, hit the cuvette wall, and bounce back to the
LDR receiver. Both the RGB and the LDR receiver are positioned at an approximate angle
of 45◦, to smoothen the path for the light beam to reach its target.
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Figure 1. Schematic representations of the proposed sensor disposition. (a) Schematic representation
of the proposed RGB-based sensor system where light emitted from RGB sensor is illustrated to be
received by Light-Dependent Resistor (LDR). (b) Illustration of the proposed sensor node consisting
of RGB sensor and Light-Dependent Resistor (LDR) photoreceptor.
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3.2. Selected Node

An Arduino Leonardo node is selected for this application. This node is used because
of its slightly high computational capacity compared with Arduino ONE. There is not much
difference between these two Arduinos; nonetheless, we opted for Arduino Leonardo. This
node was selected, in comparison to Arduino ONE, first of all, because of its slightly lower
price, around EUR 21, the increase in pin numbers, its 32 KB flash memory, which has
4 KB used for the bootloader, and its improved communication capabilities. On another
note, Arduino Leonardo has an ATmega32u4 microcontroller (Microchip Technology Inc.,
Chandler, AZ, USA), with an operating voltage between 7 and 12 V, a weight of 20 g, a
7 cm length and a 5.5 cm width.

The system is based on a series of sensors and receptors connected to the node, as
can be seen in Figure 1b. The suggested method for powering the system involves using a
USB–A connection, as previously illustrated in Figure 1b. Additionally, external batteries
and other relevant energy sources can be employed for this purpose. The RGB light emitter
is followed by the LDR light photoreceptor, both connected to the Arduino Leonardo node;
see Figure 1b. Subsequently, the data obtained were stored via the node and were used to
classify the data using edge computing. Finally, the data are forwarded through the network.
The communication technology can be adapted to the requirements of the network in terms
of distance between nodes and the required bandwidth for other additional purposes.

3.3. Architecture

The proposed sensor will be part of a broader proposal for an agriculture monitoring
system based on IoT and WSN. The sensor node, which is endowed with an edge computing
capacity, will forward the data to a smart gateway endowed with a Fog Computing capacity.
While on the edge, the data will be processed to calculate the soil composition locally,
reducing the amount of exchanged information. In the gateway, data fusion and data
comparison will be performed with the rest of the nodes in the network, which corresponds
to a given portion of the territory. Thus, the gateways will smartly reduce the energy use
by fusing data and will provide a fast response detecting abnormal situations based on the
forwarded data from the sensor nodes. Finally, in cloud computing, artificial intelligence
and machine learning will be applied to provide predictive responses. The architecture can
be seen in Figure 2.
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Figure 2. The architecture of the sensing system with RGB-based soil sensors.

4. Test Bench

This section provides a comprehensive account of the tasks carried out to assess the
effectiveness of the proposed sensor model. It begins with a detailed description of the
soil preparation, followed by the disclosure of the prepared sample mixtures and their
respective proportions. Lastly, the process for acquiring and analyzing data is outlined.
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4.1. Soil

The sampled soil was sourced from a field near the Cordoba city of Spain (37◦54′07.8′′ N
4◦48′31.8′′ W). The collected soil exhibited an Alfisol composition as per the classification
of the National Geographic Institute (IGN) of Spain [37]. The soil samples were ground to
the finest consistency achievable employing a mortar and pestle. The unwanted material
including rocks, plant stems, leaf molds, soil lumps, etc. were removed manually from the
soil. The resulting soil was sieved through a 2 mm fine mesh strainer. This filtration process
was carried out to obtain a homogenous particle size of the soil. The samples were then
weighed on a weighing balance and poured into 1 mL plastic cuvettes with dimensions of
12.5 × 12.5 mm.

4.2. Added Substances

Three distinct materials—sand, NaCl, and nitro phosphate—were blended with soil in
a specified ratio as represented in Table 2. A control group was established by treating soil
devoid of additional substances. Meanwhile, varying proportions of sand, NaCl, and nitro
phosphate were amalgamated, yielding four distinct concentrations (Table 2). To ensure
consistency, a constant weight of the soil was maintained for NaCl and NO6P−2 mixtures
owing to their powdered form. In the case of sand samples, characterized by granular-sized
particles, an adjusted weight proportionate to the concentration was employed. Each
sample had three replicates for each concentration. Particle sizes equivalent to those of
sieved soil particles or similar dimensions were utilized for each material. The samples
underwent thorough mixing in a mechanical manner using a mortar and pestle, after
which they were weighed on a laboratory-scale weighing balance. Subsequently, the
meticulously homogenized mixtures were transferred into plastic cuvettes for data reading
and collection.

Table 2. A summary of sample types with the corresponding concentrations of prepared sample mixtures.

Sample ID Test Concentration
(%)/(Numbers)

Added Substance (g)

Soil NaCl Sand Nitro Phosphate
(NO6P−2)

1 Blank 0 3 - - -

2 Salt 0.83 3 0.025 - -
3 1.67 3 0.05 - -
4 3.33 3 0.1 - -
5 5 3 0.15 - -

6 Sand 25 2.25 - 0.75 -
7 50 1.5 - 1.5 -
8 75 0.75 - 2.25 -
9 100 0 - 3 -

10 Nitro phosphate 0.83 3 - - 0.025
11 1.67 3 - - 0.05
12 3.33 3 - - 0.1
13 5 3 - - 0.15

4.3. Data Gathering Process

The prepared samples, previously poured into the glass cuvette, were individually
positioned in close proximity to the sensor (Figure 3). To optimize the reception of reflected
light, the RGB sensor and the receiving unit were strategically arranged at an approximate
angle of 45◦, taking into account that the maximum signal reception was observed by the
employed photo-receptor module. A light-tight system was established to eliminate any
interference from external light sources, accomplished by enclosing the sample within the
sensor-mounted box. The Arduino Leonardo is employed to program the various colors
of the RGB LED. To prevent interference from the LEDs and infrared (IR) illumination
on the samples, data collection is avoided during the primary instances of the execution.
The collected data are stored in a CSV format and subsequently undergo processing. Data
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recording involved three repetitions for each sample, with three replicates employed for
each instance.
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4.4. Data Processing

The data obtained from the sensor was documented in an Excel spreadsheet. Sub-
sequently, data normalization was carried out, referencing the maximum and minimum
achievable light absorption by the employed RGB sensor. Following normalization, average
values were computed for all repetitions. This was succeeded by an analysis of variance
(ANOVA) and a subsequent discriminant analysis (DA). The Statgraphics 19 program was
used for the statistical analysis.

5. Results

Within this section, we elucidate the acquired findings. Initially, we present the
outcomes stemming from a comprehensive analysis utilizing RGB sensor lights on the
sample material. Subsequently, we document the results derived from the classification
and verification processes applied to the samples.

5.1. General Analyses

The collected data were transformed initially. It is crucial to emphasize that from an
analytical standpoint in edaphology, the process of data normalization was undertaken.
Specifically, the initial values obtained from the LDR receptor were mathematically trans-
formed to conform to a scale ranging from one to three, as represented in Table 3. This data
normalization was applied to all the recorded data. As a consequence, it serves to present
the signal or data in a manner analogous to that perceived by a spectrophotometer.

Table 3. Representation of data transformation.

Light
Blank NaCl Sand Nitro Phosphate

(NO6P−2)

Original Modified Original Modified Original Modified Original Modified

Red 497.67 1.59 504 1.69 488.67 1.52 511 1.77
Green 510.33 1.61 504.67 1.64 494.67 1.51 516.33 1.78
Blue 555.33 1.73 556.33 1.72 541 1.40 567.67 1.96

Afterwards, a comprehensive analysis, wherein the calculation of the average values
was executed by considering the individual color readings from the RGB sensor. This
calculation took into account both the nature of the material under investigation and the
percentage concentration of each sample material (Figure 4). The pink color, out of all
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these colors, was not capable of correctly identifying the samples, whereas the rest of the
colors were found to identify the samples based on their corresponding concentrations.
Nevertheless, this could be further evaluated by undertaking an ANOVA.
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Subsequently, an ANOVA was systematically performed across all tested materials,
i.e., salt, sand, and nitro phosphate. The resultant findings were meticulously categorized
based on the discriminative capacity of each individual color to accurately classify sam-
ples according to their respective concentrations. Furthermore, emphasis was placed on
evaluating the significance of the obtained results through the consideration of p-values.

In the specific case of salt samples, an intricate examination revealed magenta to
exhibit the most prominent and statistically significant values in sorting samples by con-
centration followed by red, blue, yellow, and white colors (Table 4). Nonetheless, the
results derived from the classification based on green, cyan, and pink light were deemed
statistically insignificant.

Table 4. Summary of analysis of variance (ANOVA) for salt samples.

Light
Percentage of Concentration

p-Value
0 0.83 1.67 3.33 5

Red 1.59 a 1.66 ab 1.69 b 1.67 b 1.71 b 0.013
Green 1.64 a 1.66 a 1.63 a 1.67 a 1.74 b 0.011
Blue 1.66 a 1.70 a 1.72 a 1.75 ab 1.87 b 0.014

White 1.65 a 1.69 ab 1.71 ab 1.72 ab 1.82 b 0.147
Yellow 1.61 a 1.66 ab 1.64 ab 1.68 b 1.71 b 0.052

Magenta 1.62 a 1.66 ab 1.66 ab 1.69 bc 1.75 c 0.008
Cyan 1.62 a 1.65 a 1.62 a 1.66 a 1.72 b 0.005
Pink 1.72 a 1.71 a 1.73 ab 1.72 a 1.84 b 0.147

Where different letters indicate significantly different values.
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Considering the sand samples, the ANOVA results identified the green and yellow
colors as yielding statistically significant sets based on sample concentrations (Table 5).
Additionally, cyan and pink emerged as the third and fourth most outstanding colors,
respectively, in accurately classifying samples according to their concentration levels.
Whereas, red, blue, white, and magenta did not yield any significant values.

Table 5. Summary of analysis of variance (ANOVA) for sand samples.

Light
Percentage of Concentration

p-Value
0 25 50 75 100

Red 1.59 a 1.47 bc 1.49 b 1.54 ab 1.38 c 0.001
Green 1.64 a 1.47 b 1.46 b 1.51 b 1.37 c 0.0001
Blue 1.66 a 1.28 bc 1.27 bc 1.39 b 1.17 c 0.0003

White 1.65 a 1.27 bc 1.34 bc 1.40 b 1.16 c 0.0003
Yellow 1.61 a 1.48 b 1.51 b 1.52 b 1.34 c 0.0001

Magenta 1.62 a 1.49 b 1.50 b 1.53 ab 1.38 c 0.0002
Cyan 1.62 a 1.48 b 1.46 b 1.50 b 1.36 c 0.0001
Pink 1.72 a 1.42 b 1.43 b 1.43 b 1.30 b 0.0003

Where different letters indicate significantly different values.

When nitro phosphate samples were evaluated, it was discerned that magenta stood
out as the sole color demonstrating promising results in correctly grouping samples based
on their respective concentrations (Table 6). Despite this, the inclusion of yellow and green
colors in the analysis was deemed pertinent, not only owing to their classification efficacy in
salt and sand samples but also to further assess their broader applicability in the analytical
framework. Whereas, the rest of the colors did not significantly classify the samples.

Table 6. Summary of analysis of variance (ANOVA) for nitro phosphate samples.

Light
Percentage of Concentration

p-Value
0 0.83 1.67 3.33 5

Red 1.59 a 1.77 c 1.71 b 1.76 c 1.80 c 0.0001
Green 1.64 a 1.78 c 1.72 b 1.77 c 1.80 c 0.0001
Blue 1.66 a 1.90 c 1.89 b 1.92 c 1.90 c 0.0001

White 1.65 a 1.88 c 1.76 b 1.88 c 1.91 c 0.0001
Yellow 1.61 a 1.75 bc 1.72 b 1.77 bc 1.79 c 0.0001

Magenta 1.62 a 1.76 b 1.74 b 1.78 b 1.78 b 0.0001
Cyan 1.62 a 1.74 bc 1.70 b 1.78 c 1.75 bc 0.0001
Pink 1.72 a 1.8 9c 1.79 ab 1.88 c 1.85 bc 0.0001

Where different letters indicate significantly different values.

5.2. Classification of Subtances

In order to test whether the observed values obtained above are significant, bar charts
were generated together with the materials. This was intended to determine the minimum
number of colors needed to evaluate the soil composition, thus saving energy in the
developed system.

In the case of NaCl, as can be seen in Figure 5a, using the first two or three colors, as
explained in the ANOVA classification, we obtained a hit rate of 66.67%. Additionally, if
we were to select the first four and five colors, we can see that it would rise to a 91.67%
classification accuracy percentage. And finally, by adding the rest of the colors, we obtained
a hit rate of 100%. In this case, we should use the colors magenta, red, blue, and yellow,
since they reach the same hit value as if we were to add white.
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Figure 5. Summary of classification accuracy percentage (%) for NaCl (a), sand (b), and (c) nitro
phosphate (NO6P−2) based on RGB-sensor characteristics. The dotted line marks the separation
between the selected and discarded colors, where: R: red; G: green; B: blue; W: white; Y: yellow; M:
magenta; C: cyan; P: pink.

In the case of sand, if we look at Figure 5b, if we use the first two or three colors, as
explained in the ANOVA classification, we obtain a classification accuracy percentage of
46.67% and 66.67%, respectively. On the other hand, if we add one more color, in this case,
pink, we ascend to 80% of correctly classified cases. Nonetheless, if we were to add the
red color, the value would increase to 86.67%. It is true that, if the colors magenta and
blue were added, we would obtain a success rate of 93.33% of classified cases, although
the energy required to operate the system would be very high. And finally, if all the colors
were added, we would obtain a classified case accuracy of 100%. In this case, we would
select the simplest color option: green, yellow, cyan and pink.

In the nitro phosphate case, if we look at Figure 5c, in putting together the selected
colors magenta and yellow, we would obtain a classification accuracy percentage of 75%.
Additionally, if we were to add the colors green, red and blue, we would obtain a success
rate of 83.33% of classified cases. Finally, if we were to add the rest of the colors, the
accuracy would increase to 100%. In this case, since adding only magenta, yellow, and
green yields the same result as adding more colors, it was decided to keep this option.

The classification results with DA can be seen in Figure 5. Confusion matrixes are
used to compare the results of the previous analysis. It contains the confusion matrixes
using the thresholds obtained with the ANOVA for salt, Figure 6A,B, sand, Figure 6C,D,
and nitro phosphate, Figure 6E,F.
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Figure 6. Summary of confusion matrices, highlighting accurately predicted cases with least errors
using the minimum color combinations compared to the ideal accuracy of 100%. For salt, the least-
error cases were based on magenta, red, blue, and yellow (A), and those of 100% accuracy were
for magenta, red, blue, yellow, white, and cyan (B). For sand, the least-error cases were based on
green, yellow, cyan, and pink (C), and those of 100% accuracy were for green, yellow, cyan, pink,
red, magenta, blue, and white (D). For nitro phosphate, the least-error cases were based on magenta,
yellow, and green (E), and those of 100% accuracy were for magenta, yellow, green, red, blue, and
white (F).

To identify the presence of salt, the colors chosen on the DA to obtain this confusion
matrix were magenta, red, blue, and yellow. In this case, it is possible to detect the presence
of this material at concentrations of 0, 1.667, and 5 with 100% accuracy. On another note,
at a concentration of 0.83, the system generates a lesser confusion with a concentration of
1.667, as can be seen in Figure 6A,B, which represents the confusion matrix when the fewest
number of colors are added. In this case, we added the same number of colors as above,
along with two significant colors, although, to reach 100%, one last non-significant color
was added, cyan. This color does not meet the classification rules described in Section 5.1,
but it has been observed that by adding it, 100% of the correctly classified cases are reached.

Whereas, Figure 6C corresponds to the confusion matrix of sand. In this case, the
colors used were green, yellow, cyan, and pink. It is possible to identify cases with a
0%, 50%, and 100% presence of sand. Nevertheless, it presents difficulties in determining
whether the sample has a 0% or a 25% concentration. Furthermore, the system presents
a lesser error in identifying whether the sample has a 50% or 75% concentration of sand.
On the other hand, Figure 6D represents the confusion matrix for all colors in order to
obtain a 100% success rate for classified cases. In this scenario, it was necessary to add four
non-significant variables to the matrix.

To conclude, the nitro phosphate confusion matrix is represented in Figure 6E. The
colors used in this DA were magenta, yellow, and green. With the combination of these
colors, it was possible to identify all cases with a concentration of 0 and 1.667 of nitro
phosphate. Therefore, the system tends to have lesser confusion with concentrations
between 0.833 and 5. Furthermore, Figure 6F represents the confusion matrix when the
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fewest number of colors are added. In this case, the combination of magenta, yellow, and
green was necessary. Nonetheless, to achieve a 100% success rate for classified cases, three
non-significant colors were implemented: red, blue and white.

6. Discussion

In this section, we detail the main implications of the proposed system and the obtained
results. First of all, a comparison with existing similar systems is presented. Then, the main
impact and possible applications of the proposed system are depicted. Finally, the detected
limitations of the presented data are evaluated and justified.

6.1. General Findings

A discussion of the obtained results with existing solutions is shown in this subsection.
Accuracy is the main metric used to compare the performances of the monitoring systems.
The subsection is divided into three subsections. In the first two, the results for soil texture
and the presence of different substances in the soil (salt and fertilizer) are contextualized
within the current monitoring framework. Then, in the third subsection, a summary of the
advantages of the proposed solution is highlighted.

6.1.1. Soil Texture Recognition

Concerning the use of sensors for identifying soil texture, the following examples
offered results that can be compared with the proposed system. Among the different
approaches followed, the one with a higher accuracy is the use of images based on the use
of artificial vision [24,27]. Even though these methods attain high accuracy percentages,
from 97.2% to 100%, their high computation requirements of data that must be computed
in the edge make them less efficient than the proposed system. The alternative of sending
the image to the cloud to compute it beyond the network will require a network with an
adequate bandwidth and the use of energy to send images through the network. Moreover,
the use of cameras to gather images in underground sensor networks will require different
lighting elements. Considering that when the proposed system uses all the lights, achieved
accuracy reaches 100%, the use of the proposed method, with less computational and
network requirements, presents an advantage.

Other authors presented proposals similar to the approach used in this paper based on
light spectra analyses. In [38], the authors used visible (Vis) and near-infrared (NIR) data,
while in [39], they also used pXRF information. In both cases, accuracies were below 100%,
ranging from 70% to 90% with Vis and NIR data and 97% when X pXRF-ray information was
added. Additional examples can be found identifying the % of sand and clay contents using
VIS and NIR data in [40,41], or including pXRF data [42], but no information on accuracies
is presented. The used metrics include R2, all of them below 0.88 [40], 0.90 [42], and 0.95 [41].
Thus, we can affirm that the proposed method poses advantages beyond the state of the art
in soil texture identification; see Table 7 for a summary of the aforementioned information.

Table 7. Summary of solutions for soil texture recognition.

Year Data Type Processing
Technique

No. of
Classes

No. of
Samples Replicas Type of

Sample Acc. Ref.

2024 Image CNN 5 392 - Natural 97.2% [27]
2019 Image MIA 6 63 - Natural 100% [24]
2022 pXRF, VIS, and NIR data RF 4 464 - Natural 97% [39]
2023 VIS and NIR data PLSR - 94 - Natural 70–90% [38]
2021 VIS and NIR data PLSR - 19 - Natural - [40]
2023 pXRF, VIS, and NIR data RFE + RF - 1545 3 Natural - [42]
2021 VIS and NIR PLSR - 100 - Natural - [41]
2024 VIS data of LDR DA 5 15 3 Artificial 100% Proposal
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Considering the different studied samples, in all cases, the authors used natural
samples [24,27,28,39,40,42]. In this paper, artificial samples were generated to ensure a
wide variety of cases to evaluate the sensor’s performance in different scenarios, having
a variation from 0 to 100% clay and sand. Moreover, since the same soil was used, we
reduced the noise and side effects due to organic matter and other possible interferents.
This also allowed us to generate replicas, which provide more solid results. The number
of classes ranges from four [37], five [27], and six [24]. In our case, five classes were used.
In most cases, the used classes correspond to the texture of the soil. In our case, the class
corresponded to the percentage of sand and clay in the sample. In [38,40–42], the authors
also used the percentage of soil components as a predictor.

Among different data-processing techniques in the included studies, there is a wide
variety of methods, such as convolutional neural network (CNN) [27], RF [39], partial least
squares regression (PLSR) [38,40,41], and multivariate image analysis (MIA) [24]. In some
cases, even two different methods are combined, such as recursive feature elimination
(RFE) with RF [42]. None of the included ones used DA. In [28], DA was used to predict
the soil type but not the soil texture.

6.1.2. Salinity and Fertilizer Quantification

As in the previous case, there are different methodologies for evaluating salt content
in soil. First of all, we compare our results with those proposals based on image analysis.
In [9,43], different methods based on image analysis were proposed and evaluated. The
proposals based on image analyses are characterized by good performance by an R2 of
0.9 [9] and 0.73 [42]. As in the previous case, spectroscopic methods are also used to
determine soil salt content. In [44,45], the conjunction of NIR and Vis spectra were used
as inputs for evaluating the electroconductivity (EC) of soil and soil saline content (SCC),
and the obtained R2 reached 0.99 [44] and 0.87 [44,45] for the best combination. In some
cases, image processing is also combined with spectroscopic information [35]. In this case,
accuracies given as R2 are 0.7 for data from the smartphone and 0.93 for pXFR and Vis–NIR
data; see Table 8. All these cases offered a performance of their results in terms of R2,, which
makes the comparison impossible. Nevertheless, in our case, using six lights achieved an
accuracy that reached 100%, making this a promising solution.

Concerning the detection of the soil nutrients of fertilizers, existing solutions are based
on remote sensing and evaluating the plant’s status. Few options focus on determining
the content of the fertilizer or a given nutrient based on soil monitoring. Among those
papers, one is based on multiple soil sensors [30] and two are based on spectroscopic data,
including NIR–Vis [46] or a low-cost color sensor [47]. Achieved accuracies ranged from
80 [46] to 100 [47] using spectroscopic data and 97% using soil sensors [30]; see Table 8. The
proposed system is similar to the one in [47], but this solution improves the accuracy levels,
with results similar to complex methods based on NIR–Vis data.

Considering the different studied samples, in all cases, the authors used natural
samples [30,35,43–46]. Only in [47] were the analyzed samples artificially generated, as in
our case. In most of the papers, the authors do not generate replicas. The only case in which
replicas were generated is in [45], where five replicas were used. The number of classes for
the classification algorithms ranged from three [47] to five [35,46]. There is a wide variety
of classification and regression methods such as CNN [35], ANN [46], RF [35,43,44,46],
support vector machine (SVM) [35,46], Gated Recurrent Units (GRU) [35], and Native
Bayesian (NB). None of the included ones used DA. Among the most used regression
tools, PLSR [9,43,44] is the most used, while others such as random forest regression (RFR),
support vector regression (SVR), Gradient-Boosted Regression Tree (GBRT), Multilayer
Perceptron Regression (MLPR), and Least Angle Regression (Lars) are used only in [45].
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Table 8. Summary of solutions for SSC and fertilizer presence in soil.

Year Data Type Processing
Technique Parameter

Levels
Min/
Max

No. of
Classes

No. of
Samples Replicas Type of

Sample Acc. Ref.

2019 Images PLSR SSC (%) 0–0.5 - 49 - Natural - [9]
2020 Images PLSR or RF SSC (%) 0.08–5.4 - 93 - Natural - [43]

2023
Image

pXRF, VIS,
and NIR

CNN + RF+
SVM + GRU SSC (%) 5 240 - Natural - [35]

2022 NIR–Vis PLSR, RF EC (mS/cm) 0–10 - 231 - Natural - [44]
2019 NIR–Vis Multiple SSC (%) 0.29–29.1 - 60 5 Natural - [45]
2024 VIS data of

LDR DA SSC (%) 0.83–5 5 15 3 Artificial 100% Proposal
2023 Soil sensors CatBoost Nutrients - - - - Dataset 97% [30]
2018 Color

sensors NB Fertility - 3 10 - Artificial 80% [47]

2021 UV–Vis RF, SVM,
ANN, NB Nutrients (%) 0–4 5 58 - Natural 100% [46]

2024 VIS data of
LDR DA Nitro

phosphate (%) 0.83–5 5 15 3 Artificial 100% Proposal

6.1.3. Main Advantages of the Proposed Sensor

Among surveyed examples of sensing elements for soil sensor characteristics, the
proposed ones offered a series of advantages. These advantages can be summarized as
efficiency, real-time and in situ sensing, and the option of measuring different parameters
with a single device.

The most important one is the balance between accuracy and computational require-
ments. The achieved accuracies reached 100% for analyzed parameters by measuring
light abortion for six different colors. Even though DA is used in this stage for the sensor
operation, no machine learning capabilities are necessary. With the current results of the
DA analyses, it is possible to include the DA functions in the node to calculate the DA
coordinates for a given sample. Then, it is possible to compare it with the centroids of the
pre-established groups and evaluate which is the closest centroid to assign the group to the
new sample, as shown in Figure 7. Thus, the computational requirements are limited to
applying two mathematical functions with six float variables to calculate the coordinates of
the sample given the DA functions and calculate the distance between the new sample and
the five given centroids.

Next, the proposed sensor is able to measure in real-time with an average measuring
time of 6 s per sample. With the capability of being powered with an Arduino and using
the microprocessor to process data, it is possible to use this sensor as an autonomous device
in a wireless sensor network. Thus, the sensor can be placed underground, measuring the
soil characteristics automatically and at different depths. The simplified node operation for
data gathering and data analyses for soil characterization is shown in Figure 7. The lights
are codified in the Arduino node from zero to seven following the following order: red,
green, blue, white, yellow, magenta, cyan, and pink.

Finally, the possibility of measuring different important parameters linked to soil
fertility in a single device using only one sensor is a great advantage compared to existing
sensors. The most similar case in which a sensor network is used for soil monitoring
is [30,47]. Nevertheless, in [30], multiple sensors are used to measure the soil nutrients.
In [46,47], only one sensor, similar to the one used in this paper, is used to estimate the
quantity of different nutrients. Thus, our sensor is similar to some of the existing solutions
but offers an improved accuracy.

Even though it tries to reduce the data used for classification, which impacts the energy
consumption, for the correct monitoring of sand, all the lights must be used. In previous
papers, such as in [48], it has been possible to reduce the data dimension and save energy
using a limited number of input parameters while the accuracy is maintained at 100%. In
this case, this was only possible for NaCl and the fertilizer. Using the ANOVA results to
identify the most suitable colors offered an accuracy of 85% in the case of NaCl and the
fertilizer and 80% for sand.
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6.2. Limitations of Presented Results and Possible Future Solutions

The main limitation of the present study is linked to the reduced number of samples
for each parameter compared with the state of the art. Nevertheless, a total of 39 samples
were created and measured, with the samples corresponding to 13 different combinations
of the three studied parameters (sand, NaCl, and fertilizer) with a given bare soil. An
additional limitation is the fact that machine learning classification is used instead of linear
regression, as is done by multiple authors. In this first stage of the sensor development, the
classification in groups with different percentages of evaluated parameters was preferred,
and the regression models with more samples will be calculated in future work.

Regarding the efficacy of different light sources in analyte detection, it is imperative to
recognize the complexity of analytical processes, which hinge on multiple factors and elude
a one-size-fits-all solution. The performance of light sources is intricately linked to the
color and size of particles within a sample, necessitating a nuanced understanding of their
interplay. This paper’s central focus lies in determining the most effective combination
of lights for enhanced analyte detection, acknowledging that a singular light source may
not suffice for comprehensive analysis. Beyond the pursuit of optimal detection, our
broader objective encompasses the reduction of energy consumption in sensor technologies.
By streamlining and minimizing the number of lights employed, our research aims to
contribute not only to the advancement of analytical methods but also to the sustainable
evolution of sensor technologies.

Finally, the use of artificial samples compared to natural samples is an additional
issue of the conducted tests. While most of the related work used natural samples, we
have generated artificial samples in this paper. This procedure is only followed by the
authors of [47]. Although it might seem a limitation, having artificial samples provides
solid data, with the predefined concentration of the analyte (salt, fertilizer of texture) and
low noise by unknown substances. Thus, we can ensure that the response of the sensors
is directly related to the different concentrations of the added substances. Moreover, we
ensured that samples were homogenized. In proposals with natural samples, aspects
such as the presence of organic matter, soil moisture, or non-homogenized texture might
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provide inaccurate results. Therefore, we have chose to use artificial samples for the initial
calibration and proof-of-concept for this low-cost technology, as done in [47], with the
evaluation of the suitability of color sensors for determining soil fertility. In future work,
after generating a complex database, it is recommended that researchers test the proposed
system with natural samples.

7. Conclusions

This study was conducted to develop a low-cost sensor system capable of detecting
changes in the composition of the soil. Currently, the approaches implied for the study of
soil composition and profiling have several limitations, such as standardized protocols for
taking measurements, an integration of multidisciplinary techniques, an absence of in situ
soil studies, and/or a lack of refined techniques. Therefore, studies implying rapid and
non-invasive methodologies are needed. In this regard, the use of an optical sensor could
be an important technique. Therefore, this study was undertaken to devise a non-invasive
method for identifying and characterizing the soil with an RGB-based sensor system.

The investigation involved the assessment of three distinct materials—sand, salt, and
nitro phosphate—incorporated into soil at specified proportions utilizing the RGB sensor
system proposed in the study. The statistical analysis substantiated the sensor’s effective-
ness in segregating each material type into distinct groups with statistically significant
outcomes. Notably, the proposed system, employing combinations of more than two colors,
entails higher energy consumption but achieves superior accuracy in data interpretation.

Thus, the proposed low-cost RGB sensor system provides an economically viable and
easily accessible solution for soil classification, with potential validation across diverse
environmental conditions. The RGB sensor, functioning by capturing data within visible
light wavelengths, offers a blend of simplicity and affordability. This strategic utilization of
an RGB sensor has the potential to surmount challenges linked to specific frequency ranges,
thereby enhancing the practicality of the system for widespread deployment in real-world
agricultural contexts.

Future work might involve the evaluation of not only the solid materials, but also the
liquid substances, and the inclusion of gas sensors [48], to characterize the soil. Considering
the need for more rapid and economical approaches for the determination of humidity,
fertilizer, chemical components, and the presence of organic matter, an optimized setting
for RGB sensors could be investigated. Likewise, given the specific characteristics of each
material, adjustments of the angle of reflection and refraction might need to be determined.
Similarly, studies involving the validation across diverse environmental conditions and
soil typologies could be undertaken. Despite the use of these sensors and the selected
arrangement, we have verified that we are able to classify the different types of components
in soil, and it would be interesting to study how different types of arrangements might
affect the classification of this type of sensor.
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