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Abstract: Differences in gait patterns of children with Duchenne muscular dystrophy (DMD) and
typically developing (TD) peers are visible to the eye, but quantifications of those differences outside
of the gait laboratory have been elusive. In this work, we measured vertical, mediolateral, and
anteroposterior acceleration using a waist-worn iPhone accelerometer during ambulation across a
typical range of velocities. Fifteen TD and fifteen DMD children from 3 to 16 years of age underwent
eight walking/running activities, including five 25 m walk/run speed-calibration tests at a slow
walk to running speeds (SC-L1 to SC-L5), a 6-min walk test (6MWT), a 100 m fast walk/jog/run
(100MRW), and a free walk (FW). For clinical anchoring purposes, participants completed a Northstar
Ambulatory Assessment (NSAA). We extracted temporospatial gait clinical features (CFs) and applied
multiple machine learning (ML) approaches to differentiate between DMD and TD children using
extracted temporospatial gait CFs and raw data. Extracted temporospatial gait CFs showed reduced
step length and a greater mediolateral component of total power (TP) consistent with shorter strides
and Trendelenberg-like gait commonly observed in DMD. ML approaches using temporospatial gait
CFs and raw data varied in effectiveness at differentiating between DMD and TD controls at different
speeds, with an accuracy of up to 100%. We demonstrate that by using ML with accelerometer data
from a consumer-grade smartphone, we can capture DMD-associated gait characteristics in toddlers
to teens.

Keywords: gait; gait cycle; temporospatial gait clinical features; duchenne muscular dystrophy;
typically developing; sensors; accelerometer; principal components analysis; linear discriminant
analysis; classical machine learning; deep learning

1. Introduction

Duchenne muscular dystrophy (DMD) is a rare X-linked neuromuscular and neurode-
velopmental disorder affecting approximately 1/3500 to 1/5000 males worldwide [1–3].
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DMD is the result of mutations in the DMD gene and subsequent changes in the dystrophin
protein in skeletal and smooth muscle, the brain, and other organs, leading to progressive
loss of muscle strength and mobility and a nonprogressive but variable behavioral pheno-
type that can include intellectual disability and autism-like features [4–6]. DMD is present
from birth but early detection through pilot newborn screening programs is becoming
increasingly common [7]. At the same time, multiple new therapies for DMD have achieved
market approval with more in the development process, providing clinicians with potential
options for early intervention [8]. The availability of early diagnosis, potential therapies,
and increasing emphasis on the use of community-based measures of mobility as clinical
trial outcome measures and clinical monitoring tools has led to new efforts to develop
unobtrusive and quantitative wearable tools for the evaluation of patients with DMD across
their lifespans [9–11].

Patterns of gait disturbance in children with Duchenne muscular dystrophy (DMD)
demonstrate biomechanical compensatory substitution to overcome strength loss and
progressive joint contractures. Disease progression yields temporal and spatial changes
in gait analysis metrics as described by Sutherland [12], D’Angelo [13], Heberer [14],
and Gaudreault [15]. Perturbations and compensatory adaptations in gait are present
from the onset of walking, are progressive, and follow a predictable pattern of increasing
anterior pelvic tilt, increasing foot internal rotation and decreasing hip extension in the
stance phase, lateral trunk lean toward the supporting limb, and increased hip flexion and
hip abduction and decreased ankle dorsiflexion in the swing phase [12,14–16]. The center
of pressure at foot contact shifts laterally and anteriorly until an equinus posture at foot
strike predominates [12]. These progressive adaptations lead to decreased step length
and cadence during ambulation, decreased relative power of anteroposterior movement,
and increased relative power of mediolateral movement with concomitant impairment of
gait velocity.

Recent advancements in novel muscle-sparing therapeutics highlight the desirability
of initiating early disease-modifying treatment in the toddler years, but relatively few
reliable tools exist for quantitative measurement of strength, function, and mobility in
this age group, underscoring an urgent need to develop new tools that include that age
group and extend upward to the limits of ambulation [16]. Wearable accelerometers can
accurately measure variations in step rates in children with DMD in both the laboratory
and community settings, produce natural history data that is suitable for analysis in clinical
trials [17], and hold promise to provide a complete picture of the effect of strength limitation
on community mobility and daily activities. To maximize their effectiveness, wearable
devices will need to detect and record well-understood quantitative temporal and spatial
features of gait patterns while being unobtrusive and affordable.

The increasing availability of high-quality, low-cost triaxial accelerometers and inertial
measurement units as stand-alone devices or integrated into commonly available smart-
phones yields new opportunities to gather community-level data across a wide range of
typically developing (TD) individuals and those affected by movement-related disorders.
Because of this, researchers are developing a better understanding of how to extract and
interpret temporal and spatial features of single-accelerometer data that include not only
step counts and frequencies but also a wide variety of other features [18,19], including
step lengths, step velocities [15,20], and triaxial power spectra [21,22], in order to use those
features in principal components analysis (PCA) to evaluate between-group differences
and changes over time [23]. The utility of these measures in describing disease severity
and tracking disease progression has been demonstrated in the golden retriever muscular
dystrophy (GRMD) form of DMD [24], as well as in children with DMD [25].

Because of the increasing availability of such sensing data, there is a strong demand
for automated systems that can thoroughly analyze and utilize such data. In this project,
we take the first step towards this goal. We evaluate the utility of various classical machine
learning (CML)- [26,27] and deep learning (DL)-based approaches [28–30] to differentiate
between children with and without DMD using data from consumer-level mobile phone
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accelerometers [31–37] during walking and running activities. We developed a system
(Walk4Me [38]) consisting of a smartphone-based application to collect raw data [39–41]
remotely using the phone’s built-in accelerometer sensor, combined with a web-based tool
to aggregate, store, and analyze data. We extracted the temporal/spatial gait characteristics
and used CML and DL techniques [42] to evaluate the gait changes associated with DMD,
using both extracted features and raw data.

Our objective is to demonstrate that using ML with extracted temporospatial gait
CFs [43] and accelerometer data from a consumer-grade smartphone enables the effective
capture of DMD-associated gait characteristics in individuals ranging from toddlers to
teenagers. We note that our project is only a first step towards an automated disease-
monitoring system that can be used for disease prescreening, diagnosis assistance, progres-
sion monitoring, and possibly in a subject’s natural environment (which we call community-
based) instead of motion labs. It should be noted that DMD needs to be diagnosed in spe-
cialty clinics, which are sparsely located across the country, and a potential patient could be
hundreds of miles away from the closest clinic. The tool described in this work can be used
to facilitate prescreening for such patients. Additionally, this tool, further developed, could
be used to continue monitoring the progression of the disease and quantify the effectiveness
of medical and physiotherapeutic treatments. Furthermore, while our current system and
work focus on DMD, it has the potential to be expanded to other mobility-related diseases,
such as post-stroke recovery and healthy aging.

2. Materials and Methods
2.1. Participants

The University of California, Davis institutional review board (IRB) reviewed and
approved the protocol. Informed consent was obtained from parents or legal guardians for
each participant prior to initiation of study procedures. We studied 30 male participants
(15 with DMD, 15 TD) who were between the ages of 3 and 16 years, had at least 6 months
of walking experience, and could perform a 10 m walk/jog/run test in less than 10 s.
All participants were required to ambulate freely without assistance and without use of
knee–ankle–foot orthotics (KAFOs), ankle–foot orthotics (AFOs), or other assistive devices.
Participants with DMD had a confirmed clinical diagnosis and were glucocorticoid-therapy-
naïve or on a stable regimen for at least 3 months. Northstar Ambulatory Assessment
(NSAA) scores for DMD participants ranged from 34 to 8, indicating typical levels of
function to clinically apparent moderate mobility limitation (Table 1).

Table 1. Characteristic of the children included in the study.

Case Value Age Weight Height NSAA
(Status) (Years) (kg) (cm) (/34)

Mean 9.5 37.7 127.1 20.5

DMD (SD) (3.9) (16.0) (16.2) (8.2)

(N = 15) Min 3 17.2 101.6 8.0

Max 16 67.7 153.3 34.0

Mean 7.7 34.2 130.8 33.8

TD (SD) (3.0) (21.6) (15.8) (0.8)

(N = 15) Min 4 18.6 108.5 31.0

Max 15 101.0 165.5 34.0

p-value 0.1664 0.6229 0.5331 <0.0001

Scores for TD participants ranged from 34 to 31, indicating a maximal range of task
performance, with a low score of 31 in a six-year-old participant indicating age-appropriate
achievement of developmental milestones [44].
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2.2. Materials

Participants wore an NGN Sport fitness phone belt (Engine Design Group, LLC, Los
Angeles, CA, USA) carrying an Apple iPhone 11 (Apple, Inc., Cupertino, CA, USA), which
includes a single, built-in triaxial accelerometer. The belt was placed close to the body’s
center of mass at the lumbosacral junction at the approximate level of the iliac crest, with the
phone oriented so that the right lower side was consistently oriented in the upper right
position to measure acceleration in the vertical, mediolateral, and anteroposterior axes
(Figure 1A,B). We developed an iPhone app (Walk4Me [38]) to continuously stream raw
sensor data to a cloud server at a sampling rate of 100 Hz. At the conclusion of each
assessment session, data were processed via Walk4Me’s web application to extract clinical
gait features and train the CML and DL models.

Figure 1. The position and orientation of the accelerometer. (A) The smartphone with its built-in ac-
celerometer is positioned near the body’s center of mass, fastened by a belt around the waist. (B) The
accelerometer records acceleration in three axes. The x-axis is vertical, the y-axis is mediolateral,
and the z-axis is anteroposterior.

2.3. Gait and Functional Testing

The children in the study performed eight walking and running activities along a
25 m straightline course according to established protocols [45]. The first five activities
were speed-calibration tests (SC) where the child walked along a 25 m long corridor at
incrementally increasing gait velocities every 25 m from slowest speed, speed-calibration-L1
(SC-L1), to a slow walk (SC-L2), a comfortable self-selected walk pace (SC-L3), a fast walk
(SC-L4), and a run or fastest possible gait (SC-L5) [15]. The evaluator recorded the observed
number of steps taken during each effort. Participants then performed a 6-min walk test
(6MWT), followed by a 100 m fast walk/jog/run (100MRW) using previously described
methods [45,46]. The evaluator recorded the 6MWT distance and the number of steps in
the first 50 m, and the time to complete the 100MRW.

Participants also completed the NSAA according to established protocols [47]. The
NSAA consists of a set of 17 graded tasks representing common mobility and positional
transfer activities. Tasks are graded individually with a total score of 34 points indicating
full functional mobility. All evaluations were recorded on video for later verification of step
counts, distances, task times, and task quality.

2.4. Data Analysis

Data analysis was performed using both CML and DL approaches (Figure 2). In our
first approach, we processed raw data from each activity to extract temporospatial gait CFs
including speed, step length, step frequency, total power, percent of power in each axis,
and force index in a manner similar to those described by Barthelemy [24] and Fraysse [48].
We normalized speed and step length to standing height. For information purposes, we
also compared the means of features between DMD and TD control groups for each activity
using simple two-tailed t-tests. For convenience, we bold the p-values when they are
smaller than 0.05, without a Bonferroni adjustment. We note that p-values are reported here
primarily to describe relationships between temporospatial gait CFs and model dimensions
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across DMD and control groups—they are not considered in ML algorithms. A feature with
a non-statistically-significant p-value could still be useful in ML tasks. This is especially
true when the sample size is relatively small, as in this study.

Accelerometer

....... Classifier

Deep Learning (Artificial Neural Network)

Classifier

Pre-processing 

Classical Machine Learning

Feature engineering 

Selection Extraction 

DL-RAW Results

CML-CF Results

1

2

1

2

Figure 2. A typical process diagram of classical machine learning (CML-CF) and deep learning
(DL-RAW). The two methods used are (1) DL-RAW and (2) CML-CF.

We applied CML approaches to the temporospatial gait CFs both with and without
dimensional reduction to identify data characteristics and models that were most accurate
at predicting group membership. We used Pearson’s Correlation Coefficients with a
Bonferroni adjustment to describe relationships between temporospatial gait CFs and
latent domain scores after dimensional reduction, except during comparisons with ordinal
measures where we used Spearman’s Rank Ordered Correlation.

2.4.1. Extraction and Evaluation of Temporospatial Gait Clinical Features

We extracted the following eight temporospatial gait CFs from the raw accelerome-
ter data:

Speed (SP) is measured in meters per second and normalized by the height of the child
in meters. This feature is calculated by dividing the distance by the time spent performing
each activity;

Step Length (SL) is measured in meters and normalized by the height of the child in
meters. This feature is calculated by dividing the total distance by the number of steps.
The number of steps is calculated using a low pass filter on the anteroposterior (z-axis)
acceleration signal (Figure 3C,F). Then, we calculate the number of peaks, where each peak
represents one step and a complete gait cycle is composed of two steps;

Step Frequency (SF) is measured in steps per second. This feature is calculated by
dividing the number of steps by the time for each activity;

Total Power (TP) is measured in W/kg. This feature is calculated by first transferring
the time domain to the frequency domain of the three axes using a Fast Fourier Trans-
form (FFT): vertical (x-axis), mediolateral (y-axis), and anteroposterior (z-axis) (Figure 3D,
Figure 3E, and Figure 3F, respectively). Then, we sum the integral of the power (normalized
by weight) in each of the three axes (Figure 3G–I);

Mediolateral Power (MP) is measured in % of TP. This feature is calculated by first
transferring the time domain of the accelerometer’s y-axis (Figure 3E) to the frequency
domain using FFT. Then we calculate the integral of the power spectrum density (PSD)
(Figure 3H). Finally, we normalize the value by weight and TP;

Anteroposterior Power (AP) is measured in % of TP. This feature is calculated by first
transferring the time domain of the accelerometer’s z-axis (Figure 3F) to the frequency
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domain using FFT. Then we calculate the integral of the PSD (Figure 3I). Finally, we
normalize the value by weight and TP;

Vertical Power (VP) is measured in % of TP. This feature is calculated by first transfer-
ring the time domain of the accelerometer’s x-axis (Figure 3D) to the frequency domain
using FFT. Then we calculate the integral of the PSD (Figure 3G). Finally, we normalize the
value by weight and TP;

Force Index (FI) is measured in N/kg. This feature is calculated by first transferring
the time domain of the accelerometer’s z-axis (Figure 3F) to the frequency domain using
FFT. Then, we divide the integral of the PSD (Figure 3I) by the average speed in order to
average the force index.

Figure 3. Figures Illustrate a comparison between two children, DMD (ID = 11) and TD (ID = 5), in the
three-axial accelerations Vertical (x-axis), Mediolateral (y-axis), and Anteroposterior (z-axis) of 6MWT.
Figures (A–C) represent a 2 s time-window (TW) acceleration signal captured from a TD child
performing 5 steps and a DMD child performing 4 steps. Figures (D–F) represent the acceleration
signal of a TD child and a DMD child performing the whole 6MWT. Figures (G–I) represent the
power spectrum density (PSD) of a TD child and a DMD child performing the whole 6MWT.

2.4.2. CML and DL Analytical Methods

We used two different ML approaches to classify accelerometer data collected at a
range of gait speeds as belonging to a child with DMD or a TD. For the CML-CF approach,
6 different classifiers were implemented: Random Forest (RF), Decision-Tree (DT), Support-
Vector Machine (SVM), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and
Logistic Regression (LR). In this method, we used the 8 extracted temporospatial gait CFs
as input into CML classifiers with and without dimensionality reduction. The 8 extracted
temporospatial gait CFs for each child were used to train the CML model for all 8 activities.
For the DL-RAW method, we used a Convolutional Neural Network (CNN) model with
the time-windowed raw accelerometer signal as an input in the DL classifier. Figure 4
shows the process diagram of the DL-RAW and CML-CF approaches.
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TW=250
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Figure 4. The process diagram of (1) the DL-RAW approach and (2) the CML-CF approach.

2.4.3. Dimensionality Reduction

To analyze how the participants are distributed on the projection plane, we used
dimensionality reduction techniques in a manner similar to those described by Fraysse
and Barthelemy [48,49]. We investigated whether using principal component analysis
(PCA) [50,51] and linear discriminant analysis (LDA) [52,53] techniques would affect the
discrimination accuracy between DMD and TD groups. We fed the 8 extracted temporospa-
tial gait CFs to CML models using PCA and LDA. We used PCA and LDA to reduce the
dimensionality of the input features of all participants and projected their models’ results
into a two-dimensional (2D) and one-dimensional (1D) representation, respectively. We
compared PCA and LDA accuracy with the original models without using any dimension-
ality reduction techniques.

2.4.4. Preprocessing of Raw Accelerometer Signals Using Time-Windowing

In the CML-CF method, data from each activity for each participant represent an
individual input to the model. The temporospatial gait CFs of each activity must be
extracted entirely before using it as input to the model. In CML-CF, we employed a
low-pass filter to enhance the signal quality by smoothing it and eliminating short-term
fluctuations while preserving the underlying longer-term trend. This filter was applied to
the raw accelerometer signals capturing anteroposterior movement (z-axis) of individual
participants across various speeds, ranging from a slow walk to a jog/run (frequency range:
0.5 Hz to 60 Hz) [43]. In the DL-RAW method, we used raw acceleration values in each of the
three axes as input to the DL model (Figure 4). We used the window-slicing method [54] to
segment the raw data from each activity into multiple fixed time-windows (TWs) (Figure 5)
in order to augment the data input [55] and to facilitate DL model convergence [56]. We
examined six distinct TWs (i.e., 0.3, 0.5, 1, 1.5, 2, 2.5 s) to determine the signal duration
required for the highest model accuracy. For each activity, the model predicted whether an
individual TW was labeled as DMD or TD. We then used those predictions to calculate the
overall percentage of the TWs predicted as DMD or TD. At inference time, we examined
the percentage of typical/atypical decisions for each TW, and used majority voting to
determine whether the participants were correctly labeled as having DMD.
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Figure 5. Time-windows (TWs) of the accelerometer (x-, y-, and z-axes).

2.4.5. Cross-Validation of ML Models

We used Leave-One-Subject-Out (LOSO) cross-validation to evaluate classification
accuracy in the presence of slight variations in dataset contents. We use LOSO to ensure that
the model does not have information leakage. Having data from a particular participant
in both training and testing datasets makes the model more familiar with the data of that
participant. Thus, using a completely unseen participant in the testing set will ensure
that the model is not biased toward that participant because it has never been trained on
any part of that participant’s data before. The present dataset included 30 participants.
To ensure the accuracy of our predictions, we utilized data from 29 of the participants
as the training set and predicted the label of the remaining participant. We repeated this
process 30 times, each time leaving out a different participant for testing, and calculated
the accuracy of each model by averaging the 30-fold accuracy. Using this method, we were
able to ensure a robust and reliable analysis of our data.

3. Results
3.1. Extracted Temporospatial Gait Clinical Features

We compared temporospatial gait CFs of DMD and TD participants extracted from
our sensor data, which is shown in Table 2. For the 25 m course at a slow walking
pace (SC-L1 and SC-L2), walking speed and step length were significantly lower and the
mediolateral percent of accelerations was significantly higher in people with DMD. These
observations are consistent with clinical descriptions of a slower and more lateral DMD
gait. On our 25 m and more extended efforts, self-selected walk and fast walk paces (SC-L3,
FW, SC-L4, and 6MWT), we saw a similar pattern of differences that added a lower percent
of vertical accelerations in people with DMD. At jogging to running paces (SC-L5 and
100MRW), significantly reduced step frequency of people with DMD became apparent.
When combining all efforts, differences in speed, step frequency, step length, total power,
and percent power in the vertical and mediolateral axes differed significantly between the
two groups. Interestingly, there was little between-group difference in anteroposterior force
at any but the slowest of velocities.

Table 2. The summary of temporospatial gait CFs for the eight different gait activities.

Temporospatial Gait Clinical Features (CFs)

Activities Case Value SP (%) SF SL (%) TP
(10−6)

VP (%) MP (%) AP (%) FI
(10−3)

TD Mean 0.35 1.29 0.27 64.84 28.45 36.24 35.31 11.54
(SD) (0.06) (0.19) (0.02) (48.52) (4.07) (7.22) (5.45) (8.94)

SC-L1 DMD Mean 0.26 1.12 0.23 62.0 27.82 42.1 30.08 5.79
(SD) (0.1) (0.32) (0.04) (92.77) (5.48) (6.17) (4.36) (6.95)

p-value 0.0077 0.093 0.0004 0.9172 0.7246 0.0239 0.0072 0.0594
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Table 2. Cont.

Temporospatial Gait Clinical Features (CFs)

Activities Case Value SP (%) SF SL (%) TP
(10−6)

VP (%) MP (%) AP (%) FI
(10−3)

TD Mean 0.55 1.62 0.34 155.3 31.48 34.29 34.23 16.02
(SD) (0.07) (0.16) (0.02) (104.07) (7.78) (8.4) (5.63) (13.4)

SC-L2 DMD Mean 0.46 1.58 0.29 170.27 28.25 40.16 31.59 9.85
(SD) (0.12) (0.31) (0.03) (179.9) (6.2) (6.8) (6.63) (11.03)

p-value 0.0139 0.6133 <0.0001 0.7823 0.22 0.0445 0.2487 0.1801

TD Mean 0.76 1.89 0.4 355.84 36.93 31.36 31.7 19.54
(SD) (0.12) (0.23) (0.02) (255.55) (10.22) (7.9) (5.72) (16.06)

SC-L3 DMD Mean 0.63 1.89 0.33 334.35 30.16 39.32 30.52 14.05
(SD) (0.1) (0.24) (0.03) (317.31) (5.98) (7.48) (5.79) (13.76)

p-value 0.0024 0.9457 <0.0001 0.8396 0.0348 0.0085 0.5786 0.323

TD Mean 1.28 2.55 0.5 1907.94 38.92 30.94 30.14 58.39
(SD) (0.24) (0.32) (0.04) (1690.83) (8.75) (8.73) (5.84) (58.04)

SC-L4 DMD Mean 0.94 2.4 0.39 1807.78 29.07 40.11 30.83 49.58
(SD) (0.28) (0.51) (0.06) (3060.77) (10.71) (9.29) (3.86) (65.31)

p-value 0.0016 0.3496 <0.0001 0.9125 0.0101 0.0095 0.7091 0.6992

TD Mean 2.44 3.61 0.67 9219.81 50.13 21.53 28.34 93.53
(SD) (0.48) (0.52) (0.09) (6775.47) (8.93) (10.08) (10.09) (71.93)

SC-L5 DMD Mean 1.22 2.82 0.42 4235.65 35.67 35.01 29.32 68.55
(SD) (0.48) (0.73) (0.07) (5913.64) (13.68) (10.86) (9.18) (88.33)

p-value <0.0001 0.002 <0.0001 0.0406 0.0019 0.0015 0.7822 0.4029

TD Mean 1.18 2.36 0.5 1521.86 41.68 29.51 28.81 915.74
(SD) (0.11) (0.17) (0.03) (1054.76) (11.07) (9.01) (6.71) (677.16)

6MWT DMD Mean 0.79 2.05 0.38 992.04 31.61 38.79 29.6 840.77
(SD) (0.25) (0.39) (0.06) (1441.95) (6.02) (6.93) (5.46) (1210.56)

p-value <0.0001 0.0088 <0.0001 0.2664 0.0056 0.0046 0.7327 0.837

TD Mean 2.27 3.39 0.67 8402.12 52.89 18.05 29.06 480.5
(SD) (0.4) (0.47) (0.08) (5348.93) (8.86) (9.36) (10.53) (410.11)

100MRW DMD Mean 1.1 2.57 0.42 2944.45 39.68 34.82 25.51 599.57
(SD) (0.42) (0.67) (0.07) (5073.6) (17.19) (12.28) (7.58) (955.96)

p-value <0.0001 0.0013 <0.0001 0.0148 0.0172 0.0006 0.3512 0.6685

TD Mean 0.83 1.96 0.42 617.5 41.38 28.46 30.17 321.34
(SD) (0.16) (0.29) (0.04) (478.61) (8.92) (7.49) (4.87) (263.17)

FW DMD Mean 0.61 1.83 0.33 529.12 32.87 36.47 30.66 638.46
(SD) (0.18) (0.42) (0.06) (983.01) (8.51) (6.99) (7.19) (1252.37)

p-value 0.0015 0.3626 <0.0001 0.7565 0.0124 0.0052 0.826 0.3454

TD Mean 1.21 2.33 0.47 2780.65 40.23 28.8 30.97 239.57
(SD) (0.76) (0.83) (0.14) (4680.29) (11.6) (10.13) (7.35) (417.76)

All DMD Mean 0.74 2.01 0.35 1333.61 31.62 38.47 29.91 262.26
(SD) (0.4) (0.69) (0.08) (3175.88) (10.1) (8.54) (6.43) (740.37)

p-value <0.0001 0.0016 <0.0001 0.0062 <0.0001 <0.0001 0.2423 0.7714

Note: Bold numbers in the table indicate statistical significance, with the level set at 0.05. SP: speed in meters
per second normalized by height in meters. TP: total power with a unit of 10−6 W/kg. SF: step frequency with a
unit of step/second. SL: step length as a percentage of standing height. MP: the percentage of power in the x-axis
normalized by total power TP (%). AP: the percentage of power in the y-axis normalized by total power TP (%). VP:
the percentage of power in the z-axis normalized by total power TP (%). FI: force index with a unit of 10−3 N/kg.
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3.2. Comparison between CML-CF and DL-RAW Approaches

Two different ML approaches were performed: CML-CF and DL-RAW. Figure 6 and
Table 3 summarize the best results obtained from each approach. Figure 6 represents the
optimal accuracy obtained by performing the eight different gait activities: SC-L1, SC-L2,
SC-L3, SC-L4, SC-L5, 6MWT, 100MRW, and FW (described in Section 2.3). LOSO was used
to verify the accuracy results.

Table 3. Classification performance of CML-CF and DL-RAW approaches.

CML-CF DL-RAW

Activities Alg. CML PCA LDA TW * CNN
(%) (%) (%) (Samples) (%)

SC-L1

RF 76.67 86.67 93.33 30 79.98

DT 66.67 80.0 93.33 50 83.35

SVM 73.33 73.33 93.33 100 83.35

KNN 83.33 73.33 93.33 150 79.98

GNB 70.0 66.67 93.33 200 79.98

LR 80.0 73.33 93.33 250 79.98

SC-L2

RF 70.0 53.33 93.33 30 86.67

DT 70.0 56.67 93.33 50 83.35

SVM 83.33 70.0 90.0 100 79.98

KNN 66.67 70.0 86.67 150 76.66

GNB 76.67 66.67 90.0 200 60.01

LR 76.67 60.0 90.0 250 63.33

SC-L3

RF 90.0 53.33 100.0 30 83.35

DT 83.33 53.33 100.0 50 76.66

SVM 70.0 70.0 96.67 100 63.33

KNN 70.0 50.0 96.67 150 60.01

GNB 73.33 70.0 96.67 200 63.33

LR 80.0 73.33 100.0 250 56.69

SC-L4

RF 63.33 63.33 83.33 30 76.66

DT 80.0 70.0 83.33 50 83.35

SVM 80.0 73.33 90.0 100 79.98

KNN 76.67 70.0 83.33 150 56.69

GNB 76.67 70.0 93.33 200 66.65

LR 76.67 66.67 93.33 250 60.01

SC-L5

RF 90.0 66.67 93.33 30 79.98

DT 86.67 60.0 93.33 50 66.65

SVM 86.67 83.33 93.33 100 56.69

KNN 83.33 83.33 93.33 150 73.34

GNB 86.67 76.67 93.33 200 50.0

LR 90.0 83.33 93.33 250 73.34
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Table 3. Cont.

CML-CF DL-RAW

Activities Alg. CML PCA LDA TW * CNN
(%) (%) (%) (Samples) (%)

6MWT a

RF 86.21 72.41 93.1 30 86.23

DT 86.21 89.66 93.1 50 86.23

SVM 89.66 79.31 96.55 100 82.76

KNN 82.76 82.76 82.76 150 82.76

GNB 89.66 75.86 93.1 200 79.3

LR 82.76 86.21 93.1 250 79.3

100MRW b

RF 88.46 88.46 92.31 30 80.76

DT 88.46 92.31 92.31 50 80.76

SVM 88.46 80.77 96.15 100 69.24

KNN 92.31 80.77 92.31 150 84.62

GNB 92.31 88.46 96.15 200 80.76

LR 92.31 88.46 92.31 250 84.62

FW

RF 80.0 83.33 93.33 30 83.35

DT 80.0 76.67 93.33 50 86.67

SVM 93.33 86.67 90.0 100 79.98

KNN 83.33 83.33 86.67 150 73.34

GNB 80.0 83.33 86.67 200 76.66

LR 90.0 80.0 86.67 250 76.66

Note: Bold numbers in the table indicate the highest accuracy in the column. a One DMD child was
unable to perform the activity. b Four DMD children were unable to perform the activity. * Each second contains
100 samples.
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Figure 6. Accuracy of the optimal classifier of CML-CF and DL-RAW. The y-axis represents the
classifier accuracies, while the x-axis represents different activities.

CML-CF achieved the best accuracy of 100% at SC-L3, while DL-RAW achieved 86.67%
accuracy at both SC-L2 and FW. In comparison, the CML-CF approaches utilize CFs while
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DL-RAW only uses raw accelerometer data. CFs in the CML-CF approach include features
related to the activity as a whole, such as speed and step length, and participants in
particular, such as age, height, and weight. We note that the DL-RAW approach does not
use participant features; nor can it extract other activity features such as speed and step
length because it does not have information on the distance in each experiment. These
suggest the effectiveness of CFs.

Furthermore, CML-CF considers the average metrics of each participant, while DL
looks at TWs of raw signals of the activity. DL requires substantial data to train a model, so
its accuracy drops with larger TW sizes in short-duration activities. The drops continue
as activities get shorter with fewer TWs available for analysis (e.g., from SC-L1 to SC-L4).
In more extended activities like 6MWT and FW, the differences in accuracy between TW
sizes tend to decrease.

3.2.1. CML-CF Approach

We evaluated the CML approach using temporospatial gait CFs. We report the clas-
sifier’s accuracy among six different CML techniques: RF, DT, SVM, KNN, GNB, and LR.
For CML-CF, three different methods were used: no projection (CML), PCA projection
(CML-PCA), and LDA projection (CML-LDA). Each group of results represents one of the
eight different activities mentioned previously. Our models achieved the best accuracy
of 100% in self-selected walk speed (SC-L3) and exceeded 96% in both fast walk/jog/run
speeds (100MRW) and fast walk speed (6MWT).

3.2.2. DL-RAW Approach

We evaluated the DL approach using raw data. Since DL algorithms require a large
amount of data to train, each activity was divided into fixed TWs using the window-slicing
method to provide more data for the DL model. Table 3 reports the detailed results of
DL-RAW analyses and optimization of TW segment length.

Our model demonstrated the highest accuracy of 86.67% in slow walk speed (SC-L2)
and self-selected walk pace (FW) activities. We hypothesize this was achieved using TWs
long enough to capture a portion of the gait cycle with a strong correlation between the
accelerometer signal’s x-, y-, and z-axes. However, it is important to note that different
portions of the gait cycle may have varying levels of distinguishability, resulting in some
parts having a higher likelihood of being classified correctly than others. When the portions
of gait cycles are located in a region where the correlation between the x-, y-, and z-axes is
weak, the characteristics of those portions may not be captured effectively by the DL model.
As a result, the TW may not have enough distinctive features to be classified correctly.
One possibility is to use a TW that includes at least one complete gait cycle can ensure
that all the portions that contain sufficient correlation between the x-, y-, and z-axes are
captured. By setting a threshold for the percentage of the contribution of each portion to
the identification task, we can further enhance the accuracy and reliability of our model.
This approach can potentially improve clinical explainability and enhance performance.
The only limitation of this approach is that it requires more data to train the model. We
plan to explore it further in future studies.

3.3. Relationship between Extracted Step Length, Gait Speed, and Functional Ability

To help illustrate how step-length measures relate to the overall clinical function, we
compared step lengths for DMD participants with NSAA clinical function scores ≥ 30
(near-TD based on a 34-point maximum score) with TD participants at each gait speed from
slow walking to jogging or running (SC-L1 to SC-L5) as shown in Figure 7. At all but the
lowest slow walking speed, this highest-functioning group of DMD children demonstrated
significant reductions in step length compared to their TD peers. We then subdivided
all DMD participants by NSAA score into groups of near-TD (≥30), mildly affected (20–
29), moderately affected (10–19), and severely affected (<10) individuals, as shown in
Figure 8. In those DMD children, average step lengths differed significantly between each
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velocity activity from a slow walk (SC-L1) to a fast walk (SC-L4). Furthermore, there
were significant differences in step length between the mildly and moderately affected
NSAA groups within the medium-slow (SC-L2), comfortable (SC-L3), and fast walk (SC-L4)
activities, suggesting that the largest drop in step length appears to occur near the middle of
the NSAA scoring range (scores 10–29). We should note, however, that the largest difference
in step lengths seen in the moderate NSAA group could be due to the non-linear nature of
NSAA scoring. The NSAA score is a composite of multiple ordinal item scores rather than
a continuous variable.

Figure 7. Step Length by Different Gait Speeds. TD and ambulatory DMD children with NSAA ≥ 30.

Figure 8. Step Length by Different Gait Speeds. NSAA severity group in ambulatory DMD children.



Sensors 2024, 24, 1123 14 of 23

We calculated the correlations between temporospatial gait CFs and PCA and LDA
dimension scores to determine which temporospatial gait CFs helped describe CML tool
outputs (Table 4). For PCA-based analyses, the PC1 component score was significantly
and highly correlated with speed, step frequency, stride length, and total power across
all velocity groups. The PC1 component was also significantly and moderately correlated
with NSAA clinical and functional scores. In contrast, the PC2 component score was
predominantly associated with the axial percentages of total power. The unidimensional
LDA score was significantly and highly correlated with step length and significantly and
highly to moderately correlated with the NSAA score. The relationship between step
length and the LDA coordinates at different velocities is illustrated in Figure 9. Step length
increased with velocity across all velocity activities (SC-L1 to SC-L5), with positive LDA
scores on average indicating DMD participants and negative LDA scores indicating TD
with little overlap between groups (p < 0.0001).

Table 4. Correlation of Dimensional Reduction Scores with Extracted Clinical Features and
NSAA Score.

Temporospatial Gait Clinical Features (CFs)

Com. a Act. b Value SP SF SL TP VP MP AP FI NSAA *

SC-L1 Corr. **
(p-value)

0.93
(<0.0001)

0.85
(<0.0001)

0.72
(0.0002)

0.82
(<0.0001)

0.03
(1.0)

−0.44
(0.5332)

0.55
(0.0589)

0.81
(<0.0001)

0.56
(0.0014)

SC-L2 Corr. **
(p-value)

0.92
(<0.0001)

0.85
(<0.0001)

0.61
(0.0116)

0.83
(<0.0001)

−0.28
(1.0)

−0.32
(1.0)

0.74
(0.0001)

0.74
(0.0001)

0.4
(0.0273)

PC1 1 SC-L3 Corr. **
(p-value)

0.93
(<0.0001)

0.85
(<0.0001)

0.54
(0.0679)

0.83
(<0.0001)

0.29
(1.0)

−0.41
(0.8368)

0.17
(1.0)

0.72
(0.0003)

0.51
(0.0041)

SC-L4 Corr. **
(p-value)

0.91
(<0.0001)

0.85
(<0.0001)

0.66
(0.0027)

0.83
(<0.0001)

0.82
(<0.0001)

−0.78
(<0.0001)

−0.23
(1.0)

0.7
(0.0007)

0.71
(<0.0001)

SC-L5 Corr. **
(p-value)

−0.93
(<0.0001)

−0.85
(<0.0001)

−0.83
(<0.0001)

−0.89
(<0.0001)

−0.66
(0.0023)

0.88
(<0.0001)

−0.2
(1.0)

−0.76
(<0.0001)

−0.62
(0.0002)

SC-L1 Corr. **
(p-value)

0.12
(1.0)

0.15
(1.0)

0.01
(1.0)

0.35
(1.0)

−0.76
(0.0001)

0.89
(<0.0001)

−0.52
(0.1481)

0.14
(1.0)

−0.28
(0.1278)

SC-L2 Corr. **
(p-value)

0.19
(1.0)

0.11
(1.0)

0.2
(1.0)

−0.43
(0.7552)

0.85
(<0.0001)

−0.9
(<0.0001)

0.19
(1.0)

−0.4
(1.0)

0.19
(0.3069)

PC2 2 SC-L3 Corr. **
(p-value)

0.19
(1.0)

−0.32
(1.0)

0.57
(0.0485)

−0.53
(0.1187)

0.85
(<0.0001)

−0.72
(0.0003)

−0.25
(1.0)

−0.57
(0.0453)

0.3
(0.1049)

SC-L4 Corr. **
(p-value)

−0.19
(1.0)

0.3
(1.0)

−0.61
(0.0144)

0.27
(1.0)

−0.12
(1.0)

0.45
(0.603)

−0.65
(0.004)

0.29
(1.0)

−0.41
(0.0253)

SC-L5 Corr. **
(p-value)

−0.09
(1.0)

−0.17
(1.0)

0.05
(1.0)

−0.42
(0.9396)

0.56
(0.0645)

0.11
(1.0)

−0.93
(<0.0001)

−0.54
(0.0945)

0.29
(0.1268)

SC-L1 Corr. **
(p-value)

−0.54
(0.0695)

−0.35
(1.0)

−0.7
(0.0007)

−0.04
(1.0)

−0.07
(1.0)

0.47
(0.3336)

−0.55
(0.0601)

−0.42
(0.7212)

−0.72
(<0.0001)

SC-L2 Corr. **
(p-value)

−0.51
(0.1305)

−0.11
(1.0)

−0.78
(<0.0001)

0.05
(1.0)

−0.26
(1.0)

0.42
(0.7424)

−0.25
(1.0)

−0.3
(1.0)

−0.63
(0.0002)

LDA SC-L3 Corr. **
(p-value)

−0.64
(0.0054)

−0.02
(1.0)

−0.91
(<0.0001)

−0.05
(1.0)

−0.46
(0.3801)

0.56
(0.044)

−0.13
(1.0)

−0.23
(1.0)

−0.68
(<0.0001)

SC-L4 Corr. **
(p-value)

−0.65
(0.004)

−0.19
(1.0)

−0.89
(<0.0001)

−0.01
(1.0)

−0.54
(0.0732)

0.54
(0.0795)

0.1
(1.0)

−0.07
(1.0)

−0.79
(<0.0001)

SC-L5 Corr. **
(p-value)

−0.87
(<0.0001)

−0.59
(0.0195)

−0.92
(<0.0001)

−0.42
(0.8081)

−0.59
(0.0204)

0.61
(0.0134)

0.05
(1.0)

−0.18
(1.0)

−0.67
(0.0001)

a Components. b Activities. 1 Captures the most variation. 2 Captures the second most variation. * The Spearman
rank-order correlation coefficient. ** Correlation. The level of significance was set at 0.05.
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Figure 9. LDA coordinates vs. step length at different gait speeds. DMD vs. TD.

4. Discussions

The purpose of our study was to explore the utility and feasibility of collecting clini-
cally meaningful gait data using consumer-level accelerometers outside of the formal gait
laboratory setting and to explore a range of CML and DL methods to differentiate between
children with DMD and TD of different ages. Extracting and describing a combination
of well-known and well-understood temporospatial gait CFs allowed us to identify some
of the characteristics that CML and DL tools used to differentiate between DMD and
TD groups.

4.1. Utility and Feasibility of CML and DL Approaches to Extracted Temporospatial Gait CFs

We investigated two different ML approaches, CML with extracted temporospatial gait
CFs and DL with RAW data. We reported the outcome for each gait velocity in Table 3. We
also showed that using CML with extracted temporospatial gait CFs to predict membership
in the DMD group yielded satisfactory results, with correct predictions for up to 100% of
participants. The CML-CF approach typically shows improved accuracy with gait CFs,
and we thus expect that identifying and extracting more correlated temporospatial gait
CFs will improve the current model’s outcome in future studies. This improvement in
the outcome depended on how these new temporospatial gait CFs related to the gait
cycle quantitatively.

In comparison, DL has been shown to have a high accuracy in several medical
fields [57]. It also does not require feature engineering unlike in CML. At the same time,
DL requires a large amount of data to train and DL models lack explainability, which might
be concerning in medical fields. However, our promising results comparing DL-RAW with
CML-CF approaches should encourage researchers to conduct further research so that we
can transfer the knowledge yielded from DL-RAW to improve the existing temporospatial
gait CFs, and conversely, use temporospatial gait CFs to aid in interpreting DL-RAW results.

4.2. CML-CF Approach
4.2.1. Extracted Gait Features Are Consistent with Clinical Observations

It is commonly known that in people with DMD, the temporospatial gait characteris-
tics of speed, step frequency, and step length are on average lower than those in TD peers.
We extracted temporospatial gait CFs from signals derived from a single mobile-phone-
based triaxial accelerometer using methods similar to those described by Barthelemy [24],
and our data demonstrated that across a range of commonly-attained speeds, our ex-
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tracted gait features differ between DMD and TD controls with many differences reaching
statistical significance.

Analysis of power spectra of time-series gait data using single sensors during walking
has been explored in comparisons in some mobility-limited human populations but has
not, to our knowledge, been previously applied in a DMD population. The series of papers
by Barthelemy [24,49] using single sensors to measure gait characteristics of dystrophic
GRMD dogs and to evaluate extracted temporospatial gait CFs using LDA methods demon-
strated the utility of such methods and provided inspiration for our approach. The overall
decreased vertical percent power and increased lateral power that we observed appear
consistent with clinical observations of the development of a lateral, Trendelenburg gait
pattern in children with DMD as described by D’Angelo [13]. In TD individuals, as walking
speed increases and progresses to running, ground clearance for the foot and leg in the
swing phase is achieved through a gradual but proportional increase in vertical movement.
In people with DMD with progressing weakness, however, swing-phase leg clearance is
achieved through substitution using a more pronounced lateral shift of the center of mass to
the stance phase leg with the elevation of the contralateral hip. This more lateral gait style
is effective but also less efficient, and results in greater work for reduced forward motion
as demonstrated by prior studies showing increased heart-rate-based energy expenditure
of ambulation with increasing step frequency in DMD children measured by COSMED
portable metabolic testing combined with StepWatch activity monitoring [58].

4.2.2. Interpreting Extracted Clinical Features

A major challenge with the use of a CML approach in evaluating health status is to
interpret model outputs relative to well-known temporospatial gait CFs of a disease. Here
we have built on our colleague’s work in GRMD dogs [24] to extract similar clinically
salient temporospatial CFs of gait (as discussed in Section 2.4.1) from our accelerometer
data in humans to help explain differences between our DMD and TD cohorts. In addition,
we evaluated our participants using common quantitative timed motor performance tests
(25 m, 100 m fast-walk/jog/run tests, and the 6MWT) and the NSAA (as explained in
Section 2.3), which have all demonstrated utility as outcome measures used in clinical care
and clinical trial contexts.

We do not show correlations between timed motor performance measures and ex-
tracted clinical features because the features themselves (velocities, step lengths, and step
frequencies) are derived directly from the test’s times and distances (Table 4). NSAA,
however, is not a feature in our models and serves as an external “anchor” to help with the
overall interpretation of model performance and to provide additional cross-validation of
step length.

At near-TD levels (NSAA ≥ 30) near the ceiling (Figure 7), children with DMD show
reduced height-normalized step length compared to TD peers at all but the slowest of walks.
The most dramatic differences occur in the fast walking and jogging or running paces.
Looking in more detail at the DMD children (Figure 8), we can see significant differences
in all gait paces except SC-L1. At the same time, we fail to see any significant differences
between step lengths for fast walks and jogging or running paces. This supports the clinical
observation that some children with DMD fail to develop a “double-off” running pattern
that allows TD individuals to lengthen their step lengths well past what they can achieve
at a fast walk (Figure 10).
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Figure 10. Step Length by Different Gait Speeds. TD vs. DMD children. This boxplot displays the
data distribution based on: minimum, first quartile (25th percentile), median, third quartile (75th
percentile), and maximum, as well as the outliers.

4.2.3. Utility of CML Models as Classifiers

CML with LDA dimensionality reduction (CML-LDA) surpasses both the original
CML (without dimensionality reduction) and CML-PCA in the self-selected walk to run
speeds. For example, CML-LDA achieves a maximum accuracy of 100% in SC-L3 and
exceeds 96% in 6MWT and 100MRW.

Our results indicate that gait speed is an essential component in single-accelerometer
gait analysis [15] and that changes in gait speed can affect classification accuracy. We believe
the observation that speed and accuracy are correlated would encourage researchers to
consider gait speed’s effect on gait characteristics. In this respect, CML approaches seem
to rely on elements that are highly affected by gait speed, e.g., the observed differences in
lateral movement or shortened relative step length that are apparent to the eye and thus
picked up by domain experts. It would be interesting to further investigate if additional
CFs could be developed and used to improve classification accuracy.

4.2.4. CML with Dimensional Reduction

Using PCA and LDA provides a 1D and 2D representation of the DMD and TD group’s
distribution. We reduce the dimensionality of the temporospatial gait CFs to 2D using
PCA and 1D using LDA. Both TD and DMD participants’ temporospatial gait CFs after
PCA and LDA reduction tend to form different groups. LDA (supervised) maximizes the
separability between classes, and PCA (unsupervised) maximizes the variance within the
classes. The resulting visual representation of these group separation methods provides
valuable feedback about model performance as well as a degree of difference between
groups, even in the presence of complex, multi-dimensional data. When the distance
between the groups becomes more obvious, the two groups tend to be separable. This
gives an indicator that the model would yield a high classification accuracy. Conversely,
when the two groups intersect, which indicates high similarity between the two groups,
DMD and TD, the classifier yields low accuracy. In CML-LDA (Table 3), we notice that the
model’s accuracy is best in the self-selected walk to fast walk speeds (SC-L3 and 6MWT)
and fast walk/jog/run speed (100MRW). We can see that the accuracy of the CML-LDA
overall is higher than that of both the original CML and CML-PCA models. In 6MWT
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and 100MRW activities, we observe that both the original CML and CML-PCA reach their
highest accuracy of 89.66% and 92.31%, respectively. Therefore, CML-LDA is more accurate
and provides a helpful visual representation in the self-selected walk to fast walk speeds
(SC-L3 and 6MWT), and fast walk/jog/run speed (100MRW) activities which aids to better
understand the differences in gait patterns of the participants.

4.2.5. Correlation of PCA and LDA Models with Clinical Features

PCA-based classification tools perform slightly worse than LDA-based approaches (as
shown in Section 4.2.4). However, the two major PCA components (PC1 and PC2) are inter-
esting in that the first factor correlates well with temporospatial gait CFs of height-adjusted
step velocity, step frequency, and total power. The other component correlates more strongly
with proportional axial portions of power in the vertical, mediolateral, and anteroposterior
directions. Viewed from the perspective of progressive DMD symptoms with increased
weakness, shortening overall step lengths, and more lateral gait, the selection of these
two sets of features as drivers of differences between DMD and control groups makes
clinical sense. The LDA-based approaches, however, appear more accurate in differen-
tiating between DMD and TD children. From the perspective of the correlation of LDA
location scores and clinical features, it is not surprising that the model outputs correlate
most with height-normalized step length as an indicator of typical walking patterns versus
those affected by the DMD diagnosis (Table 4) and that the models are able to differentiate
between groups across a broad range of self-selected velocities (Figure 9).

4.2.6. Impact of Reduced Stride Length on Community Mobility

In addition to differentiating patients with DMD from similarly-aged TD children,
reductions in stride length are interesting for another reason. Children with DMD with mild
to moderate gait disturbance can take similar numbers of steps during most days relative to
TD peers—a key reason why step-counting devices have been less informative as outcome
measures for clinical trials [59]. However, the incorporation of distance traveled (whether
adjusted to standing height or not) may provide us with valuable additional information
about the effect of step-length reduction on overall community travel. For instance, a recent
meta-analysis by Conger et al. [60] suggests an expected average daily step count of
approximately 11,000 steps in TD children (mixed male/female). If we assume that a 50th
percentile height American 9-year-old child is 128 cm tall [61], and that their activity is
primarily a comfortable self-selected-walk, we can expect, based on our control data, for
step length to be approximately 40% of the child’s standing height, or 51.2 cm, and that their
total daily distance traveled would be 5632 m. A similarly sized, mildly affected ambulatory
child with DMD would have a step length of approximately 35% of their standing height,
or 44.8 cm and their total distance traveled would be 4928 m, an overall reduction of 704 m
(12%) traveled per day compared to their TD peer. If that same DMD child at a future
date was more severely affected because of disease progression, holding their step count
and height equal, their step length might be 30% of their standing height, or 38.4 cm, and
their total distance traveled would be 4224 m, an overall reduction of 1408 m (25%) per
day compared to their typical peer and 704 m (14.2%) less compared to their own prior
performance. Granted, this brief exercise makes some unlikely assumptions, including that
step counts would match, that all travel would be at a comfortable self-selected pace, and
that our DMD child did not grow between testing events. Clinical observations would
tell us that there is also a progressive impact of fatigue that reduces overall step counts
and active time [58], and that linear growth is often reduced in children with DMD both
due to disease and due to the effects of steroid treatments. These factors might further
reduce daily travel, or they might cancel each other out. Further research on community
travel patterns and behaviors in people with DMD will be required if these questions are
to be answered to most readers’ satisfaction, but it is not difficult to imagine that reduced
stride lengths could noticeably limit a person’s community-level travel and participation in
daily activities.
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4.3. DL-RAW Approach
4.3.1. Evaluation of Raw Data Using DL Models

DL models (supervised in our study) depend heavily on input data. When we apply
the DL approach to raw accelerometer data (DL-RAW), the model achieves a maximum
accuracy of 86.67% in slow walk speed (SC-L2) and self-selected walk speed (FW). The ad-
vantage of using DL-RAW is this method does not need feature engineering. We believe
a further investigation into improving the ML algorithms that target raw data could be a
promising direction. Still, one challenge is that they are still more difficult to explain from a
clinical perspective than methods anchored to clinical features and evaluations. Therefore,
when the clinical explanation is a primary focus, it is favorable to extract temporospatial
gait CFs that could help understand how the decisions are made in ML models. Our results
indicate that gait speed is an essential component in single-accelerometer gait analysis [15]
and that changes in gait speed can affect classification accuracy.

4.3.2. Time-Windowing of Raw Data

By examining different TW sizes, we found that the optimal TW size should be long
enough to include a portion of the gait cycle where contrasts are expected between DMD
and TD children. The model determines per each single TW whether it belongs to DMD or
TD children by identifying the difference in gait patterns among the DMD and TD groups.
This allows us to simplify our methods and use the DL method on minimally processed
raw data in a manner that requires less expertise to extract temporospatial gait CFs. Having
enough samples in each TW ensures a solid correlation between the x-,y-, and z-axes
and helps the model correctly classify. Using a small TW that does not have enough
correlation between the three axes could lead to insufficient data that cannot capture gait
patterns. Conversely, using a large TW results in a smaller number of TWs per participant.
At different velocities, people with DMD and TD have similarities in some portions of their
gait cycles, and even at faster velocities that are more difficult for people with DMD to
achieve, some portions of gait cycles may appear more typical than others. By examining
the typical/atypical decisions for each TW as mentioned in Section 2.4.4, it may be possible
to use that percentage of typical to atypical portions of each gait cycle across a range of
speeds to indicate the severity of disease at a given point in time and to track and quantify
disease progress over time.

4.4. Effectiveness of CML and DL Models Differs Depending on Gait Velocity and Type of Gait

The CML-CF approach performs better than the DL-RAW. Overall, DL-RAW accuracy
increases with the length of the activity. Since SC-L2 is a slow-walk and long-period activity
compared with SC-L3 to SC-L5, DL-RAW achieves an accuracy of 86.67%. In FW, where
participants walk as fast as possible for a long duration, DL-RAW in this activity achieves an
accuracy of 86.67% while CML-CF exceeds an accuracy of 93%. Additionally, the running
efforts on the 25 m course (SC-L5) are of short duration, which further reduces available
training data. In 100MRW, where the duration of the activity is longer and provides more
data to the model, the model achieves an accuracy of 84.62% despite the fact that only some
participants run while others walk.

4.5. Study Limitations

The main limitation of this study is the small number of participants. Our ongoing
work aims to expand the scope of this experiment to a larger group of participants spanning
multiple diagnoses and age groups. An additional limitation is the short-term nature of
our data collection. Multi-day data will be required to demonstrate an actual reduction in
travel distance or the ability to differentiate between DMD and typical developing groups
in free-living conditions.
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5. Conclusions

Use of ubiquitous and widely available mobile devices with single accelerometers to
remotely measure differences in common clinical gait parameters represents an opportunity
to expand the study of temporospatial gait characteristics into the community setting.
Extension of measurement of ambulatory capacity into the community setting will provide
clinicians and researchers with tools that assess changes in patient mobility in real-world
conditions against a background of habitual daily activities, seasonal variations, and the
built environment. Our initial laboratory-based studies demonstrate an ability to measure
selected gait parameters across a range of typical ambulatory velocities in DMD and TD
children to detect significant differences in temporospatial gait CFs that are consistent with
previous studies, as well as to detect differences in proportional power of accelerations in
vertical, mediolateral, and anteroposterior axes. By using these clinical gait parameters
and raw data and employing both CML and DL models, we are able to correctly predict
whether sensor data is derived from children with DMD up to 100% of the time at a self-
selected walking pace (SC-L3). By combining these approaches, we anticipate that through
ongoing studies, we will be able to improve predictive accuracy and identify additional
clinically useful parameters indicating typical growth and development, gait impairment,
and disease progression across a wide range of individuals with neuromuscular disease.
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