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Abstract: Real-time and high-precision land cover classification is the foundation for efficient and
quantitative research on grassland degradation using remote sensing techniques. In view of the short-
comings of manual surveying and satellite remote sensing, this study focuses on the identification
and classification of grass species indicating grassland degradation. We constructed a UAV-based
hyperspectral remote sensing system and collected field data in grassland areas. By applying ar-
tificial intelligence technology, we developed a 3D_RNet-O model based on convolutional neural
networks, effectively addressing technical challenges in hyperspectral remote sensing identification
and classification of grassland degradation indicators, such as low reflectance of vegetation, flat
spectral curves, and sparse distribution. The results showed that the model achieved a classifica-
tion accuracy of 99.05% by optimizing hyperparameter combinations based on improving residual
block structures. The establishment of the UAV-based hyperspectral remote sensing system and the
proposed 3D_RNet-O classification model provide possibilities for further research on low-altitude
hyperspectral remote sensing in grassland ecology.

Keywords: desert grassland; Unmanned Aerial Vehicle; low-altitude remote sensing; deep learning;
convolutional neural network

1. Introduction

Inner Mongolia is an important ecological security barrier in northern China. It is the
main grain production base and animal husbandry base in China. Its environment directly
affects the development of agriculture and animal husbandry and the ecological security
in China [1–3]. Due to the arid and semiarid climate conditions, low precipitation, poor
soil conditions, and intensive land use practices, the vegetation communities in the Inner
Mongolia Yin Mountain desert grassland often undergo changes, resulting in exceptionally
complex regional landscape structures [4,5]. Compared to those in typical grassland areas,
desert grassland resources are more vulnerable to climate change and human disturbance,
and pasture degradation and desertification problems are becoming increasingly serious [6].
Grassland degradation is first manifested as a reduction in the fractional vegetation cover
and number of plant species and expansion of the bare soil area, which directly affects
the comprehensive utilization level of grassland resources [7,8]. It is very important to
study and elucidate the growth status and change trend of vegetation communities in
desert grassland for systematic analysis of grassland resource economic characteristics and
rational development and utilization.

The desert grasslands in northern China are mainly dominated by small and medium-
sized family ranches. Long-term sedentary grazing, extensive management, and regional
overgrazing have caused serious damage to the grassland ecosystem [9]. In grazing grass-
lands, livestock tend to preferentially consume grassland resources with higher palatability,
resulting in a loss of biodiversity and a decline in grassland productivity [10,11]. Degraded
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grassland has sparse vegetation, low grass layer, wide distribution, and various application
modes. The traditional manual survey method is time-consuming and laborious and cannot
meet the dynamic monitoring needs of large-scale grassland degradation. Although satel-
lite remote sensing has broken through the limitations of manual investigation at the spatial
scale, it can only realize the statistical study of large-scale vegetation coverage due to the
limitation of spatial–spectral resolution, and there are obvious deficiencies in characterizing
vegetation subtypes or small-scale vegetation community structure [12]. The Unmanned
Aerial Vehicle (UAV) hyperspectral remote sensing platform has nanoscale spectral reso-
lution and centimeter-level spatial resolution, and has many advantages such as flexible
operation, easy data acquisition, and high efficiency [13], which has been gradually applied
in the field of grassland ecological information survey [14].

The traditional analysis method has low recognition accuracy for high-dimensional
spectral data, and the analysis process is cumbersome, which makes it difficult to meet the
actual needs. In recent years, scholars have developed and optimized the convolutional
neural network model for the data characteristics and ground object characteristics of
remote sensing data sets [15,16]. However, these deep network models have limitations in
processing hyperspectral data of degraded grassland vegetation and cannot show the same
performance. In addition, the cost of model training is high, which mainly consists of com-
putational resources and time consumption [17,18]. This study takes the desert grassland
degeneration indicator objects in Siziwang Banner, Inner Mongolia as the research object.
The remote sensing images of desert grassland were collected by a UAV hyperspectral
remote sensing system, and the grassland degradation indicator objects were identified and
classified by deep learning method. A classification model suitable for the characteristics of
UAV hyperspectral remote sensing data set and grassland degeneration indicator objects is
established. The high-precision identification and classification of grassland degeneration
indicator objects, including group species, indicator species of degradation, wilted grass,
and bare soil, were achieved through the utilization of deep learning methods. It is a mean-
ingful exploration of the classification of desert grassland surface based on remote sensing
information. This lays the foundation for real-time, efficient, and high-precision ecological
information monitoring and statistics for desert grassland, as well as provides reference for
the precise implementation of desert grassland ecological restoration programs.

2. Materials and Methods
2.1. UAV Low Altitude Remote Sensing System

The low-altitude remote sensing system integrated in this research institute mainly
consists of a hexacopter drone, a hyperspectral imager, a gimbal, an onboard computer,
and other instruments (Figure 1). The six arms of the drone adopt a plug-in structure,
which is portable and easy to install. It is equipped with a professional-grade A3 Pro flight
control system (Manufactured by DJI Innovation Technology Co., Ltd., Shenzhen, China),
three sets of IMU and GNSS modules. The empty weight of the aircraft is 9.5 kg (including the
battery), with a maximum payload capacity of 6 kg. The full load flight endurance is 30 min.
The information acquisition sensor is the GaiaSky-mini hyperspectral imager (Produced by
Sichuan Shuanglihepu Technology Co., Ltd., Chengdu, China), with a spectral range between
400–1000 nm. The size of the spectral image is 696 lines × 775 samples × 256‚ bands.

Sensors 2024, 24, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. UAV low altitude remote sensing imaging system. 

2.2. Overview of the Study Area 

The study area is the desert grassland of Siziwang Banner, Yinshan North Foot in 

Inner Mongolia, with specific coordinates of 41°47′17″ N, 111°53′46″ E and an elevation of 

1450 m (Figure 2). It is located in the temperate continental monsoon climate zone, influ-

enced by the Mongolian high-pressure system. The spring and autumn seasons are windy, 

the summer is dry with little rainfall and large diurnal temperature variations, and the 

winter is cold. There is a significant amount of wind and sand throughout the year, with 

more than 50% of days experiencing strong winds. The annual average precipitation is 

280 mm, with 80% or more occurring from June to September. Most years experience se-

vere drought. The grassland in this area is a typical desert grassland, characterized by 

sparse vegetation and low grass height, averaging 8 cm. 

 

Figure 2. Satellite image of the study area. 

The group species in the research area is Stipa breviflora Griseb (hereinafter referred 

to as S. breviflora). Group species are the dominant species in the dominant layer of the 

community, which play a leading role in the community structure and community envi-

ronment and are the creators and builders of the community. S. breviflora possesses strong 

adaptability to wind and sand, as well as cold, drought, and grazing resistance. The suc-

cession of vegetation community structure is a direct manifestation of grassland degrada-

tion. In recent years, under the dual impact of arid climatic conditions and excessive 

Figure 1. UAV low altitude remote sensing imaging system.



Sensors 2024, 24, 1114 3 of 16

2.2. Overview of the Study Area

The study area is the desert grassland of Siziwang Banner, Yinshan North Foot in
Inner Mongolia, with specific coordinates of 41◦47′17′′ N, 111◦53′46′′ E and an elevation
of 1450 m (Figure 2). It is located in the temperate continental monsoon climate zone,
influenced by the Mongolian high-pressure system. The spring and autumn seasons are
windy, the summer is dry with little rainfall and large diurnal temperature variations, and
the winter is cold. There is a significant amount of wind and sand throughout the year,
with more than 50% of days experiencing strong winds. The annual average precipitation
is 280 mm, with 80% or more occurring from June to September. Most years experience
severe drought. The grassland in this area is a typical desert grassland, characterized by
sparse vegetation and low grass height, averaging 8 cm.
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The group species in the research area is Stipa breviflora Griseb (hereinafter referred to
as S. breviflora). Group species are the dominant species in the dominant layer of the com-
munity, which play a leading role in the community structure and community environment
and are the creators and builders of the community. S. breviflora possesses strong adapt-
ability to wind and sand, as well as cold, drought, and grazing resistance. The succession
of vegetation community structure is a direct manifestation of grassland degradation. In
recent years, under the dual impact of arid climatic conditions and excessive grazing, the
original vegetation community structure in the research area has been destroyed, and the
Artemisia frigida Willd community gradually becomes the dominant species in the vege-
tation community structure (hereinafter referred to as A. frigida). Therefore, the A. frigida
community is recognized as an indicator species of grassland degradation [19,20]. Indi-
cator species for degradation can be defined as plant species with degradation indication
significance, which plays an important role in the process of grassland degradation suc-
cession. Therefore, the accurate identification of plants such as S. breviflora and A. frigida
is extremely important in the study of indicators of desert grassland degradation. In this
study, S. breviflora, A. frigida, withered grass, and bare soil were selected as the research
objects for grassland degeneration indicators. After field visits and geographical informa-
tion gathering, a natural grassland area of 13.2 hm2 was delineated as the unmanned aerial
vehicle flight area.
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2.3. Data Collection

According to the climate characteristics of degradation indicator species in 2022 and
the growth cycle characteristics of grass, the experimental group conducted detailed in-
vestigations in the experimental area during the period of June to August 2022, when the
plant growth was most vigorous. A random block design was employed to establish a
total of 30 pure plots in the relatively aggregated growth areas of S. breviflora and A. frigida
communities (Figure 2), with each type comprising 15 plots. Considering the topography
and vegetation growth characteristics of the study area, the types of S. breviflora and A.
frigida quadrats were determined by the types of grasses with more than 98% of the total
grass in the quadrats. The left and right spacing of the random quadrats was about 15 m,
and the front and back spacing was about 10 m. The size of the hyperspectral image of the
collected quadrats was 696 line × 775 sample × 256 band. To ensure the imaging quality
of the low-altitude UAV hyperspectral remote sensing images, data collection was carried
out under meteorological conditions with wind speeds lower than Grade III (≤5.4 m/s)
and clear skies or cloud cover below 2% during the period of maximum solar altitude from
10:00 to 14:00. The UAV hyperspectral imaging system can achieve route flight, with flight
routes planned from the ground station (Figure 3). Each plot was photographed no less
than 5 times to improve the availability of the data. The UAV flew at a height of 20 m and a
speed of 1 m/s, with a lateral overlap set at 55%. The image spectral resolution was 2.6 nm,
and the spatial resolution was 1.73 cm/pixel.
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2.4. Creating a Dataset

Human inspection was carried out to address the poor imaging quality of remote
sensing images caused by variations in light intensity and gusty winds. Subsequently,
radiometric correction was performed using Spec VIEW2.9 software. The single image after
radiation correction occupies 1.2 GB of storage space. In order to establish a more com-
prehensive and abundant spectral information database and improve the computational
efficiency of the network model, in this study, three quadrats were randomly selected from
the two categories of S. breviflora and A. frigida in the hyperspectral remote sensing data of
pure quadrats, and the center of each selected quadrat was cropped to 150 line × 150 sam-
ple × 256 band. A new data set (450 line × 300 sample × 256 band) was generated by
splicing two types of data sets (Figure 4a). A total of 135,000 pixels were used to make
the sample hyperspectral database, which can effectively increase the richness and rep-
resentativeness of the data set and help to improve the robustness of the model. A total
of 300 pure pixels were selected from each category’s region of interest and averaged to
obtain the reflectance values of different land cover types (Figure 5). The land cover types
were classified into three categories: S. breviflora, A. frigida, and non-vegetation (withered
grass, bare soil) markers. In total, 33,582 pixels were labeled as samples (Figure 4b), with a
training-to-testing sample allocation ratio of 7:3 (Table 1).
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Table 1. Color coding and sample number.

Class Color Training Test Total
1 S. breviflora 5056 2168 7224
2 A. frigida 9596 4112 13,708
3 Non-vegetation 8856 3794 12,650

Total 23,508 10,074 33,582

2.5. Data Dimensionality Reduction and Patch Segmentation

To eliminate redundant data, this study adopts the most frequently used Principal
Component Analysis (PCA) technique to reduce data dimensionality and enhance compu-
tational efficiency. After performing PCA computation while retaining 98% of the original
data’s information, a total of 30 spectral bands are obtained. Each central pixel and its
spatial neighborhood are segmented into 3D data blocks with dimensions of S × S × B,
where S × S represents the width and height of the patch size, and B corresponds to the
number of spectral bands.

2.6. Construction of the DGRNet Model

Grassland degeneration indicates that high-resolution hyperspectral data possess
fine-grained and mixed-pixel characteristics, making information extraction and resolution
exceptionally challenging. To address this issue, traditional machine learning methods,
such as Support Vector Machines (SVM), construct hyperplanes by projecting features into
high-dimensional space to accomplish classification objectives. However, this approach
heavily relies on manual feature extraction, requiring extensive expert knowledge and
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parameter settings. In contrast to machine learning feature engineering methods [21,22],
deep learning has the advantage of extracting intrinsic deep features from images, which is
beneficial for resolving the classification problem of desert grassland degradation indicators.
In order to better evaluate the performance of 2D convolution and 3D convolution in
convolutional neural networks, this study builds upon a constructed simplified 2D ResNet
model (DGRNet) and further establishes a 3D_ResNet model (3D_DGRNet). The specific
diagram illustrating the model structure can be found in Figure 6.
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Figure 6. DGRNet model structure diagram.

In the figure, H, W, and C represent the row height, column width, and band number
of the data set, respectively, S represents the patch size, and B represents the patch size band
number. After the first layer convolution operation of the model, max pool processing is
performed. The size of conv (1) is set to 7 × 7 (×7), the size of max pool is set to 3 × 3 (×3),
and the stride is set to 2, respectively. Block 1–4 represents the residual block of the deep
neural network, respectively, and Batch Normalization and ReLU activation functions are
used after convolution operation in each layer of the residual block. The convolution kernel
size of the model is 3 × 3 (×3), and the spatial size of the input is 9 × 9. The batch sizes
are 64, 128, 256, and 512, respectively. After the convolution, the global average pooling
function is used to convert the output feature map into a fixed-length vector representation.
Finally, through the Softmax function, the original output is converted into a probability
distribution, that is, the probability of each category.

2.7. Constructing the 3D_RNet-O Model

By establishing a deep learning network model, the performance advantages of con-
volutional neural networks in desert grassland degradation indicator species monitoring
were verified, indicating the feasibility of deep learning for identifying indicator species of
desert grassland degradation. Therefore, this study will improve the 3D_DGRNet model
based on this foundation to further enhance the recognition accuracy of deep learning
models for indicator species of desert grassland degradation.

The 3D-ResNet model is typically composed of multiple stacked residual blocks,
each containing several convolutional layers. In existing research models, symmetric
convolution and single-scale convolution are commonly used as residual blocks, which
have limited ability to handle the variations in different scales and local details of multi-
channel processing objects. Moreover, using the same size of convolution kernels restricts
the receptive field range, leading to the loss of important detailed information during
the convolution process. Therefore, this study proposes an improved 3D_DGRNet model
called 3D_RNet-O (Figure 7).

The design of the 3D_RNet-O model takes into consideration the scale variations
and local details of multi-channel processing objects. The residual block structure mainly
includes designs such as dual-branch features and multi-scale convolution fusion. In
this study, each convolution layer of the residual block is decomposed into a spectral
convolution block and a spatial convolution block. The spectral–spatial convolution blocks
are then concatenated, followed by feature fusion of the two branches. This allows for the
concatenation of multi-scale local features, preserving more detailed information. In the
3D_RNet-O model, a composite function is used with two different sizes of 3D convolution
kernels: a × 1 × 1 and 1 × a × a. The first branch employs spectral convolution blocks
(a × 1 × 1) and spatial convolution blocks (1 × a × a), while the second branch uses
spatial convolution blocks (1 × a × a) and spectral convolution blocks (a × 1 × 1). This
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establishes a dual-branch feature learning model and concatenates the learned features
from both branches.
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2.8. Accuracy Evaluation of the Model

To evaluate the classification accuracy of the monitoring model, this study will use
overall accuracy (OA), average accuracy (AA), and Kappa coefficient as evaluation metrics
to analyze the model’s performance. OA refers to the proportion of correctly classified
pixels in the total number of pixels in random samples, which provides a more intuitive
reflection of the accuracy of hyperspectral remote sensing classification results. AA refers to
calculating the classification accuracy of each category and averaging the accuracy of all cat-
egories in a multi-classification task, which can provide a more comprehensive assessment.
The Kappa coefficient is an evaluation index based on the confusion matrix that measures
the reliability of the classification results. It effectively addresses the issue of small sample
sizes and provides a more comprehensive reflection of the classification performance.

3. Results
3.1. Platform and Network Training

The training process in this study was conducted using the following platform: i7-
6820 HK CPU, with a memory capacity of 32 GB, and Nvidia Geforce GTX 1080, an 8 GB
GPU. The training iteration was set to 200. All the accuracy values in this section are the
average values obtained from 10 repeated experiments of the model.

To objectively evaluate the effectiveness of the proposed methods in this study, four
models were trained: SVM, DGRNet, 3D_DGRNet, and 3D_RNet-O. The SVM model uses
the Radial Basis Function (RBF) as its kernel function. DGRNet and 3D_DGRNet are classic
ResNet models. 3D_RNet-O is a ResNet model based on the 3D_ResNet backbone network.
In the 3D_RNet-O model, the convolution layers in the residual block are decomposed
into spectral–spatial convolution blocks, and detailed features are extracted using dual-
branch operations.

3.2. Classification Results of the Baseline Models

Trained by the initial classification models, the 3D_DGRNet model exhibited superior
classification performance, followed by the DGRNet model, while SVM_Grid performed
the worst (Figure 8). The 3D_DGRNet model incorporates both 3D convolution and
2D convolution operations to consider the spectral–spatial feature relationship in the
dataset, enabling effective utilization of spatial and spectral information. Compared to
2D convolution kernels, 3D convolution kernels significantly improved the recognition
accuracy of indicator species of degradation. By increasing the network depth, the ResNet
model enhances the representational and learning capabilities of the model. Therefore,
in this study, different network depths were selected for the DGRNet and 3D_DGRNet
models, including 18 layers, 34 layers, and 50 layers. The results demonstrate that when the
network depths were, respectively, set to 18, 34, and 50, with a Patch size of 9, a learning
rate of 0.003, and batch sizes of 64, 128, 256, and 512, the obtained overall accuracies were
95.78%, 96.21%, 96.07%, 97.02%, 97.41%, and 96.33%, respectively.



Sensors 2024, 24, 1114 8 of 16

Sensors 2024, 24, x FOR PEER REVIEW 8 of 16 
 

 

3.2. Classification Results of the Baseline Models 

Trained by the initial classification models, the 3D_DGRNet model exhibited supe-

rior classification performance, followed by the DGRNet model, while SVM_Grid per-

formed the worst (Figure 8). The 3D_DGRNet model incorporates both 3D convolution 

and 2D convolution operations to consider the spectral–spatial feature relationship in the 

dataset, enabling effective utilization of spatial and spectral information. Compared to 2D 

convolution kernels, 3D convolution kernels significantly improved the recognition accu-

racy of indicator species of degradation. By increasing the network depth, the ResNet 

model enhances the representational and learning capabilities of the model. Therefore, in 

this study, different network depths were selected for the DGRNet and 3D_DGRNet mod-

els, including 18 layers, 34 layers, and 50 layers. The results demonstrate that when the 

network depths were, respectively, set to 18, 34, and 50, with a Patch size of 9, a learning 

rate of 0.003, and batch sizes of 64, 128, 256, and 512, the obtained overall accuracies were 

95.78%, 96.21%, 96.07%, 97.02%, 97.41%, and 96.33%, respectively. 

 

Figure 8. Comparison of recognition accuracy of different network models. 

In the task of monitoring indicator features of degradation in grasslands, analysis 

reveals that the 34-layer model achieves the highest classification accuracy of 97.41%. The 

18-layer model also performs well with an accuracy of 97.02%. Although the 50-layer 

model shows a slight decrease in performance, it still maintains good accuracy at 95.33%. 

Considering both performance and complexity, selecting the 34-layer 3D_DGRNet model 

as the preferred model is a reasonable choice as it strikes a good balance between perfor-

mance and complexity. Therefore, based on this, an improved high-accuracy 3D_RNet-O 

model is proposed for the monitoring of indicator features of degradation in desert grass-

lands. By adjusting various hyperparameters such as learning rate, batch size, max pool-

ing, and initial convolution operations according to parameter logic relationships and ex-

perimental design principles, the 3D_RNet-O model is further enhanced. 

3.3. Classification Results of 3D_RNet-O Model 

To evaluate the performance of the 3D_RNet-O model more effectively, we trained 

the model while keeping the base network’s hyperparameters such as patch size, learning 

rate, and batch size constant. At the same time, user accuracy (UA) and producer accuracy 

(PA) are selected as the accuracy evaluation indexes of different categories. The confusion 

matrix of classification results is shown in Table 2. UA refers to the ratio of the number of 

samples correctly classified in each category to the total number of samples in that cate-

gory. PA refers to the ratio of the number of correctly classified samples to the total num-

ber of samples actually belonging to the category. From the perspective of PA, except for 

S. breviflora, the recognition accuracy of other categories reached more than 98%, 

Figure 8. Comparison of recognition accuracy of different network models.

In the task of monitoring indicator features of degradation in grasslands, analysis
reveals that the 34-layer model achieves the highest classification accuracy of 97.41%. The
18-layer model also performs well with an accuracy of 97.02%. Although the 50-layer
model shows a slight decrease in performance, it still maintains good accuracy at 95.33%.
Considering both performance and complexity, selecting the 34-layer 3D_DGRNet model as
the preferred model is a reasonable choice as it strikes a good balance between performance
and complexity. Therefore, based on this, an improved high-accuracy 3D_RNet-O model
is proposed for the monitoring of indicator features of degradation in desert grasslands.
By adjusting various hyperparameters such as learning rate, batch size, max pooling, and
initial convolution operations according to parameter logic relationships and experimental
design principles, the 3D_RNet-O model is further enhanced.

3.3. Classification Results of 3D_RNet-O Model

To evaluate the performance of the 3D_RNet-O model more effectively, we trained
the model while keeping the base network’s hyperparameters such as patch size, learning
rate, and batch size constant. At the same time, user accuracy (UA) and producer accuracy
(PA) are selected as the accuracy evaluation indexes of different categories. The confusion
matrix of classification results is shown in Table 2. UA refers to the ratio of the number of
samples correctly classified in each category to the total number of samples in that category.
PA refers to the ratio of the number of correctly classified samples to the total number
of samples actually belonging to the category. From the perspective of PA, except for
S. breviflora, the recognition accuracy of other categories reached more than 98%, indicating
that the model had less misclassification of A. frigida and non-vegetation communities.
From the perspective of UA, a small part of S. breviflora was identified as non-vegetation
community, resulting in a low UA value of non-vegetation community, which was mainly
due to the presence of a large number of withered grass at the junction of S. breviflora
and non-vegetation community. From the overall performance of the model, OA reached
98.21%, and Kappa coefficient reached 0.979.

Table 2. Confusion matrix based on initial 3D_RNet-O model classification.

Category S. breviflora A. frigida Non-Vegetation PA (%)

S. breviflora 1815 32 73 94.51
A. frigida 16 3723 5 99.44

non-vegetation 39 0 3367 98.86

UA (%) 97.05 99.15 95.6
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3.3.1. Learning Rate Optimization

On the basis of keeping all other hyperparameters unchanged in the 3D_RNet-O
model, the learning rate was varied for performance evaluation. Nine different learning
rates were tested: 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, and 0.05 (Figure 9).
When the learning rate is set to 0.003, the model achieves optimal recognition performance,
with Kappa coefficient and overall accuracy (OA) reaching their highest values at 97.72%
and 98.32%, respectively. The accuracy of the S. breviflora community, which initially had a
slightly lower precision, increased by 2.34%. However, when the learning rate is adjusted to
0.05, despite achieving the best classification performance for the A. frigida community, with
a classification accuracy of 99.81%, the classification accuracy for the S. breviflora community
drops to 79.11%. It is evident from the comparison that when the learning rate exceeds
0.003, the model’s performance deteriorates, as a higher learning rate prevents the model
from attaining the global optimum.
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3.3.2. Optimization of Batch Size

Through batch size optimization, it is possible to standardize the input data for each
batch, which helps improve network stability and accelerate convergence speed. The
learning rate was set to 0.003, and on the basis of keeping all other hyperparameters
of the network model unchanged, the batch size for each residual block was optimized
in three sets of experiments, labeled as groups a, b, and c. (Table 3). The experiments
show that with the increase in batch size, the model’s classification performance improves
significantly. In experiment c, when the batch sizes are set to 128, 256, 512, and 1024, all
metrics show improvement, leading to optimal classification performance of the model.
Therefore, the batch size options can be 128, 256, 512, and 1024. The testing accuracy of
S. breviflora has increased to 97.75%, while the accuracies of the other two classes remain
relatively stable, with A. frigida and non-vegetation achieving testing accuracies of 99.48%
and 97.95%, respectively. The overall accuracy has increased by 0.21%.

Table 3. Table of batch size optimization for 3D_RNet-O model.

No. Block_0 Block_1 Block_2 Block_3 Block_4

a Conv_@64 Conv_@32 Conv_@64 Conv_@128 Conv_@256
b Conv_@64 Conv_@64 Conv_@128 Conv_@256 Conv_@512
c Conv_@64 Conv_@128 Conv_@256 Conv_@512 Conv_@1024
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3.3.3. Optimization of Training Sample Proportion

In model training, the setting of training sample ratios has a significant impact on
prediction results. When the training sample ratio is low, the model can only learn the rep-
resentation of fewer land covers, thus failing to predict land covers with greater variations
effectively. Conversely, when the training sample ratio is high, the model will have more
opportunities to learn the representation of various land covers and make more accurate
predictions. However, setting the training sample ratio too high will lead to a sharp increase
in training time, with potentially marginal improvements in prediction accuracy. In this
experiment, the training sample ratio was set to increase by 10%, starting from 20% and
gradually increasing to 80%, with a total of seven experiments. In each experiment, the
validation ratio was consistently set at 10% (Figure 10). It can be observed from the graph
that as the training data increase, the required training time also increases correspondingly.
Under the same number of iterations, the model’s overall accuracy (OA), average accuracy
(AA), and Kappa coefficient show an increasing trend with the increase in training samples.
However, after reaching a training ratio of 60% (6:1:3), the performance improvement of the
model becomes sluggish while the time consumption rises sharply. Therefore, considering
all factors, the training sample ratio can be chosen as 60%.
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3.3.4. Optimization of other Hyperparameters

After changing the pooling window of the 3D_RNet-O model’s max pooling operation
from (3,3,3) to (1,1,1) and (2,2,2) for training, the results showed that the (2,2,2) window had
a more noticeable advantage in group species recognition. Changing the initial convolution
operation Conv_7,7,7 to (5,5,5), (3,3,3), (3,5,5), and (5,7,7) for training showed that when
using Conv_3,5,5, there was a slight improvement in the model’s performance. Under
the optimal hyperparameter combination, the confusion matrix of the 3D_RNet-O model
is presented in Table 4. From the perspective of PA, the accuracy of different categories
all exceeds 98%. Compared with the parameter optimization before, the model’s feature
extraction capability for each category has significantly improved. From the perspective of
UA, the testing accuracy for S. breviflora is 97.34%, while the testing accuracies for the other
categories exceed 99%, indicating that the network possesses effective feature extraction
capabilities for grassland degeneration indicators. The comparison of visualization results
between the base model and 3D_RNet-O model can be seen in Figure 11.
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Table 4. Classification confusion matrix of optimal parameter combination.

Category S. breviflora A. frigida Non-Vegetation PA (%)

S. breviflora 1900 6 14 98.96
A. frigida 36 3696 12 98.72

non-vegetation 16 0 3390 99.53

UA (%) 97.34 99.84 99.24

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16 
 

 

convolution operation Conv_7,7,7 to (5,5,5), (3,3,3), (3,5,5), and (5,7,7) for training showed 

that when using Conv_3,5,5, there was a slight improvement in the model’s performance. 

Under the optimal hyperparameter combination, the confusion matrix of the 3D_RNet-O 

model is presented in Table 4. From the perspective of PA, the accuracy of different cate-

gories all exceeds 98%. Compared with the parameter optimization before, the model’s 

feature extraction capability for each category has significantly improved. From the per-

spective of UA, the testing accuracy for S. breviflora is 97.34%, while the testing accuracies 

for the other categories exceed 99%, indicating that the network possesses effective feature 

extraction capabilities for grassland degeneration indicators. The comparison of visuali-

zation results between the base model and 3D_RNet-O model can be seen in Figure 11. 

Table 4. Classification confusion matrix of optimal parameter combination. 

Category S. breviflora A. frigida Non-Vegetation PA (%) 

S. breviflora 1900 6 14 98.96 

A. frigida 36 3696 12 98.72 

non-vegetation 16 0 3390 99.53 

UA (%) 97.34 99.84 99.24  

 

  

(a) (b) 

  

(c) (d) 

   

(e) 

 S. breviflora.  A. frigida.  Non-vegetation. 

Figure 11. Visualize the classification results of different models. (a) False-color composite image. 

(b) DGRNet34. (c) 3D_DGRNet34. (d) 3D_RNet-O. (e) Enlargement of the red boxed area in fig-

ures (b–d). 

Figure 11. Visualize the classification results of different models. (a) False-color composite image.
(b) DGRNet34. (c) 3D_DGRNet34. (d) 3D_RNet-O. (e) Enlargement of the red boxed area in figures (b–d).

3.3.5. K-Cross Validation (K-CV)

In deep learning, accurately evaluating the performance of a network model on
an unseen dataset is crucial. Cross Validation is a statistical analysis method used to
validate the performance of classifiers. It involves training the model on the training
set and then comparing the model’s predictions with the validation set, ultimately using
accuracy as the performance metric for the classifier. K-CV involves dividing the dataset
into K groups and then taking each group in turn as the testing set, while using the
remaining K-1 groups as the training set. The average accuracy of the K training–testing
iterations is then used as the evaluation metric for the classifier’s performance. Compared
to other Cross Validation methods, K-CV has the advantage of more effectively preventing
overfitting and underfitting, which leads to higher credibility in simulating results. In
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this section, the values of K are set to 3, 5, 7, and 9, and the classification accuracy and
variance corresponding to each K value are obtained through experiments (Table 5). The
experimental results indicate that as the value of K increases, the stability of the classification
results gradually improves, and when K reaches 7, the variation in the classification results
tends to level off. The average variance of the classification accuracy is only 0.009. This
finding demonstrates the effectiveness of the 3D_RNet-O model and the high reliability of
the results.

Table 5. K-CV experimental results.

K 3 5 7 9

Accuracy (%) 98.85 98.94 98.91 98.96
Accuracy variance (%) 0.059 0.012 0.009 0.008

3.3.6. Ablation Experiment

To verify the effectiveness of different modules in the 3D_RNet-O model, this section
conducted ablation experiments for analysis (Table 6). From the results of experiment a,
it can be observed that the model with only single 3D convolution feature extraction has
the poorest classification accuracy. When the first branch (a × 1 × 1, 1 × a × a) or the
second branch (1 × a × a, a × 1 × 1) is added, the model’s classification performance
shows a significant improvement, indicating that the combination of spectral convolution
block and spatial convolution block in the residual block can effectively enhance the
model’s classification performance. In experiment d, when the dual-branch module is
simultaneously added to the residual block, the model’s classification performance is greatly
improved. Considering the overall performance indicators of the model, the OA, AA, and
Kappa have, respectively, increased by 1%, 1.66%, and 0.019. This further demonstrates that
the 3D_RNet-O model can more effectively extract the joint spectral–spatial information
from remote sensing images from a global perspective.

Table 6. Analysis results of ablation experiments.

No. 3D_Conv First Branch Second Branch OA (%) AA (%) Kappa

a
√

97.41 96.69 0.958
b

√ √
97.82 96.78 0.959

c
√ √

98.05 97.26 0.962
d

√ √ √
99.05 98.92 0.981

3.4. Comparison of Computational Efficiency and Model Parameters

To further discuss the parameter size and computational efficiency of the 3D_RNet-O
model, we conducted experimental analysis on models with the same network depth (Table 7).
SVM has fewer hyperparameters, resulting in the lowest time cost, but its classification
performance is relatively poor. Among the convolutional neural network-based classification
models, DGRNet has the lowest total parameter count and model size, as well as lower time
cost, but its overall classification performance is inferior. In comparison to the 3D_DGRNet
model, the proposed 3D_RNet-O model demonstrates a significant reduction in parameter
count and model size, making it easier for deployment on mobile devices. This indicates
that the 3D_RNet-O model not only ensures classification accuracy, but also exhibits higher
computational efficiency and advantages in terms of model size.

Table 7. Computational efficiency and model parameters of different models.

Models SVM DGRNet 3D_DGRNet 3D_RNet-O

Total params / 21,370,883 63,471,171 28,357,699
Parameters size (MB) / 81.5 242.1 108.2

Time (s) 144.3 396.1 714.4 402.7
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4. Discussion

The boxed area in Figure 11 shows a magnified view of the visual classification results.
A comparison reveals that DGRNet34 fails to accurately identify A. frigida, and there
is a significant misclassification probability with S. breviflora. Although 3D_DGRNet34
successfully identifies some instances of A. frigida, it still exhibits misclassifications with
S. breviflora. Moreover, it struggles to effectively recognize S. breviflora and often misclassifies
it as non-vegetation. The 3D_RNet-O model performs better than the 3D_DGRNet34 model,
as it identifies more instances of S. breviflora. It also demonstrates a notable improvement in
identifying A. frigida, although there are still small areas of misclassification with S. breviflora.
Through field investigations and Region of Interest (ROI) analysis in ENVI, it was found
that the spectral curves of A. frigida communities in desert grasslands become flat and
featureless due to drought stress. This change makes it difficult to distinguish pixels that
are mixed with S. breviflora in the image, leading to issues such as same-spectrum foreign
bodies and homogeneous spectra [23,24]. This is also a challenging task in the current
research on desert grassland land cover classification and inversion and has become a key
technical challenge.

The current low-altitude remote sensing data of drones have been widely applied
in research areas such as farmland and forests with fixed and regular shapes. However,
there is relatively little research on the degraded grassland landscape that consists of small
and sparsely distributed land features [25–28]. In recent years, significant progress has
been made in grassland monitoring research based on digital cameras and multispectral
data. However, the focus has mainly been on aspects such as fractional vegetation cover,
above-ground biomass, vegetation moisture content, average community height, and the
impact of different grazing intensities on grassland biomass [14,22,29]. However, research
on the identification of degraded grassland vegetation communities is still in its early
stages. Existing studies mainly focus on the classification and identification of species such
as bare soil, grass, and shrubs [18,21], The UAV hyperspectral remote sensing system and
deep learning techniques employed in this study provide high spectral–spatial resolution,
enabling effective and accurate extraction of detailed texture features of desert grassland
vegetation communities.

Currently, breakthroughs have been made in the exploration of spectral information,
spatial information, and spectral–spatial joint information using deep learning methods.
Scholars have proposed their own models and solutions. In the research of spatial feature
extraction and classification, researchers have used models such as ResNet, VGGNet [30,31],
and Densenet [32,33] to significantly improve classification accuracy. However, the accu-
racy of complex land object recognition is relatively low [34]. Scholars have used 3D-CNN
models to classify land objects with large differences in spectral reflectance, such as grass
vegetation, bare soil, and markers, achieving higher classification accuracy [24]. By combin-
ing 1D-CNN and 2D-CNN, scholars have simultaneously extracted spectral and spatial
features, effectively enhancing feature extraction capabilities. However, the process is
cumbersome and the improvement in classification accuracy is limited [35]. To address
problems such as redundant information in adjacent spectral bands of hyperspectral im-
ages, incomplete information feature extraction between spectral dimensions in 2D-CNN,
and high computational complexity of 3D-CNN, scholars have proposed a fusion of vege-
tation indices and 3D-2D-CNN classification method, which effectively enhances feature
extraction capabilities. However, there are issues such as high computational pressure and
increased training costs [17,36]. More research shows that 3D-CNN has advantages in joint
extraction of spectral–spatial features [24,36] and is more suitable for hyperspectral feature
extraction. Based on 3D-ResNet, this study proposes the 3D_RNet-O improved model,
which has objective training costs and high recognition and classification accuracy for small
target objects. It has significant advantages in monitoring applications of indicators of
grassland degradation.
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5. Conclusions

This research focuses on the distribution characteristics of indicator objects for desert
grassland degradation and integrates an unmanned aerial vehicle hyperspectral remote
sensing system. For the first time, hyperspectral data collection of indicator objects for
grassland degeneration in northern desert grasslands is conducted. A vegetation commu-
nity classification model based on 3D_RNet-O is proposed to classify grass species groups
indicating grassland degeneration, degraded indicators, withered grass, bare soil, etc.,
achieving high accuracy.

In the process of training the basic model, it was found that deep learning has more
potential than machine learning in extracting the latent information contained in high-
dimensional datasets of hyperspectral remote sensing for degraded grassland vegetation.
In order to address the issue of poor identification results caused by flat spectral curves and
weak characteristics in degraded grassland, the recognition rate of group species can be
effectively improved through improvements in the convolutional layer structure in residual
blocks. By continuously adjusting and optimizing hyperparameters such as the size of
convolutional kernels, learning rate, batch size, training ratio, and max pooling, the overall
classification accuracy can reach up to 99.05%.
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