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Abstract: Stress has emerged as a major concern in modern society, significantly impacting human
health and well-being. Statistical evidence underscores the extensive social influence of stress, es-
pecially in terms of work-related stress and associated healthcare costs. This paper addresses the
critical need for accurate stress detection, emphasising its far-reaching effects on health and social
dynamics. Focusing on remote stress monitoring, it proposes an efficient deep learning approach
for stress detection from facial videos. In contrast to the research on wearable devices, this paper
proposes novel Hybrid Deep Learning (DL) networks for stress detection based on remote photo-
plethysmography (rPPG), employing (Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), 1D Convolutional Neural Network (1D-CNN)) models with hyperparameter optimisation
and augmentation techniques to enhance performance. The proposed approach yields a substantial
improvement in accuracy and efficiency in stress detection, achieving up to 95.83% accuracy with the
UBFC-Phys dataset while maintaining excellent computational efficiency. The experimental results
demonstrate the effectiveness of the proposed Hybrid DL models for rPPG-based-stress detection.

Keywords: 1D Convolutional Neural Network (1D-CNN); Deep Learning (DL); Gated Recurrent
Units (GRU); Long Short-Term Memory (LSTM); physiological signals; remote photoplethysmography
(rPPG); stress detection

1. Introduction

Stress in humans is related to mental health and well-being [1]. It is the biological
response to a situation such as a threat, challenge, or physical and psychological barrier [2].
The sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS)
are two components of the autonomic nervous system (ANS) that directly affect how the
body reacts to stress [3,4]. In highly stressful events, the SNS executes the fight or flight
survival response. As a result, the body redirects its efforts toward fighting off threats.
Given its subjective nature, identifying and monitoring the onset, duration, and severity
of stressful events is challenging. This is especially true in workplace situations [5] where
there is often an intelligent choice to ignore stress for professional gain. Recent studies have
shown an increase in stress levels in the office environment [6]. Due to the plasticity of the
brain, chronic or persistent stress has been shown to increase the volume of the amygdala,
a structure within the limbic system that defines and regulates emotions, stores emotional
memories, and, most importantly, executes the fight or flight response [7]. Similarly, chronic
stress is associated with a reduction in the mass of the prefrontal cortex [8], which is used
to intelligently regulate thoughts, actions, and emotions.

Recent research in the field has introduced various sensor-based solutions for stress
detection, as evidenced by studies such as [4,9,10]. Although some of these solutions use
only a single type of sensor, others employ multimodal sensing. Traditionally, electrocardio-
graphy (ECG) has been used to measure heart rate variability (HRV) for stress detection [11].
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Biomarkers like galvanic skin response (GSR), electrodermal activity (EDA), respiration,
and electromyography (EMG) are increasingly recognized for assessing affective states
and stress levels [12–14], utilising sensing devices. While these traditional sensor types are
considered the gold standard and provide excellent opportunities for the measurement of
stress-related biomarkers, the ease of use for these devices in a practical scenario becomes
a challenge, as experimentation can only be carried out in a designated equipped setting.
The focus of research is shifting to developing simpler and more convenient sensing so-
lutions that are applicable to everyday life to measure physiological parameters. Recent
advances in technology have led to significant developments in wearable and personal
sensing devices with applications in healthcare, for example, the use of a wearable device
to capture physiological data for health monitoring [15–20]. These devices include chest
bands [15,16,21,22], portable ECG devices [17,23], etc. HRV parameters can be measured
using wristbands such as Empatica E4 wristband [18,24], Microsoft Band 2 [19,25], Polar
watch [20,26], and Fitbit watch [20,26], among others. Researchers analyse personal data
from these devices to provide relevant insights into the individual’s physical and health
status. Although these devices show promise and provide a non-intrusive means of acquir-
ing data for stress detection models, a major limitation of these devices relates to the size,
making them uncomfortable for practical use cases [27].

On the contrary, rPPG technology measures Blood Volume Pulse (BVP) using a camera,
eliminating the need for sensor attachments [28,29]. By extracting skin pixels from facial
data captured by the camera, rPPG technology utilises changes in skin colour corresponding
to heartbeat to obtain the BVP signal [28,30–32]. This method simplifies the measurement,
reduces sensor complexity, and avoids attachment-related problems. Furthermore, rPPG
can be used to capture HRV measures for analysis, especially in healthcare applications. The
widespread availability of cameras in the form of webcams or smartphones makes rPPG
technology easily accessible to anyone. Due to its advantages, rPPG finds applications in
healthcare, fitness, and forensic science. Integration of rPPG technology into smart mirrors
or smartphones increases its potential as a professional health indicator. Although still in
an early stage, rPPG-based non-contact affective computing has become a growing area
of research in recent years, which can drastically improve human–computer interaction
in real time for stress detection. This paper explores the feasibility of end-to-end methods
for recognising stress by proposing a rPPG-based stress detection system to leverage non-
contact and physiological techniques, facilitating the continuous monitoring of pervasive
long-term biomedical signals. The contributions made in this paper are as follows:

• A novel system leveraging non-contact and physiological techniques is proposed,
enabling the continuous monitoring of pervasive biomedical signals for long-term
stress detection.

• Hybrid DL networks and models for rPPG signal reconstruction and Heart Rate (HR)
estimation to significantly improve accuracy and efficiency in stress detection up to
95.83% with the UBFC-Phys dataset.

• Extensive experiments and empirical evaluations of Deep Learning (DL) models for
stress detection provide valuable insights and comparisons.

The remainder of this paper is structured as follows. Section 2 presents a comprehen-
sive literature review of the existing approaches, while Section 3 introduces the methodol-
ogy, collection protocol, and preprocessing steps. In Section 4, the experimental results are
discussed while the conclusion and future work plan are outlined in Section 5.

2. Related Work

The term stress was initially introduced into medical terminology in 1936, referred to as
a syndrome produced by diverse nocuous agents that seriously threaten homeostasis [33].
Selye’s experiments demonstrated that prolonged exposure to severe stress could lead to
disease and tissue damage [34]. Recently, research on stress, its causes, and implications
has gained traction [4,9,10,12–14]. It is characterised by a complex interactive phenomenon,
arising when a situation is deemed important, carries the possibility of damage, and
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requires psychological, physiological, and/or behavioural actions [4,9,10]. Understanding
stress involves distinguishing between stressors, stress responses, and stress biomarkers.
Stressors are stimuli that disrupt normal activity, stress responses are symptoms triggered
by stressors, and biomarkers reflect interactions between a biological system and potential
hazards [3,4,9,10]. The human body responds to stressors through mechanisms such as the
hypothalamic–pituitary–adrenal (HPA) axis, ANS, and the immune system [35]. The HPA
axis releases hormones, including cortisol, in response to stressors, initiating the “fight or
flight response”, leading to physiological reactions from the ANS, increasing SNS activity,
and decreasing PNS activity [3,4]. Cortisol levels and other physiological measures such as
body temperature, respiration rate, pulse rate, HRV, and blood pressure (BP) have been
identified as standard stress biomarkers [15–17,21–23]. Several methods for stress detection
include questionnaires, ECG, electroencephalogram (EEG), BP using arm cuff, sampling
saliva cortisol and other biomarkers from blood tests [36–38]. Self-reporting tools such as
the Perceived Stress Scale and Depression Anxiety Stress Scale are widely used to measure
perceived stress, but have limitations such as biased responses and subjectivity [39]. ECG
measures changes in heart rhythm due to emotional experiences; providing information
about HRV usually requires a visit to a medical facility. EEG captures electrical signals in the
brain, correlating brain waves (beta and alpha) to stress, but conventional EEG machines
are impractical for managing daily stress [40,41]. Biomarkers such as cortisol in salivary
and hair samples are associated with chronic stress but are invasive and time-consuming.
Blood pressure measured with a sphygmomanometer is accurate, but requires a trained
professional [36–38]. Ambulatory Blood Pressure Measurement (ABPM) devices offer
home monitoring, but lack widespread validation and can be influenced by factors other
than stress [42]. While traditional sensor types are acknowledged as the gold standard,
offering excellent opportunities for measuring stress-related biomarkers, their practical use
in everyday situations poses a significant challenge. Emerging technologies have focused
on developing simpler and more convenient sensing solutions applicable to daily life to
measure physiological biomarkers. Wearable and personal sensing devices, such as chest
bands, wrist bracelets, and portable ECG devices [15,18,21,24], have played a pivotal role
in this evolution.

Conventional approaches to stress detection have drawbacks that are not in line with
modern lifestyles and real-time monitoring. These methods are invasive, prone to bias,
incur substantial costs, and require time-consuming travel to clinical settings. Over the past
two decades, there has been a noticeable shift towards technology-driven approaches for
more efficient, cost-effective, and less intrusive stress measurement compatible with modern
lifestyles. Wearable devices, mobile applications, and Machine Learning (ML) algorithms
have revolutionised stress detection and measurement. One approach is measuring HRV
using wearable devices such as smartwatches, fitness trackers, and chest straps, allowing
continuous and long-term monitoring of stress levels [16,17,20,23,26]. Typically, as HRV
measures are inherently nonlinear, ML algorithms and other statistical data-driven methods
such as Modified Varying Index Coefficient Autoregression Model (MVICAR) [43] can be
applied in stress detection systems. ML algorithms have enabled accurate and efficient
HRV-based stress detection and classification systems [29,44–47]. EDA, which measures
the electrical activity of sweat glands, is another method that can be monitored with
wearable devices, providing continuous and real-time monitoring of stress levels. Mobile
applications using EDA-based biofeedback help individuals manage stress by providing
real-time feedback and stress reduction techniques [16,25]. However, EDA measurement is
sensitive to environmental factors, skin conditions, and medications, affecting the precision.

The COVID-19 pandemic has stimulated interest in remote healthcare, leading to
research using cameras for the estimation of rPPG signals and real-time monitoring, ad-
dressing the need for non-invasive, contactless, and accessible methods for stress assess-
ment [48,49]. rPPG offers a non-invasive means of measuring BVP remotely. This approach
requires only a camera and an ambient light source. With this, HRV measures, pulse rate,
and breathing rate can be measured using an everyday camera for facial video analysis
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to remotely detect and monitor stress [28,30–32]. There have been a growing number of
research papers. For example, Benezeth et al. [46] proposed an rPPG-based algorithm
that estimates HRV using a simple camera, showing a strong correlation between the HRV
features and different emotional states. Similarly, Sabour et al. [29] proposed an rPPG-
based stress estimation system with an accuracy of 85.48%. Some other works on the use of
rPPG are encouraging, indicating that noncontact measures of some human physiological
parameters (e.g., breathing rate (BR) and Heart Rate (HR)) are promising and have great
potential for various applications, such as health monitoring [47,50] and affective comput-
ing [51–53]. While these contributions are noteworthy, this paper significantly advances
the field by introducing Hybrid Deep Learning (DL) networks and models for rPPG signal
reconstruction and Heart Rate (HR) estimation. This novel approach presents a substantial
improvement in accuracy and efficiency in stress detection, achieving up to 95.83% accuracy
with the UBFC-Phys dataset. The integration of Hybrid DL networks represents a contri-
bution, offering enhanced capabilities for signal reconstruction and stress classification.
Considering these, rPPG is well-suited for both business and everyday applications and
has the significant advantage of measuring ECG and photoplethysmography (PPG).

Wearable and contactless devices offer promising alternatives for stress measurement,
providing convenient and non-invasive methods for continuous monitoring. However, the
quality and accuracy of the data generated by these devices can vary. A major limitation
to adapting rPPG is evident in the decrease in the signal-to-noise ratio, which requires
advanced signal processing. Many articles lack peer review and validation in clinical
settings, raising concerns about the reliability of data. Although wearable devices can
be sensitive to factors such as movement, heat, and transpiration, leading to inaccurate
measurements, ease of use, especially during sleep or physical activities, is another huge
limitation. Individuals with skin sensitivities, allergies, or specific health conditions may
also find wearing these devices intolerable.

3. Method

The proposed methodology consists of three main parts, as shown in Figure 1. The
primary objective is to detect social stress using contactless physiological signals extracted
from facial videos through DL techniques. In the first part, a pyVHR toolbox (Python
framework for Virtual Heart Rate) [54] is used to capture and estimate the beats per minute
(BPM) from facial video data. The second part involves the increase in the estimated BPM
and is subsequently input into four DL models (Recurrent Neural Network (RNN), LSTM,
GRU, and 1D-CNN). The performance of these models is then evaluated and compared on
the basis of specific metrics. The proposed methodology is implemented using Python 3
and relevant libraries for data manipulation, leveraging an NVIDIA graphics processing
unit (GPU) with Compute Unified Device Architecture (CUDA) version 12.2 and CUDA
Deep Neural Network (CuDNN) library. It should be noted that the default parameters of
pyVHR, including a window size of 8, patch size of 40, and pre/post filter, were used for
the estimation of BPM. The selected methods include Regions of Interest (ROI) approaches:
holistic and convex hull, as well as CuPy CHROM, Torch CHROM, and CuPy POS. Refer
to Table 1 for a brief overview of the methods.

3.1. Dataset and Data Processing

The UBFC-Phys dataset includes data from 56 healthy subjects, with 12 participants
excluded due to technical and consent issues [29]. The participants, aged between 19
and 38 (mean age 21.8, standard deviation 3.11), comprise 46 women and 10 men. In the
study, stress levels were induced using a modified version of the Trier Social Stress Test
(TSST) [55]. The participants completed three tasks: a 10-minute rest task serving as a
baseline, a speech task, and an arithmetic task. Speech and arithmetic tasks aimed to induce
stress through a social evaluation threat. In the test scenario, the speech task simulated a
job interview, introducing an additional expert via video call to enhance social-evaluative
threat. The arithmetic task involved a countdown with variations. For the purposes
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outlined in this paper, attention is given to ground-truth (GT) BVP signals labelled as T1
and T2 for the stress and non-stress classes, respectively. These signals, obtained using the
Empatica 4 wristband at a 64 Hz sampling rate, consist of vectors with 11,520 data points
each (64 × 180 = 11,520). Subsequently, the first 500 data points of the GT BVP signals for
subjects s1 to s4 were plotted to visually depict the impact of stress (T1) and non-stress (T2)
on signal behaviour. Refer to Figure 2 for these graphs.

Data processing included the application of the Fast Fourier Transform (Fast Fourier
Transform (FFT)) to generate frequency domain features from the Blood Volume Pulse (BVP)
signals. In addition, the data augmentation was implemented with Linear Interpolation
and Gaussian White Noise.

Figure 1. Stress detection framework. The video frames serve as inputs to the pyVHR toolbox,
enabling the extraction of rPPG BPM signals from facial regions within the frames. The derived BPM
signals are subsequently channelled through DL models (LSTM, GRU, and 1D-CNN), culminating in
stress classification outcomes.

Table 1. Parameters and methods used for rPPG with pyVHR toolbox.

Parameters Description

Window
The number of consecutive video frames processed to estimate the
physiological signal.

Holistic
Skin extraction technique that sets the stage for calculating the
RGB trace, which is achieved by calculating
the average intensity of facial skin colour for each channel separately.

Convexhull
A skin extractor that subtracts the eyes and mouth regions from the
rest of the entire face. It offers dependable real-time face and landmark
detection and tracking.

CuPy CHROM
A chrominance-based method used to infer the pulse signal from
the RGB traces built with the CuPy Python library designed for
GPU-accelerated computing with open-source arrays.

Torch CHROM
Built with PyTorch, which is an open-source ML framework that facilitates
building, training, and deploying DL models through a dynamic
computational graph.

Cupy POS
Plane POS is another method also used to infer the pulse signal from
RGB traces, but from a projection plane that is perpendicular to the skin
tone built with the CuPy library.
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Figure 2. GT BVP signals behaviour during no-stress task (T1) and stress task (T2) of subjects s1 to s4.

Linear interpolation, as illustrated by Equation (1), augments by estimating values
between existing data points, creating straight lines connecting these points.

y = y1 + (x − x1)
y2 − y1

x2 − x1
(1)

where x1 and y1 are the first coordinates, x2 and y2 are the second coordinates, x is the
point to perform the interpolation, and y is the interpolated value.

Alternatively, the Gaussian White Noise augmentation method generates series of
random values using the Gaussian distribution; see Equation (2) below. The resulting se-
quence exhibits white noise characteristics. Gaussian White Noise serves multiple purposes
beyond dataset expansion. It is valuable to simulate uncertainty, randomness, or inherent
variability present in real-world data.

series[i] = Xi, f ori = 1, 2, 3, . . . , 1000 (2)

where X1, X2, X3, . . . , X1000 are independent and identically distributed random variables
following a Gaussian distribution with mean µ = 0.0 and standard deviation σ = 1.0.

3.2. Deep Learning Models

A set of DL models are selected to detect stress and evaluate the effectiveness and effi-
ciency of the models. Due to intrinsic structural differences between DL models based on
RNN, specifically LSTM and GRU, and Convolutional Neural Networks (CNN), three 1D-
CNN-Multilayer Perceptron (MLP) models were designed. One of these models closely mir-
rors the architectures of RNN-based models in terms of the number of neurons, represented
as “filters” in CNNs. However, instead of utilising LSTM or GRU layers, Convolutional
One-Dimensional (Conv1D) layers were used. These models also include Maxpooling1D
layers and flatten layers, along with specific parameters and functions, such as kernel
size and Rectified Linear Unit (ReLU) activation. The other two 1D-CNN models have
additional CNN and MLP layers and different “pool size”. It is important to note that the
limited sample size of estimated BPM signals (only 172 data points per video) from the
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pyVHR toolbox prevented the evaluation of the performance of 1D-CNN models versions
2 and 3, given their respective architectures. For a detailed architecture, layer descriptions,
parameters, and functions of the 1D-CNN-MLP models, please refer to Table 2. The design
flow of the 1D-CNN with 3 CNN and 2 MLP layers, labelled “CNNv2”, is illustrated in
Figure 3.

Figure 3. 1D 3x CNN-2x MLP architecture—labelled 1D-CNNv2.

Table 2. DL methods implemented.

DL Method # Layers Layer (Type) Output Shape Param # Total
Params

Trainable
Params

Non-Trainable
Params

LSTMv1 3

lstm 11,519 × 64 16,896

22,097 22,097 0lstm 16 5184

dense 1

LSTMv2 4

lstm 11,519 × 64 16,896

32,465 32,465 0
lstm 11,519 × 32 12,416

lstm 16 3136

dense 1 17

GRUv1 3

gru 11,519 × 64 12,864

16,817 16,817 0gru 16 3936

dense 1 17

GRUv2 4

gru 11,519 × 64 12,864

24,689 24,689 0
gru 11,519 × 32 9408

gru 16 2400

dense 1 17

1D-CNNv1 5

conv1d 11,517 × 64 256

1,480,001 1,480,001 0

max_pooling 5758 × 64 0

conv1d 5756 × 32 6167

max_pooling 5756 × 32 0

flatten 92,096 0

dense 16 1,473,552

dense 1 17
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Table 2. Cont.

DL Method # Layers Layer (Type) Output Shape Param # Total
Params

Trainable
Params

Non-Trainable
Params

1D-CNNv2 7

conv1d 5744 × 512 16896

2,765,441 2,765,441 1792

max_pooling 1436 × 512 0

batch_normalisation 1436 × 512 2048

conv1d 1429 × 256 1,048,832

max_pooling 357 × 256 0

batch_normalisation 357 × 356 1024

conv1d 350 × 128 262,272

max_pooling 87 × 128 0

batch_normalisation 87 × 128 512

flatten 11136 0

dense 128 1,425,536

dropout 128 0

dense 64 8256

dropout 64 0

dense 1 65

1D-CNNv3 7

conv1d 57,44 × 512 16,896

4,199,169 4,199,169 1792

max_pooling 1436 × 512 0

batch_normalisation 1436 × 512 2048

conv1d 1429 × 256 1,048,832

max_pooling 357 × 256 0

batch_normalisation 357 × 256 1024

conv1d 350 × 128 262,272

max_pooling 87 × 128 0

batch_normalisation 87 × 128 512

flatten 11,136 0

dense 256 2,851,072

dropout 256 0

dense 64 16,448

dropout 64 0

dense 1 65

3.3. Performance Evaluation

The metrics chosen to evaluate the models needed to be suitable for the classification
of categorical variables ”stress” and ”no-stress”. For that reason, the metrics Accuracy-Ac,
Recall-Re, Precision-Precision (Pr), and F1-Score (F1) were selected. Each of these metrics
assesses the models’ classification performance from a different perspective.

Accuracy—It provides a general sense of how well the model is performing between
stress and non-stress classification. The higher the value, the greater the model’s accuracy.

Ac =
TP + TN

TP + FN + TN + FN
(3)
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Recall—This metric is also known as sensitivity metric, or true positive rate. It computes
the proportion of true positive predictions out of all actual positive instances. In the context
of this research project, a high recall value indicates that the model is sensitive to detecting
social stress, which is critical for its practical application.

Re =
TP

TP + FN
(4)

Precision—Calculates the proportion of true positive predictions out of all positive in-
stances. The higher the value, the more accurate the model is predicting the true posi-
tive instances. This helps minimise false positives, which is crucial when dealing with
stress assessment.

Pr =
TP

TP + FP
(5)

F1—This metric provides a balanced view of the model’s performance by considering both
precision and recall. In stress classification, achieving a balance between minimising false
positives Pr and false negatives Re is vital. A high F1 indicates that the model accurately
identifies instances of social stress and minimises false classifications.

F1 = 2 × Pr × Re
Pr + Re

(6)

where the classification outcomes are True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN).

4. Experimental Results

The visualisations provided in Figure 4 offer a distinct view of the contrasting charac-
teristics between the non-stress task (T1) and the stress-induced task (T2) in both the time
and frequency domains. In the time domain analysis, the T1 signal exhibits fluctuations
within the range of −250 to 250 units, while in the presence of stress during T2, this range
becomes wider, spanning from −500 to 500 units. This change in range suggests a poten-
tially heightened physiological response during the stress task. Likewise, when we delve
into the frequency domain, we notice a parallel pattern. In the frequency domain repre-
sentation, the T1 signal presents values oscillating between 0 and 1, whereas the T2 signal
exhibits a wider span of 0 to 5. This expanded variation in the frequency domain further
emphasises the distinction between the non-stress and stress-induced states. Moreover,
the implications of these observations extend beyond mere visualisation. The frequency
domain signal has immense potential as a feature for training and testing deep learning
methods aimed at stress classification. While the raw BVP signal encapsulates temporal
patterns, the frequency domain offers insight into the underlying frequency components
that contribute to those patterns. By extracting features from the frequency domain, deep
learning models can potentially capture and leverage distinctive spectral characteristics
related to stress. The plots in Figure 4 illustrate the GT BVP signals of subject 1 during
tasks T1 and T2 before and after FFT being applied to the data.

Figure 5 shows the estimated heart rate (BPM) extracted from video T1 of subject 1,
using the CuPy CHROM method from the pyVHR toolbox. This visualisation illustrates the
state before and after augmentation using linear interpolation, where it is possible to infer
that expanding the original dataset of 173 data points to 11,009 data points did not alter the
underlying signal, reinforcing the consistency between the original and augmented data.
The processed and augmented dataset is then partitioned into training, validation, and test
datasets using 10% for validation and 10% for testing.

Likewise, Figure 6 shows the estimated heart rate (BPM) plotted from the T1 and
T2 videos of subject 1, using the CuPy CHROM method from the pyVHR toolbox. This
visualisation illustrates the state before and after augmentation using white noise, where
it is possible to infer that expanding the original dataset of 173 data points to 11,180 data
points did not alter the underlying signal.
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Figure 4. Graphs depicting the Time Domain (TD) and Frequency Domain (FD) representations of
the GT BVP signals for subject 1 during tasks T1 and T2.

Figure 5. Plot of estimated BPM extracted from video T1 of subject 1, using the method CuPy
CHROM, before and after augmentation using linear interpolation.

Figure 6. Plot of estimated BPM extracted from videos T1 of subject 1, using the method CuPy
CHROM, before and after augmentation using white noise.



Sensors 2024, 24, 1096 11 of 18

4.1. Classification Results

Three distinct DL methods (LSTM, GRU, 1D-CNN), each with different architectures
(as detailed in Table 2), were implemented to identify the optimal model to effectively
classify stress levels. Although this work focuses on building the best DL model to accu-
rately classify stress status by extracting rPPG from face videos, this classification task was
conducted using both GT-BVP signals computed from videos of the UBFC-Phys dataset
separately in order to compare the performance of the DL models on the GT-BVP and
the rPPG.

4.1.1. Performance Analysis of the DL Methods Applied to the GT Signal

The results in Table 3 present the top-performing results achieved in this article for
both the raw GT (TD) data and the processed GT (FD) data. The results are arranged in
descending order, highlighting the best-performing models and their respective accuracy.
Additionally, the computation time for each model is also provided to allow for compar-
ison of the execution times of the different models. There is a noticeable difference in
computational efficiency between the CNN models and the LSTM and GRU models. The
1D-CNNv1 model completed 50 epochs in just 4.24 s, while the LSTMv2 model required
approximately 1 min and 30 s to achieve the same. The accuracy of the models varies
between approximately 41.67% and 83.33%, and it is obvious that the best results were
obtained using the TD data. However, some models exhibit different performances de-
pending on the domain. For example, the 1D-CNNv2 model achieves significantly better
accuracy (83.33%) in the time domain compared to its accuracy (50.00%) in the frequency
domain. On the contrary, the GRUv2 model demonstrates a higher accuracy (62.50%) in
the FD compared to its accuracy (58.33%) in the TD. Concerning the number of epochs for
training and testing the models, it is possible to infer that the majority of the models only
needed 50 or fewer epochs. On the other hand, the 1D-CNNv2 model achieved its higher
performance around the 60th epoch, as can be seen in Figure 7.

Figure 7. Validation loss and train and accuracy curves of the GT-1D-CNNv2 model.

Regarding the precision and recall in Table 3, precision in some cases is balanced with
recall, while in others, trade-offs are evident. As previously mentioned, models with both
high precision and high recall scores are effective at correctly classifying stress instances
(true positives) and minimising both false positives and false negatives. For instance, the
1D-CNNv2 model achieved this balance, with an accuracy of 83.33% and Precision and
Recall of 83.33%. On the other hand, models with high Recall, but lower Precision predict
more instances as stressed, including those that are uncertain. This is useful when capturing
all stress instances is a priority, even if it means more false positives. The GRUv1 model in
the FD shows this pattern, with Recall of 91.67% but Precision of 61.11%. It is also clear that
the 1D-CNNv2 model achieved the highest accuracy 83.33% among the tested methods.
This suggests that it might be the most effective model for classifying stress and non-stress
states from the GT-BVP signals. From Table 4, it can be inferred that the results achieved by
the traditional machine learning method employed by the dataset’s authors 75% and the



Sensors 2024, 24, 1096 12 of 18

CNN-MLP model utilised in the study by Hasanpoor et al. 82% [54] were both exceeded in
this work 83.33%.

Table 3. GT-PPG DL models’ results.

DL Method Domain Epochs Accuracy Precision Recall F1-Score Time [s]

1D-CNNv2 time 100 83.33% 83.33% 83.33% 83.33% 28.08

LSTMv1 time 100 79.17% 100.00% 58.33% 73.68% 122.62

GRUv1 time 50 79.17% 81.82% 75.00% 78.26% 60.68

GRUv1 time 100 79.17% 81.82% 75.00% 78.26% 119.67

1D-CNNv3 time 50 79.17% 81.82% 75.00% 78.26% 15.21

LSTMv2 time 50 75.00% 87.50% 58.33% 70.00% 92.04

LSTMv2 time 100 75.00% 87.50% 58.33% 70.00% 182.08

GRUv2 time 50 75.00% 80.00% 66.67% 72.73% 89.58

GRUv2 time 100 75.00% 80.00% 66.67% 72.73% 175.43

1D-CNNv1 time 50 75.00% 87.50% 58.33% 70.00% 5.48

1D-CNNv1 time 100 75.00% 87.50% 58.33% 70.00% 7.62

1D-CNNv3 time 100 75.00% 100.00% 50.00% 66.67% 28.49

1D-CNNv3 frequency 100 75.00% 100.00% 50.00% 66.67% 28.74

LSTMv1 time 50 70.83% 100.00% 41.67% 58.82% 62.28

GRUv1 frequency 100 66.67% 61.11% 91.67% 73.33% 119.30

LSTMv1 frequency 50 62.50% 57.89% 91.67% 70.97% 61.96

GRUv2 frequency 100 62.50% 57.89% 91.67% 70.97% 175.16

LSTMv1 frequency 100 58.33% 55.00% 91.67% 68.75% 122.32

GRUv1 frequency 50 58.33% 56.25% 75.00% 64.29% 60.47

1D-CNNv1 frequency 100 54.17% 52.63% 83.33% 64.52% 7.49

LSTMv2 frequency 100 50.00% 50.00% 100.00% 66.67% 181.87

GRUv2 frequency 50 50.00% 50.00% 8.33% 14.29% 89.23

1D-CNNv1 frequency 50 50.00% 50.00% 100.00% 66.67% 4.24

1D-CNNv2 time 50 50.00% 50.00% 100.00% 66.67% 19.75

1D-CNNv2 frequency 50 50.00% 50.00% 8.33% 14.29% 15.42

1D-CNNv2 frequency 100 50.00% 50.00% 8.33% 14.29% 28.14

1D-CNNv3 frequency 50 50.00% 50.00% 8.33% 14.29% 15.07

LSTMv2 frequency 50 41.67% 41.67% 41.67% 41.67% 92.44

Table 4. Comparison of different papers’ results on the UBFC-Phys data.

Work PPG Method ML-Method Accuracy

contact 83.33%
This work

remote
1D-CNN-MLP

95.83%

contact SVM-linear kernel 73.00%
UBFC-Phys [29]

remote SVM-RBF kernel 85.38%

Stress detection using PPG signal and com-
bined deep CNN-MLP network [56] contact CNN-MLP 82.00%
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4.1.2. Performance Analysis of the DL Methods Applied to the rPPG Signal

Moving forward to the performance of the DL models on the estimated BPM, these
were obtained considering the different methods of BPM extraction on the pyVHR toolbox
(CuPy-CHROM, CuPy-POS, and Torch-CHROM), different epochs (50–100), augmentation
techniques (none, linear interpolation, and white noise), DL model versions, input domains
(TD and FD), evaluation metrics (accuracy, precision, recall, and F1 score), and execution
times. The training and testing generated over two hundred lines of results. The best
results per DL model version and per pyVHR method are depicted in Table 5. With regard
to these results, several conclusions can be drawn from this table. On a wider perspective,
the accuracy ranges from 79.17% to 95.83%, indicating the DL models’ effectiveness in
distinguishing between stress and non-stress states, which in the opinion of the authors
can be considered a very good performance across the models. Precision and recall values
vary across all models, with some achieving 100% and others slightly lower (the lowest
being 73.33%), and the F1 score follows the same trend. Considering the time domains and
augmentation techniques, it is possible to infer that the majority of the models excelled in
the frequency domain, whereas the 1D-CNNv3 demonstrated high scores across all metrics
in TD. In terms of augmentation techniques, it is possible to infer that interpolation and no
additional augmentation achieved the best performances across all models. Furthermore,
both CuPy-CHROM and Torch-CHROM pyVHR methods can be a good choice for estimat-
ing BPM from facial videos for stress classification, because all three CNN models achieved
higher performances, although with distinctive augmentation techniques and domains.
Regarding the train and test times, these range from few seconds to over two minutes, with
CNN having the best execution times compared with the LSTM and the GRU models.
In terms of the number of epochs for training and testing, it is possible to infer that, for
the great majority of the models, less than 50 epochs were needed to train and test the
model, with a few exceptions, as in the case of the model that achieved the best overall
performance, 1D-CNNv1 with the configuration white noise and FD, whose performance
slightly improved from around 91.70% to 95.83%. The validation loss and accuracy curves
also reflect that difference, where it can be seen that the model’s performance slightly
improved after around 60 epochs, with an increase in the testing curve and a decrease in
the loss curve (refer to Figure 8).

Figure 8. Plot of estimated BPM extracted from videos T1 of subject 1, using the method CuPy
CHROM, before and after augmentation using white noise.

Considering the importance of accuracy, precision, and recall metrics, along with the
focus on real-world deployment utilising edge devices, the following models appear to be
the stronger candidates: 1D-CNN models, namely 1D-CNNv1, using the CuPy-CHROM
method, white noise augmentation, FD, and 100 epochs, with a mere 7.8 s of execution time;
1D-CNNv2, also using the CuPy-CHROM method, with linear interpolation augmentation,
FD, and 50 epochs; and the 1D-CNNv3 using the Torch-CHROM method, with linear
interpolation augmentation, TD, and 50 epochs.
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Table 5. Best DL method results from the rPPG data.

pyVHR Method DL-Method Version Aug. Domain Epochs Accuracy Precision Recall F1-Score Time

v1 inter freq 50 83.33% 83.33% 83.33% 83.33% 59.4
LSTM

v2 none freq 100 83.33% 90.00% 75.00% 81.82% 9.8

v2 none freq 50 83.33% 83.33% 83.33% 83.33% 6.3
GRU

v1 none freq 50 79.17% 76.92% 83.33% 80.00% 4.6

v1 wn freq 100 95.83% 100.00% 91.67% 95.65% 7.8

v2 inter freq 50 95.83% 100.00% 91.67% 95.65% 14.5

CuPy_CHROM

1D-CNN
v3 inter time 50 91.67% 100.00% 83.33% 90.91% 15.0

v1 inter freq 50 83.33% 83.33% 83.33% 83.33% 59.6
LSTM

v2 none freq 50 83.33% 90.00% 75.00% 81.82% 6.6

v3 wn freq 100 83.33% 78.57% 91.67% 84.62% 114.7
GRU

v2 none freq 50 83.33% 83.33% 83.33% 83.33% 6.5

v3 inter time 50 95.83% 92.31% 100.00% 96.00% 15.1

v2 inter freq 100 91.67% 100.00% 83.33% 90.91% 27.6

Torch_CHROM

1D-CNN
v1 none freq 50 87.50% 84.62% 91.67% 88.00% 2.4

v2 none freq 50 83.33% 83.33% 83.33% 83.33% 6.0
LSTM

v1 inter time 50 79.17% 76.92% 83.33% 80.00% 59.2

v1 none time 50 83.33% 83.33% 83.33% 83.33% 5.3
GRU

v1 none time 100 83.33% 83.33% 83.33% 83.33% 9.7

v1 inter time 50 83.33% 83.33% 83.33% 83.33% 14.8

v3 wn time 50 83.33% 83.33% 83.33% 83.33% 14.5

CuPy_POS

1D-CNN
v1 none freq 50 79.17% 73.33% 91.67% 81.48% 2.1

Aug. (Augmentation), inter (linear interpolation), wn (white noise), and s (seconds).

These models, as illustrated in the normalised confusion matrix in Figure 9, con-
sistently achieve high accuracy 95.83%, precision, and other metrics across TD, FD, and
pyVHR methods. They are well-suited for real-time applications due to their relatively
lower training times compared to the LSTM and the GRU models. Furthermore, these
models demonstrate that they are efficient in processing sequential data like time series,
making them suitable for processing heart rate data extracted from videos. Moreover, the
balanced precision and recall they offer make them well-suited for stress and non-stress
classification, as avoiding false positives and false negatives is crucial.

Figure 9. Confusion matrix showing performance across different models.

As shown in Table 6, two of the three CNN models (1D-CNNv2 and 1D-CNNv3)
achieved perfect scores (100%) in all performance metrics. These results were omitted from
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the best results in Table 5 and are likely the consequence of overfitting, due to training a
heavy model on a small dataset. The authors believe that it is reasonable to assume that
the deployment of these models, along with their associated weights, to real-world data
scenarios would probably yield performance outcomes that are less impressive.

Table 6. Overfitted results of the rPPG data.

pyVHR Method dl_Method Aug. Domain Epochs Ac Pr Re F1 Time (s)

CuPy_CHROM 1D-CNNv3 inter frequency 50 1 1 1 1 14.59

CuPy_CHROM 1D-CNNv3 inter frequency 100 1 1 1 1 27.00

Torch_CHROM 1D-CNNv2 inter frequency 50 1 1 1 1 14.44
Aug. (Augmentation), inter (linear interpolation), s (seconds).

5. Conclusions and Future Work

This paper has successfully established a robust framework for remote stress detection
through the analysis of physiological signals derived from facial videos. The primary goal
was to ascertain an advanced DL model for stress classification, surpassing the capabilities
of traditional ML techniques. The adoption of three DL methods (LSTM, GRU, and CNN)
and their refinement through empirical optimization yielded significant achievements,
including an impressive 95.83% accuracy in classifying stress from rPPG signals. The
outstanding computational efficiency of the best-performing DL model, 1D-CNNv1, aligns
seamlessly with the prospect of deploying the framework on edge devices. The explo-
ration of augmentation techniques, particularly linear interpolation and the absence of
augmentation, showcased promising outcomes, highlighting their efficacy in enhancing
model performance. The proposed methodology holds significant potential to influence
stress-related policies, practices, and management, potentially fostering increased user
engagement with stress detection tools. However, it is crucial to acknowledge a major
limitation inherent in the rPPG approach, centered around privacy concerns stemming
from the utilisation of cameras and the diversity of the participants. The privacy issue
emphasises the need for user consent and necessitates a careful balance between the po-
tential advantages of the approach and the preservation of individual privacy rights. It
is imperative to underscore that the rich insights provided by this approach should be
accompanied by stringent privacy measures, ensuring that user consent is sought and
respected throughout the stress detection process. Future work will focus on improving
signal extraction through alternative physiological sensing tools and optimising parameters
in existing toolboxes. Exploring additional augmentation techniques and advancing DL
methods, particularly focusing on 1D-CNN, stand as promising paths for further enhance-
ment. Rigorous validation through cross-validation and testing on diverse datasets is
paramount to assess model robustness and ensure generalisation across various scenarios.
Furthermore, future investigations could also consider the potential influence of participant
ethnicity on model accuracy, recognising the importance of addressing diversity in the
dataset and its implications for the broader applicability of the stress detection framework.
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