
Citation: Gong, X.; Ren, S.; Wang, C.;

Wang, J. Research on Computing

Resource Measurement and Routing

Methods in Software Defined

Computing First Network. Sensors

2024, 24, 1086. https://doi.org/

10.3390/s24041086

Academic Editor: Hazer Inaltekin

Received: 6 December 2023

Revised: 12 January 2024

Accepted: 22 January 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Research on Computing Resource Measurement and Routing
Methods in Software Defined Computing First Network
Xiaomin Gong , Shuangyin Ren, Chunjiang Wang * and Jingchao Wang *

Academy of Systems Engineering, AMS, Beijing 100141, China; gongxiaomin04@163.com (X.G.)
* Correspondence: wangcj61@sina.com (C.W.); wangjc.2000@tsinghua.org.cn (J.W.)

Abstract: Computing resource measurement and computing routing are essential technologies in
the computing first network (CFN), serving as its foundational elements. This paper introduces a
Software Defined Computing First Network (SD-CFN) architecture. Building upon this framework, a
Dynamic-Static Integrated Computing Resource Measurement Mechanism (DCRMM) is proposed,
incorporating methods such as the entropy weight method and K-Means clustering. The DCRMM
algorithm outperforms the Maximum-closest Static Algorithm (MSA) and Maximum Closest Dy-
namic Algorithm (MDA) in terms of node stability, node utilization, and node matching accuracy.
Additionally, a Reinforcement Learning and Software Defined Computing First Networking Rout-
ing (RSCR) algorithm is presented as a software-defined computing routing solution within the
SD-CFN. RSCR introduces a knowledge plane responsible for computing routing calculations. It
comprehensively considers factors such as link latency, available bandwidth, and packet loss rate.
Simulation experiments conducted on the GÉANT topology demonstrate that RSCR outperforms the
OSPF algorithm in terms of link latency, packet loss rate, and throughput. DCRMM and RSCR offer
innovative solutions for computing resource measurement and computing routing in computing
first networks.

Keywords: software defined network; computing first network; computing routing; computing
resource measurement; reinforcement learning

1. Introduction

As artificial intelligence, big data, and other technologies continue to advance,
computing-intensive and latency-sensitive tasks such as facial recognition, object detection,
and autonomous driving have emerged in large numbers. This trend has driven the
further development of technologies such as cloud computing and edge computing,
enabling end-users to more conveniently access distributed computing resources at the
edge. However, the deployment of edge computing still faces significant challenges. From
a network perspective, the computing capabilities of individual nodes in edge computing
scenarios are limited. Edge nodes cannot perceive each other and are unable to collaborate
effectively. The challenge lies in the inability to efficiently schedule computing tasks to the
optimal edge node. From a business requirements perspective, there is a need to decouple
existing business application layers from the network. The application layer cannot
accurately grasp the network’s status. Addressing results dominated by the application
layer may not achieve optimal overall performance and could potentially lead to network
load imbalance. Services may not be efficiently arranged to the best edge node, resulting in
impaired business operations [1]. Therefore, it is crucial to address how to efficiently and
flexibly schedule computing resources between nodes, thereby improving the utilization of
computing power [2,3].

To more efficiently utilize ubiquitous distributed computing resources and expedite
the processing of computing tasks, the convergence of computing and networking has
become imminent. With the impetus from telecom operators and equipment vendors,

Sensors 2024, 24, 1086. https://doi.org/10.3390/s24041086 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041086
https://doi.org/10.3390/s24041086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0839-2427
https://doi.org/10.3390/s24041086
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041086?type=check_update&version=1

Sensors 2024, 24, 1086 2 of 20

the Computing First Networking (CFN) paradigm has emerged [4,5]. CFN represents a
new paradigm of cloud-network integration, aiming to achieve the interconnection and
coordinated scheduling of ubiquitous distributed computing, storage, and other resources
through the network. This enables on-demand and real-time invocation of massive com-
puting and storage resources, facilitating global optimization and efficient utilization of
computing and network resources. As businesses transition to the cloud and the consumer
internet evolves into the industrial internet, the convergence of computing and networking
has become a pivotal force in the digital transformation of social and economic activities.

The CFN proposes a new network architecture and protocols, unifying the scheduling
of computing and network resources, enabling global optimization and collaborative
scheduling of these resources. Existing CFN architectures can be broadly categorized
into two types: centralized architecture and distributed architecture. The centralized
architecture, often combined with Software Defined Networking (SDN), separates the data
plane from the control plane, allowing the controller to have a global view of computing
and network resources for routing computation and decision-making. The distributed
architecture achieves the synchronization of computing and network resource information
through information exchanges between adjacent routing nodes, with each routing node
handling forwarding and control decisions. Whether centralized or distributed, achieving
comprehensive scheduling of computing resources across the entire network requires a
routing algorithm that schedules CFN information. Similarly, the prerequisite for routing
implementation is the establishment of a unified computing resource measurement and
modeling mechanism.

This paper introduces a centralized computing first network architecture, namely
the Software Defined Computing First Network (SD-CFN). Leveraging the advantages of
control-plane separation and centralized control, this architecture forms a global view of
the computing resources and networking resources. Additionally, based on this architec-
ture, we combine methods such as entropy weight and K-Means clustering to construct
a Dynamic-Static Integrated Computing Resource Measurement Mechanism (DCRMM).
According to the measurement scheme and task requirements, this mechanism identifies
the most suitable computing nodes for the computation. Simultaneously, we augment
SDN with a knowledge plane and design a Reinforcement Learning and Software Defined
Compute First Networking Routing (RSCR) algorithm within this plane. This algorithm,
utilizing interactions with the environment, RL intelligence, and the global computing
and networking view provided by SDN, considers factors such as link latency, bandwidth,
packet loss rate, and computing resource distribution. After finding appropriate comput-
ing nodes, it rapidly calculates the computing route from the task initiator to the target
computing node. Simulation results using real traffic demonstrate that RSCR outperforms
traditional OSPF algorithms significantly in terms of link throughput, latency, and packet
loss rate.

This article makes two main contributions:

(1) Proposes a dynamic-static integrated computing resource measurement modeling
mechanism.

(2) Proposes an RL-based proactive computing routing algorithm in the SD-CFN environment.

The rest of the paper is organized as follows: Section 2 introduces related work.
Section 3 provides a detailed explanation of RSCR. Section 4 details DCRMM. Section 5
introduces the RSCR routing algorithm. Section 6 analyzes the simulation results of the
RSCR algorithm. The final section concludes the paper and suggests future directions
for research.

2. Related Work

Routing is a fundamental function in the Internet, responsible for forwarding data
packets from source to destination addresses. It plays a crucial role in ensuring Quality of
Service (QoS) [6]. Traditional routing strategies, like Open Shortest Path First (OSPF) rout-
ing [7], may lead to issues such as network congestion and low link utilization. Compared

Sensors 2024, 24, 1086 3 of 20

to optimal routing methods, traditional approaches may exhibit performance differences
of up to 5000 times [8]. Routing optimization has been a topic of in-depth research [9].
Existing solutions include those based on analytical optimization [10] and those leveraging
machine learning [11,12] and deep learning [13,14]. Papers [9,15–17] also proposed various
SDN routing optimization methods. In this section, we review SDN routing optimization
work based on Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL).
Unlike model-based routing optimization algorithms, RL-based methods are model-free.
Moreover, while machine learning algorithms require dataset labeling and training, RL
algorithms directly interact with the network environment to learn strategies.

The key application of reinforcement learning in routing problems focuses on mod-
eling the forwarding process using the Markov Decision Process (MDP). This process
involves setting appropriate states, actions, and reward functions based on specific network
scenarios. The intelligent agent adapts to various dynamic changes through interaction
with the environment [18]. RL can play a crucial role in SDN routing optimization [19]. As
early as 1993, Boyan et al. [20] proposed using the Q-routing algorithm to avoid network
congestion, marking the first academic use of reinforcement learning for routing optimiza-
tion. Although this algorithm was not applied in an SDN architecture, it provided a new
reference direction for subsequent routing optimization algorithms. Lin et al. [21] intro-
duced multi-layer SDN QoS-aware adaptive routing, combining the work of Hassas [22]
and McCauley [23], introducing a distributed control plane architecture, and achieving a
reliable SDN infrastructure with minimal signal latency. Rischke et al. [24] proposed the
QR-SDN algorithm to create multiple paths between source and destination addresses,
maintaining flow integrity using Q-Learning, and employing the softmax function as an
exploration-exploitation strategy. However, this algorithm can only guarantee lower flow
latency than Shortest Path First (SPF) in small networks.

Houda et al. [25] used the Q-Learning algorithm to address the delay minimization
problem in multipath SDN networks. They employed two different exploration strategies,
namely ϵ-greedy, and softmax, and evaluated the performance of the Q-Learning algorithm
based on average flow latency and convergence time for different load levels. Casas-
Velasco et al. [26] proposed the RSIR algorithm, which defined an active routing algorithm
based on link-state, exhibiting lower overall latency and better load balancing compared
to the traditional Dijkstra algorithm. Building on this work, they also introduced Deep
Reinforcement Learning (DRL) and defined the DRSIR algorithm [27] in SDN. DRSIR
considers path state indicators to generate active, efficient, and intelligent routing to adapt
to dynamic traffic changes. The evaluation of DRSIR was conducted through simulation
using real and synthetic traffic matrices. Chen et al. [9] also introduced DRL into the
routing process and proposed the RL-Routing algorithm to address Traffic Engineering
(TE) issues in SDN regarding throughput and latency. They performed comprehensive
experiments based on Fattree, NSFNet, and ARPANet topologies, demonstrating that
experience-driven artificial intelligence has advantages over traditional algorithms in
solving TE problems. Yu et al. [28] proposed a DDPG routing optimization solution,
which, unlike the previous Q-table-based mechanism, saves time and storage by using
a neural network. Zhao et al. [29] positioned the optimal multicast routing problem in
SDN as a multi-objective optimization problem. They designed an intelligent multicast
routing algorithm, DRL-M4MR, to construct a multicast tree in SDN. After DRL-M4MR
agent training, the SDN controller installs multicast flow entries by reverse traversing the
multicast tree to SDN switches, achieving intelligent multicast routing.

Currently, RL routing optimization algorithms based on the SDN architecture are
primarily centered around Q-Learning. This paper also adopts the Q-Learning algorithm
to design the reward function and adjust the strategy based on link available bandwidth,
latency, and packet loss rate. The proposed RSCR algorithm exhibits superior performance
compared to the traditional OSPF algorithm.

Sensors 2024, 24, 1086 4 of 20

3. DCRMM

This section primarily introduces the unified modeling and measurement of dynamic
and static performance indicators of computing nodes by DCRMM and explains in detail
how to select the optimal computing node based on the measurement results. The dynamic
performance indicators of computing nodes refer to the node’s idle CPU cores (cores) c f ,
idle memory (GB) m f , and idle storage (GB) s f , while static performance indicators refer to
the node’s total CPU cores (cores) ct, total memory (GB) mt, and total storage (GB) st. The
workflow of DCRMM mainly consists of the following steps: a. Use the entropy weight
method to calculate the static performance baseline score of computing nodes; b. Segment
the baseline scores using the K-Means clustering algorithm; c. Using the entropy weight
method to calculate the weights of dynamic indicators, assigning these weights to various
indicators of computing tasks (i.e., the required CPU cores (cores) tc, memory (GB) tm,
storage (GB) ts for computing tasks), scoring the computing tasks based on these weights,
and classifying them into the corresponding static performance score intervals according to
the scores. d. Within the qualifying interval, calculate the Euclidean distance between the
dynamic performance of computing nodes and the required performance for computing
tasks, and the node with the shortest distance is considered the optimal computing node.
The reasons for using the entropy weight method are the following two points: a. The basis
for determining the weight of the entropy weight method comes from the data, which are
highly objective and reduce the impact of subjectivity on the decision-making results. b. The
calculation logic of the entropy weight method is simple and clear, has good operability, and
is easy to implement. To prevent a single indicator from occupying a high weight for a long
time in the actual application process, we can reasonably set the update cycle according
to environmental changes to cope with the dynamic updates of different indicators of the
computing power node as the computing tasks are processed. Compared to traditional
algorithms such as the Maximum-closest Static Algorithm (MSA), which considers only
static indicators, and the Maximum closest dynamic algorithm (MDA), which considers
only dynamic indicators, DCRMM performs better in terms of stability, node utilization,
and accuracy in node selection.

3.1. Calculating the Basic Score

Firstly, the entropy weight method [30] is employed to analyze the static indicators
of nodes, yielding the foundational performance scores. Drawing inspiration from the
concept of information entropy, the entropy weight method’s greatest advantage lies in
mitigating the influence of human factors on indicator weights, ensuring that the results of
comprehensive evaluations are more objective [31].

Assuming there are n evaluation indicators and m objects, the raw data can be repre-
sented as a matrix X:

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (1)

Here, xij represents the numerical value of the j-th indicator for the i-th object. Since
various evaluation indicators may have different dimensions, normalization is required
before calculation to ensure that the results fall within the [0, 1] range. Therefore, we
normalize the matrix X column-wise, where Xi represents a value in the column where the
standardization occurs. The normalization function is given by:

x′ij =
xij −min(Xi)

max(Xi)−min(Xi)
(2)

Sensors 2024, 24, 1086 5 of 20

To avoid the impact of zero in the data on subsequent calculations, it is common to
apply an offset to the data. The normalized data can be represented as a matrix X′:

X′ =

 x′11 · · · x′1n
...

. . .
...

x′m1 · · · x′mn

 (3)

Let the weight of the j-th indicator in the i-th object be denoted as pij:

pij =
x′ij

∑n
i=1 x′ij

, (0 ⩽ pij ⩽ 1) (4)

Subsequently, the weight matrix P for the original data is obtained as follows:

P =

 p11 · · · p1n
...

. . .
...

pm1 · · · pmn

 (5)

In the entropy weight method, the entropy value of the j-th indicator is given by [31]:

ej = −
1

ln m

n

∑
i=1

pij ln pij, (0 ⩽ ej ⩽ 1) (6)

The entropy value ej indicates that the larger its numerical value, the higher the
differentiation degree of the j-th indicator, suggesting the derivation of more information.
Therefore, a higher weight should be assigned to this indicator. Thus, the calculation
method for the weight wj is given by:

wj =
1− ej

∑m
j=1 (1− ej)

(7)

Therefore, the comprehensive score Fi for the i-th object can be represented as:

Fi =
m

∑
j=1

pijwj (8)

The static performance indicators of the computing nodes can be defined as a triplet
I = (ct, mt, st), and through the entropy weight method, the weight triplet corresponding
to each indicator is obtained W = (w1, w2, w3). Since only numerical calculations are
considered when calculating the base score, the impact of different units can be ignored.
The basic score Sn for the static performance of the computing node can be represented as:

Sn = ct w1 + mt w2 + st w3 (9)

Sn represents the static performance score of the computing node. A higher value
indicates that the node has stronger basic performance, making it more capable of handling
computing tasks with high demands for computation, storage, and memory performance.

3.2. Segmenting the Basic Score

Next, the K-Means clustering algorithm is applied to segment the basic score. The
K-Means algorithm is a commonly used clustering method that divides data points into
different clusters or groups, so that similar data points are close to each other, while
dissimilar data points are farther apart. This algorithm is an unsupervised learning method,
as it does not require prior knowledge of the categories of data points but automatically
identifies and groups them. By using the K-Means algorithm, nodes are divided into
levels according to performance, and tasks are divided into corresponding performance

Sensors 2024, 24, 1086 6 of 20

nodes according to computing task resource requirements, which can reduce the amount of
calculation of Euclidean distance.

Typically, the K-Means algorithm can be broken down into the following six steps:

a. Inputs: Input the dataset Sn = {S1, S2, . . . , Si, . . . , Sm} (Sn represents the set of all
basic scores) and the maximum number of iterations max_interations are provided.

b. Initialization: Define the number of clusters K (In this article, K = 3), and initialize the

cluster centroids C(0) = {C(0)
1 , C(0)

2 , . . . , C(0)
K }. The initial cluster of centroids can be

randomly chosen.
c. Assignment: For each data point Si, calculate its distance to each cluster centroid Cj,

typically using the Euclidean distance measured by the formula:

d(Si, Cj) =

√
n

∑
k=1

(Sik − Cjk)2 (10)

Subsequently, assign each data point Si to the cluster with the nearest centroid Cj
where j is determined by the following formula:

j = arg minj d(Si, Cj) (11)

d. Update Centroids: For each cluster j, calculate the new cluster center C(t+1)
j as the

mean of all data points in that cluster:

C(t+1)
j =

1∣∣Cj
∣∣ ∑

Si∈Cj

xi (12)

where
∣∣Cj

∣∣ represents the number of data points in the cluster j, and represents the
iteration number.

e. Convergence Check: Usually, K-means iterates until a stopping condition is met, such
as when the cluster centers no longer undergo significant changes (or changes are
below a certain convergence threshold ϵ), or when the maximum number of iterations
max_interations is reached. This can be expressed as:∥∥∥C(t+1)

j − C(t)
j

∥∥∥ < ϵ (13)

f. Outputs: The final result of the K-Means algorithm includes the ultimate cluster

centers C(t) = {C(t)
1 , C(t)

2 , . . . , C(t)
K } and the set of data points assigned to each cluster

Zi ⊂ {Z1, Z2, . . . , Zn}.

Finally, all basic scores are divided into K categories C(t) = {C(t)
1 , C(t)

2 , . . . , C(t)
K } , and

each category has the following scores Zi ⊂ {Z1, Z2, . . . , Zn} .

3.3. Matching the Cluster

Subsequently, evaluate the resource demand indicators of the computing tasks, identi-
fying the cluster of static performance scores corresponding to their scores. The resource
demand of a computing task can be defined as a triplet T = (tc, tm, ts). The score of the
tasks can be calculated using the weighted triplet W ′ = (w′1, w′2, w′3) obtained during the
computation of the dynamic performance score of the computing nodes. Therefore, the
score of the computing task can be expressed as St :

St = tc w′1 + tm w′2 + ts w′3 (14)

If Zimin < St < Zimax, then the matching of computing nodes only needs to be
performed within the set Zi of computing tasks. This reduces the number of nodes to be
matched, improving the matching time.

Sensors 2024, 24, 1086 7 of 20

3.4. Selecting a Computing Node

Compute the Euclidean distance between the dynamic performance of each computing
node within the interval and the computing task’s resource requirements to find the
most suitable computing node. To avoid selecting a computing node based on a single
Euclidean distance that cannot execute the computing task, it is also necessary to exclude
computing nodes in the set Zi that do not meet the requirements. Suppose the static
performance indicator triplets of a computing node, denoted as I = (ct, mt, st), have
at least one indicator not less than the corresponding triplet in the computing task’s
resource triplets T = (tc, tm, ts). In that case, the new matching interval can be defined as
Z′i = {zi|zi.ct ⩾ tc, zi.mt ⩾ tm, zi.st ⩾ ts}.

The dynamic performance of a computing node can be defined as a triplet J =
(c f , m f , s f). Considering that the dynamic performance values are continuously changing,
if we denote a computing task as Task and a computing node as Node, the smaller the
distance between Task and Node, the smaller the difference between them. In other words,
the computing node (Node) better satisfies the conditions of the computational task (Task).
Therefore, this paper adopts the n-dimensional Euclidean distance [32] as a measurement
standard to assess the dynamic performance and select computing nodes suitable for
computational tasks.

Suppose the computational task’s resource requirements are denoted as Ti =
(tci, tmi, tsi) and the dynamic performance of the computing node as Ji = (c f i, m f i, s f i). Due
to different dimensions, normalization is necessary for both Ti and Ji. Let us denote the
normalized versions as T′i and J′i using the formula (2). The distance between them can
then be expressed as:

d(T′, J′) =

√
n

∑
i=1

(T′i − J′i)
2, (n = 3) (15)

Calculate the set of distances Z′i between all computing nodes in D and the computa-
tional task. The minimum distance Dmin indicates that the resource requirements of com-
puting tasks are closest to the performance of this computing node. Therefore, this node is
the best computing node that matches the resource requirements of the computational task.

4. RSCR

This chapter provides an overview of RSCR and introduces the functions of its
major modules.

4.1. Overview

As early as 2003, Clark et al. [33] proposed the addition of a knowledge plane to
achieve intelligence in networks. Subsequently, Mestres et al. [34] built on this concept and
introduced the idea of a Knowledge-Defined Network (KDN). RSCR, on the foundation
of SD-CFN, incorporates a knowledge plane where RL is integrated to achieve intelligent
computing routing.

RSCR utilizes available bandwidth, delay, and packet loss rate as features for the RL
process. Combined with the optimal computing node identified in Section 3, it computes
the route from the computing request source to the optimal computing node. RSCR,
leveraging the global view of SDN, can dynamically adjust routes based on changing
traffic patterns. Furthermore, unlike traditional routing that relies on protocols such
as RIP, OSPF, and BGP [35], RSCR, as described in paper [36–38], integrates with SDN
using new routing protocols. In SD-CFN, timely and reliable communication is also
crucial. Reference [39] evaluates the timeliness of drone-assisted networks, and we can
introduce protocols centered on the Age of Information (AoI) for further research in the
future. Regarding SD-CFN architecture communication security, we can try to introduce
blockchain technology to ensure data security and privacy. Wang et al. [40] proposed
a blockchain-assisted distributed access control scheme for drone computing networks,

Sensors 2024, 24, 1086 8 of 20

which can enable drones to autonomously manage their identities, attributes, and access
policies. Referring to this solution, SD-CFN can be provided with higher efficiency and
fault tolerance, making reliable computing services possible.

As shown in Figure 1, a detailed explanation of RSCR is provided below: (1) The
Computing Resource Perception Unit periodically perceives the computing resources of the
computing devices on the computing resource end in the data plane. Computing resources
include CPU, memory, and storage resources. It is important to note that the computing
resource end is composed of a Kubernetes cluster responsible for providing computing
resource data. (2) The Network Resource Perception Unit periodically queries the data
plane to collect raw data on the state of the network topology. (3) The Management Plane
retrieves computing resource data to segment computing nodes. (4) The Management
Plane retrieves network resource data to calculate and store link state information. (5) The
Knowledge Plane retrieves information about the overall computing-network resources
from the management plane. (6) RL Agent explores all possible routes between each
source-destination node pair and computes the optimal route based on link states. (7) The
Knowledge Plane stores all routing information. (8) The Control Plane retrieves routing
information before the computing task arrives and proactively installs the optimal path
between the computing request source and the optimal computing node in the form of flow
tables on the switches.

Figure 1. RSCR Architecture.

4.2. Architecture

(1) The Data Plane: The data plane is a collection of all infrastructure, including end
devices, forwarding devices, and the links connecting them. Responsible for the actual
processing and forwarding of data packets, it utilizes the programmability and real-time
response of flow table rules. It executes instructions from the control plane, implements
RSCR routing policies, and responds to the periodic transmission of computing resources

Sensors 2024, 24, 1086 9 of 20

and network resource information by the computing resource perception unit and network
resource awareness unit.

(2) The Control Plane: The control plane is a core component of the architecture, respon-
sible for formulating network policies and dynamic management, constructing a global
view of the data plane. Separated from the data plane, it uses a centralized controller to
manage and adjust flow table rules of network devices in real-time, responding to the
requirements of different applications and services to optimize network performance, se-
curity, and availability. This plane mainly consists of two modules: the network resource
awareness unit and the computing route deployment unit.

(3) The Management Plane: The management plane is a crucial component of the SDN
architecture, responsible for centralized network management and control. It provides
network administrators with an abstract way to define network policies, configure de-
vices, monitor network performance, and apply intelligent decision-making, achieving
flexibility, automation, and intelligent management of the network. The management plane
collaborates with the data plane, where the computing unit processes collected raw data on
computing resources and network resources to segment computing nodes and calculate
available bandwidth, latency, and packet loss rates. These data describe the computational
capabilities and network status of computing nodes.

(4) The Knowledge Plane: The knowledge plane is a core component of RSCR, designed
to integrate and manage widely distributed knowledge sources to support intelligent
decision-making and reasoning. It provides functions for the storage, retrieval, inference,
and application of knowledge, enabling the system to automatically analyze and under-
stand information for better meeting user needs and supporting intelligent decision-making.
This plane, through the management plane, processes well-handled computing-network
resource data and computing task requests proposed by the data plane to calculate and
install the optimal route. The deployment of the knowledge plane is highly flexible; it
can be deployed on top of the control plane, similar to the application plane in standard-
ized SDN [41], or deployed separately [34]. RSCR opts for a separate deployment of the
knowledge plane to avoid overloading the control plane.

(5) The Computing Resource Perception Unit: This unit is responsible for perceiving
the computing resources of each computing node in the computing resource end and
sending the perceived raw data to the computing-network resource processing unit of the
management plane. The computing resource perception process is illustrated in Figure 2,
involving three main components: Client, Master, and Cluster. The Master is in charge
of the entire Kubernetes cluster, composed mainly of API-Server, kube-scheduler, kube-
controller-manager, and cloud-controller-manager. Additionally, the Metrics-Server is
deployed on the Master. Nodes receive instructions from the Master to carry out tasks.
It is noteworthy that the Metrics-Server is not part of the API-server; it is independently
deployed based on the Aggregator plugin mechanism, providing services uniformly to the
API-server. By accessing the /api/metrics.k8s.io/v1beta1 interface exposed by Metrics-
Server, periodic data can be obtained. These data are collected from the kubelet’s Summary
API and include both cAdvisor’s monitoring data and kubelet’s summary information.
Through processing the collected information, extracting computing resources is performed
to achieve computing resource awareness.

(6) Network Resource Perception Unit: This unit is divided into two functions: Topol-
ogy Discovery and Link Status Perception. The Topology Discovery module sends request
messages to forwarding devices (switches) in the data plane, and the forwarding devices
respond by sending feature information such as ID, port count, and port status. Based on
the received messages, this module associates each port of each switch with neighboring
switch ports and hosts connected to each switch port, thereby inferring the network topol-
ogy. The Link Status Perception module is mainly responsible for perceiving fundamental
data on link status in terms of computing delay (dlink), instantaneous throughput (bwulink),
and packet loss rate (llink).

Sensors 2024, 24, 1086 10 of 20

Figure 2. Computing Resource Perception Process.

(7) Computing-Network Resource Processing Unit: This unit mainly consists of two
modules, namely Network Resource Processing and Computing Resource Processing.
Network Resource Processing is responsible for processing the collected raw network
data, calculating available bandwidth (bwalink), delay (dlink), and packet loss (llink). The
controller periodically sends Port-Stats-Request messages to specified switches at each
port. It retrieves the sent byte count (bt1), received byte count (bt2), and port lifetime (time
difference between sending and receiving data) δt from the Port-Stats-Reply messages
from the switches. With this information, it can calculate the instantaneous throughput
bwulink = bt2−bt1

∆t . Therefore, the available bandwidth of the link (bwalink) is represented
as the difference between link capacity (caplink) and instantaneous throughput can be
represented as bwalink = caplink − bwulink. The link’s instantaneous packet loss rate (llink)
can be represented as llink =

bt1−bt2
bt1

.
The calculation of link latency follows the method described in reference [42], which

adheres to the Link Layer Discovery Protocol (LLDP) [43] and the OpenFlow protocol [44].
The SDN controller c0 sends LLDP messages, and the messages traverse the path c0 − si −
sj − c0, where si, sj represent the switches connected by the link (si, sj). The time difference
between the LLDP message transmission and reception, denoted as dlldpcij

, estimates the
time it takes for the message from c0 to port si. This estimation considers half of the time for
the transmission and reception of OpenFlow echo_request and echo_reply messages sent
from c0 to si. A similar process is used to estimate the time the message takes from sj to c0.
Therefore, the instantaneous latency of the link (si, sj), denoted as dlink, can be represented
as dlink = dsi−sj = dlldpcij

− dc0−si − dsj−c0 .
Computing-Network Resource Processing involves segmenting compute nodes based

on their computing capabilities according to the DCRMM algorithm, using the collected
compute resource data.

(8) Computing Routing Calculation Unit: Analyzing the current network link status
and compute distribution based on computing-network resource data, coupled with the
compute resource requirements of computing tasks, this unit calculates the optimal routing.
The specific calculation method will be detailed in Section 5.

(9) Computing Routing Deployment Unit: This unit proactively writes flow table
entries into the switches in the network through SDN applications, guiding the processing
and forwarding of traffic. This process is typically accomplished using the Southbound
Interface (SBI). By installing flow table entries on switches, the SDN controller can precisely
define how to handle specific types of traffic, including routing, filtering, forwarding, or
modification. The installation of flow table entries affects the traffic forwarding in the data
plane [45]. Effective installation of flow table entries can optimize network performance
and implement various network policies, but incorrect installation may lead to network
failures or performance issues.

Sensors 2024, 24, 1086 11 of 20

5. SD-CFN Routing

SD-CFN architecture’s routing adopts the Q-Learning algorithm. Q-learning is a
classic reinforcement learning algorithm used to solve Markov Decision Process (MDP)
problems. Its core idea is to learn a state-action value function Qt(St, At), which evaluates
the long-term expected return for taking a specific action in a given state. This algorithm
is a model-free algorithm, so it does not require knowledge of the potential returns for
taking specific actions in specific states [46]. For the state-action value function Qt(St, At),
its update rule can be expressed as:

Qt(St, At) = (1− α)Qt(St, At) + α(r + γmaxAt+1 Qt+1(St+1, At+1)) (16)

Here, Qt(St, At) is the estimated value (Q-value) of selecting action At in state St, α is
the learning rate, r is the immediate reward obtained after selecting action At in state St,
γ is the discount factor, and maxAt+1 Qt+1(St+1, At+1) represents the maximum estimated
value after selecting the optimal action At+1 in the next state St+1.

In this paper, the learning of the agent involves a series of steps transitioning from
the initial state to the target state (the computing task requester and the target computing
node). Each step includes selecting and executing actions, changing the state (transitioning
from one state to another), and receiving rewards. The updated Q-function values are
based on the fundamental rewards obtained by taking action in the state, providing the
optimal reward. Next, we will provide a detailed introduction to the RL agent and the RL
routing algorithm.

5.1. Reinforcement Learning Agent

(1) State Space (S): Each state in the state space corresponds to a forwarding device
in the data plane, specifically referring to SDN switches in this context. State transitions
correspond to links connecting two switches. Therefore, the size of the state space is equal
to the number of switches in the network topology.

(2) Action Space (A): It corresponds to the set of all actions taken for all states within
the state space A. For a given state si ∈ S, the reinforcement learning agent can take any
action, and each action leads to a transition from state si to one of its neighboring states.
The neighboring states of state si correspond to the adjacent switches related to the state
si. Therefore, the number of actions for state si is equal to its degree dr(si), which is the
number of switches connected to that state. The size of the action space A can be defined
as |A| ≡ ∑si∈S dr(si).

(3) Reward Function: The reward is inversely proportional to the available bandwidth
bwalink, and directly proportional to the delay dlink and packet loss rate llink. β1, β2, β3 ∈
[0, 1] are tunable parameters, allowing for different weights to be set for different features.

R = β1
1

bwalink
+ β2dlink + β3llink (17)

Due to the different dimensions of bandwidth bwalink, latency dlink, and packet loss
rate llink, it is necessary to normalize using Equation (2). Equation (18) provides the
normalized reward function:

R′ = β1
1

bwa′link
+ β2d′link + β3l′link (18)

(4) Optimal Policy: The goal of the optimal policy is to minimize the reward values
in the Q-Learning routing process. In this way, the agent can choose paths with high
available bandwidth, low latency, and a small packet loss rate during the routing process.
The intelligent agent approximates the optimal Q-function by accessing all action-state
pairs. It updates and stores Q-values in the Q-table, which is used to find the optimal
path from the computing request source to the target computing node. The Q-value is
a measure of the overall expected reward when the reinforcement learning agent is in

Sensors 2024, 24, 1086 12 of 20

state St and takes action At. The reinforcement learning agent updates the Q-value using
Equation (19). In Equation (19), the updated Q-value (Qt+1) depends on the previous value
Qt, and it is influenced by the result (St, At, Rt, St+1) and α. Rt is the reward at time t,
and α determines the weight relationship between the newly acquired information and
previous information. α = 0 would make the reinforcement learning agent unable to learn
from the latest (St, At) pair, while α = 1 allows the agent to retain learned information by
considering the immediate reward Rt for the (St, At) pair.

Qt+1(St+1, At+1) = Qt(St, At) + α[Rt + minAQt(St+1, A)−Qt(St, At)] (19)

(5) Exploration and Exploitation Strategy: In Q-Learning, there is a trade-off between
choosing the expected optimal action (exploitation) and choosing different actions in the
hope of obtaining greater rewards in the future (exploration) [47]. This paper adopts
the ϵ-greedy exploration and exploitation method. ϵ-greedy uses ϵ ∈ [0, 1] as a tunable
parameter, allowing the intelligent agent to exploit with probability pr = ϵ and explore
with probability pr = 1− ϵ. Therefore, this parameter determines the degree to which the
reinforcement learning agent explores and exploits during the learning process. The agent
uses Equation (20) to choose the next action for a specific state. At each step, it generates a
random value x ∈ [0, 1]. If x < ϵ, the agent exploits; otherwise, the agent explores.

A =

{
minAQt(St, A), x < ϵ

random action, otherwise
(20)

5.2. Routing Algorithm

This routing algorithm implements a learning process for finding the optimal paths
for all node pairs in the data plane. The input data to Algorithm 1 include the learning
rate α, parameter ϵ (see Equation (20)), the number of learning rounds n, connection of all
nodes Node_list, link status between all nodes Link_status, and the pair of the computing
resource requester and the target computing node (Tsrc, Tdst). The output is the set of
optimal reward routes for all node pairs given the link state. This path is formed by state-
action pairs with the lowest values in the Q-table. Finally, based on the distribution of
node computing power, the optimal path from the computing request source to the target
computing node is determined as the final result of computing routing. This path is then
installed in the switches as flow tables, facilitating the scheduling of computing resources
through the network.

The RSCR routing algorithm can find the optimal path for all pairs of nodes in the
given topology. For each pair of nodes (src, dst) in the Nodelist, routing learning can be
performed following the steps in Algorithm 1, lines 1–17. First, initialize the Q-table to 0
(line 2), and then, the algorithm goes through episodes (line 3) until the state St becomes
the final state dst (lines 5–9). Starting with src as the initial state (line 4), assuming the next
state is not the target state dst (line 5), the agent selects the action At based on Equation (20)
(line 6). The agent calculates the reward value according to Equation (18) (line 7), then
updates the state using Equation (19) (line 8), and moves to the new state (line 9) until the
episode concludes.

After the RL agent completes learning, the optimal path between src and dst can be
calculated based on the Q-table, specifically the path with the minimum Q-value (line 12).
If (src, dst) is the same as (Tsrc, Tdst), then this node pair corresponds to the computing re-
source requester and target computing node pair we are looking for, and the corresponding
path is the optimal computing resource path (lines 14–15). Finally, the knowledge plane
stores routing information for all node pairs in Paths, and the optimal computing resource
path is specially marked. Subsequently, the flow installation module retrieves these paths
and installs them in the routing table of switches.

Sensors 2024, 24, 1086 13 of 20

Algorithm 1: SD-CFN Routing: RSCR
Data: Learning rate: α

Exploration and exploitation parameter: ϵ
Learning episodes: n
Connection of all nodes (src, dst): Node_list
Link status between all nodes: Link_status
Node pairs of Initiating and the optimal node of the computing resource
request: (Tsrc, Tdst)

Result: The optimal path set of the given nodes: Paths
1 while (src, dst) ∈ Node_list do
2 Initialization Q: Q(S, A) = 0, ∀s ∈ S, ∀a ∈ A;
3 for episode ← 1 to n do
4 Start in state St=src ∈ S;
5 while St+1 is not dst do
6 Select At for St with policy derived from Q using ϵ-greedy exploration

and exploitation method;
7 Rt+1 ← R(St, At);
8 Qt+1(St+1, At+1) = Qt(St, At) + α[Rt + minAQt(St+1, A)−Qt(St, At)];
9 St ← St+1

10 end

11 end
12 Find the path with the minimum Q-value in the Q-table for the pair (src, dst).

13 end
14 if (src, dst) = (Tsrc, Tdst) then
15 (Tsrc, Tdst) is the optimal path from the computing resource requester to the

target computing node

16 The knowledge Plane stores all routing information Paths, and additionally marks
and stores the path (Tsrc, Tdst) for the computing resource requester and the
target computing node.

17 return Result;

6. Results and Analysis

This section introduces the evaluation of RSCR. Section 6.1 describes the testing envi-
ronment, Section 6.2 discusses signal generation, Section 6.3 introduces traffic generation,
and Section 6.4 analyzes the experimental results.

6.1. Test Environment

Figure 3 shows the test topology of RSCR, namely the GÉANT topology. This topology
is an international network in Europe used for education and research. GÉANT consists
of 23 switches and 37 links, with 50% of the links at 10 Gbps, 40% at 2.5 Gbps, and 10%
at 155 Mbps. We deployed the mentioned GÉANT topology in Mininet 2.3.1, with each
switch connected to a host responsible for forwarding and receiving traffic. As Mininet’s
virtual hosts cannot effectively provide real and valid computing resource information, the
computing resource data were based on real-time data from a Kubernetes cluster.

The data plane of RSCR is composed of the GÉANT topology. In the control plane, a
Ryu controller is deployed, and topology discovery, link-state perception, and flow table
installation are all developed based on this controller. The management plane involves data
processing using Python 3.9 with Pandas 1.5.3 and Numpy 1.24.3 libraries. The knowledge
plane, developed using Python 3.9 and RL, is responsible for computing algorithmic routing
decisions. We store link-state information in the CSV format and the computed routing
results in the JSON format. The experimental environment is deployed on a system with

Sensors 2024, 24, 1086 14 of 20

an 11th Gen Intel(R) Core(TM) i7-1165G7 processor and 16GB RAM running Ubuntu
Desktop 20.04.

Figure 3. GÉANT topology.

6.2. Traffic Generation

iperf is a commonly used traffic generation tool in Mininet, and, accordingly, we have
developed an iperf script to run on both the host and client sides. Following reference [48],
the authors computed a traffic matrix for approximately 4 months at 15-minute intervals to
conform to the XML format of TOTEM, providing the traffic matrix. We employ this traffic
matrix to introduce background traffic to the GÉANT topology.

6.3. Parameters Setup

In RL algorithms, determining the appropriate values for the learning rate (α) and
exploration rate (ϵ) is a crucial issue. To address this, we use the number of hops in the
path between the source and destination addresses as a criterion. Initially, we run the
RSCR routing algorithm, continuously adjusting α and ϵ to explore potential paths between
Switch 2 and Switch 22. When link costs are equal, the shortest path found by Dijkstra’s
algorithm is three hops. For each ϵ(0.8, 0.6), we test four α values (0.9, 0.7, 0.5, 0.3) for
200 iterations each time. Figure 4 illustrates the number of hops between Switch 2 and
Switch 22 under different parameters. As observed in the figure, reducing ϵ leads the
RL agent to explore random actions in the action space, increasing the number of hops.
Conversely, the agent tends to leverage previous experiences when ϵ is high. For α = 0.9
and α = 0.7, it is evident that the convergence speed of α = 0.9 is superior to that of α = 0.7.
Based on these results, the most suitable values for the parameters of the RL agent in RSCR
are α = 0.9 and ϵ = 0.8.

Sensors 2024, 24, 1086 15 of 20

(a) ϵ = 0.6 (b) ϵ = 0.8
Figure 4. Number of Hops for Different Learning Parameters.

6.4. Results and Analysis

Figure 5 illustrates the impact of DCRMM, MDA, and MSA on the stability of com-
puting nodes. We conducted tests on the average decrease rates in CPU, Memory (Mem),
and Storage for all nodes after executing 10 tasks. The average decrease rate is defined by
Equation (21), where Nodepre represents the average utilization before task execution, and
Nodenow represents the average utilization after task execution. The average CPU decrease
rate of DCRMM is 1.60% lower than MSA and 1.45% lower than MDA. The average Mem
decrease rate is 2.43% lower than MSA and 0.14% lower than MDA. For Storage, the aver-
age decrease rate is 15.80% lower than MSA and 3.48% lower than MDA. This indicates
that DCRMM can reduce the variability of computational resources on nodes, enhancing
stability among nodes.

S = Nodepre − Nodenow (21)

Figure 5. Algorithm Stability Assessment.

Figure 6 depicts the relationship between node utilization and the number of tasks for
DCRMM, MDA, and MSA. As shown in Equation (22), node utilization (U) is represented
as the ratio of selected nodes (Nodes) to the total number of nodes (Nodet). From Figure 6,
it is evident that with an increase in the number of tasks, the node utilization of DCRMM,
MDA, and MSA all experiences a corresponding improvement. However, it is clear from
the figure that the node utilization of DCRMM is significantly better than that of MDA
and MSA, both at low and high task numbers. This is attributed to the fact that DCRMM
can simultaneously consider static and dynamic metrics, enhancing the precision of node-
task matching.

U =
Nodes

Nodet
(22)

Sensors 2024, 24, 1086 16 of 20

Figure 6. Relationship Between Node Utilization and Number of Tasks.

Figure 7 represents the relationship between the matching accuracy of selected nodes
by DCRMM, MDA, and MSA and the number of tasks. As indicated in Equation (23), the
matching accuracy (A) is represented as the ratio of nodes meeting the requirements of
tasks (Nodem) to the selected nodes (Nodes). According to the figure, the matching accuracy
of DCRMM can be maintained at 100%, while MDA has a matching accuracy of only below
60%, and MSA is below 40%. Moreover, with an increase in the number of tasks, both MDA
and MSA show a decline in matching accuracy to varying degrees. This is because the
DCRMM algorithm considers both dynamic and static metrics, performs node matching by
calculating Euclidean distance, and prioritizes the removal of nodes that do not meet the
requirements before computing the Euclidean distance. This ensures that all nodes in the
filtered pool can meet the computational requirements of the tasks.

A =
Nodem

Nodes
(23)

Figure 7. Relationship Between Node Accuracy and Number of Tasks.

Figure 8 illustrates the average link delay of the RSCR. According to Figure 8, it can be
observed that the average delay of the RSCR is comparable to that of the OSPF algorithm.
However, when compared to the OSPF_delay algorithm, the average delay of the RSCR
algorithm is lower by 63%. This is because the RSCR exhibits a preference for paths with
fewer hops and lower congestion levels in route selection.

Sensors 2024, 24, 1086 17 of 20

Figure 8. Average Delay Comparison Chart.

Figure 9 depicts the average packet loss rate of the RSCR algorithm. According to
Figure 9, it is evident that the packet loss rate of RSCR is 15% and 25% lower than OSPF_all
and OSPF_loss, respectively. In some scenarios, the packet loss rate of OSPF_all is more
than twice that of the RSCR algorithm. This is attributed to the RSCR algorithm’s capability
to select relatively shorter paths, thereby reducing packet loss.

Figure 9. Average Packet Loss Rate Comparison Chart.

Figure 10 illustrates the average link throughput of RSCR throughout the day. The
throughput of RSCR is lower than OSPF_all and OSPF_bw, primarily because RSCR selects
paths that are less preferred by the latter two, resulting in a larger denominator when
calculating the average link throughput. This also explains why the average delay and
average packet loss rate of RSCR outperform other algorithms, while the throughput
remains at a lower level.

Sensors 2024, 24, 1086 18 of 20

Figure 10. Average Throughput Comparison Chart.

7. Conclusions and Future Work

This paper proposes a unified modeling and measurement method for the dynamic
and static performance indicators of computing nodes, named DCRMM. The paper pro-
vides a detailed explanation of how to select the optimal computing nodes based on
measurement results. Experimental results indicate that compared to computing node
measurement methods that only consider dynamic or static indicators, DCRMM demon-
strates superior node stability, node utilization, and node matching accuracy, enabling
more effective utilization of node resources. Additionally, the paper discusses a comput-
ing power routing algorithm, RSCR, based on the SD-CFN architecture. This algorithm
employs a Q-Learning mechanism to effectively compute paths between the computing
power requester and the computing power provider. We validate the algorithm on the
GÉANT topology, and the experiments show that RSCR can ensure a significant reduction
in packet loss while maintaining a delay close to that of the OSPF algorithm. Furthermore,
it increases link utilization, allowing traffic to be distributed more widely across the entire
network topology.

Based on this, we hope that future work can explore the use of transfer learning algo-
rithms for more experimentation on dynamic topologies. This would enable the algorithm
to make new decisions quickly in situations where the topology is constantly changing.

Author Contributions: Conceptualization, X.G. and S.R.; formal analysis, software, writing, X.G. and
S.R.; supervision, C.W.; investigation and methodology, J.W.; validation and visualization, X.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code of this article is open source at https://github.com/ryan101
6/RSCR/ (will be available online in March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/ryan1016/RSCR/
https://github.com/ryan1016/RSCR/

Sensors 2024, 24, 1086 19 of 20

References
1. Tian, L.; Yang, M.Z.; Wang, S.G. An overview of compute first networking. Int. J. Web Grid Serv. 2021, 17, 81–97. [CrossRef]
2. Tang, X.Y.; Cao, C.; Wang, Y.X.; Zhang, S.; Liu, Y.; Li, M.X.; He, T. Computing Power Network: The Architecture of Convergence

of Computing and Networking towards 6G Requirement. China Commun. 2021, 18, 175–185. [CrossRef]
3. Yu, C.D.; Xia, G.M.; Wang, Z.H.; Soc, I.C. Trust Evaluation of Computing Power Network Based on Improved Particle Swarm

Neural Network. In Proceedings of the 17th IEEE International Conference on Mobility, Sensing and Networking (MSN), Exeter,
UK, 13–15 December 2021; pp. 718–725. [CrossRef]

4. Institute, C.U.R. China Unicom Computing First Network White Paper. Report, 2019. Available online: http://www.bomeimedia.
com/China-unicom/white_paper/20191101-06.pdf (accessed on 5 December 2023).

5. Król, M.; Mastorakis, S.; Oran, D.; Kutscher, D. Compute first networking: Distributed computing meets icn. In Proceedings of
the 6th ACM Conference on Information-Centric Networking, Macao, China, 24–26 September 2019; pp. 67–77.

6. Xu, Q.; Zhang, Y.; Wu, K.; Wang, J.; Lu, K. Evaluating and boosting reinforcement learning for intra-domain routing. In
Proceedings of the 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Monterey, CA, USA,
4–7 November 2019; pp. 265–273.

7. Moy, J. OSPF Version 2. Report 2070-1721, 1997. Available online: https://www.rfc-editor.org/rfc/rfc2178.html (accessed on
5 December 2023).

8. Bernard, F. Internet traffic engineering by optimizing OSPF weights. In Proceedings of the IEEE INFOCOM 2000, Conference on
Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.
00CH37064), Tel Aviv, Israel, 26–30 March 2000.

9. Chen, Y.R.; Rezapour, A.; Tzeng, W.G.; Tsai, S.C. RL-Routing: An SDN Routing Algorithm Based on Deep Reinforcement
Learning. IEEE Trans. Netw. Sci. Eng. 2020, 7, 3185–3199. [CrossRef]

10. Oliveira, C.A.; Pardalos, P.M. Mathematical Aspects of Network Routing Optimization; Springer: Berlin/Heidelberg, Germany, 2011.
11. Nayak, P.; Swetha, G.; Gupta, S.; Madhavi, K. Routing in wireless sensor networks using machine learning techniques: Challenges

and opportunities. Measurement 2021, 178, 108974. [CrossRef]
12. Jacob, D.I.J.; Darney, D.P.E. Artificial bee colony optimization algorithm for enhancing routing in wireless networks. J. Artif.

Intell. Capsul. Netw. 2021, 3, 62–71. [CrossRef]
13. Jiang, W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2022, 185, 40–54. [CrossRef]
14. Xin, L.; Song, W.; Cao, Z.; Zhang, J. Step-wise deep learning models for solving routing problems. IEEE Trans. Ind. Informatics

2020, 17, 4861–4871. [CrossRef]
15. Guo, Y.; Luo, H.; Wang, Z.; Yin, X.; Wu, J. Routing optimization with path cardinality constraints in a hybrid SDN. Comput.

Commun. 2021, 165, 112–121. [CrossRef]
16. Bagaa, M.; Dutra, D.L.C.; Taleb, T.; Samdanis, K. On SDN-driven network optimization and QoS aware routing using multiple

paths. IEEE Trans. Wirel. Commun. 2020, 19, 4700–4714. [CrossRef]
17. Tu, Z.; Zhou, H.; Li, K.; Li, G.; Shen, Q. A routing optimization method for software-defined SGIN based on deep reinforcement

learning. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.
18. He, Q.; Wang, Y.; Wang, X.; Xu, W.; Li, F.; Yang, K.; Ma, L. Routing optimization with deep reinforcement learning in knowledge

defined networking. IEEE Trans. Mob. Comput. 2023, 23, 1444–1455. [CrossRef]
19. Phan, T.; Feld, S.; Linnhoff-Popien, C. Artificial intelligence—The new revolutionary evolution. Digit. Welt 2020, 4, 7–8. [CrossRef]
20. Boyan, J.; Littman, M. Packet routing in dynamically changing networks: A reinforcement learning approach. In Proceedings of

the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–2 December 1993; Volume 6.
21. Lin, S.C.; Akyildiz, I.F.; Wang, P.; Luo, M. QoS-aware adaptive routing in multi-layer hierarchical software defined networks: A

reinforcement learning approach. In Proceedings of the 2016 IEEE International Conference on Services Computing (SCC), San
Francisco, CA, USA, 27 June–2 July 2016; pp. 25–33.

22. Hassas Yeganeh, S.; Ganjali, Y. Kandoo: A framework for efficient and scalable offloading of control applications. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks, Helsinki Finland, 13 August 2012; pp. 19–24.

23. McCauley, J.; Panda, A.; Casado, M.; Koponen, T.; Shenker, S. Extending SDN to large-scale networks. Open Netw. Summit 2013,
1–2.

24. Rischke, J.; Sossalla, P.; Salah, H.; Fitzek, F.H.; Reisslein, M. QR-SDN: Towards reinforcement learning states, actions, and rewards
for direct flow routing in software-defined networks. IEEE Access 2020, 8, 174773–174791. [CrossRef]

25. Hassen, H.; Meherzi, S.; Jemaa, Z.B. ϵ-QLMR: ϵ-greedy based Q-Learning algorithm for Multipath Routing in SDN networks.
In Proceedings of the 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco,
19–23 June 2023; pp. 234–239.

26. Casas-Velasco, D.M.; Rendon, O.M.C.; da Fonseca, N.L. Intelligent routing based on reinforcement learning for software-defined
networking. IEEE Trans. Netw. Serv. Manag. 2020, 18, 870–881. [CrossRef]

27. Casas-Velasco, D.M.; Rendon, O.M.C.; Fonseca, N.L.S.d. DRSIR: A Deep Reinforcement Learning Approach for Routing in
Software-Defined Networking. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4807–4820. [CrossRef]

28. Yu, C.; Lan, J.; Guo, Z.; Hu, Y. DROM: Optimizing the routing in software-defined networks with deep reinforcement learning.
IEEE Access 2018, 6, 64533–64539. [CrossRef]

http://doi.org/10.1504/IJWGS.2021.114566
http://dx.doi.org/10.23919/JCC.2021.02.011
http://dx.doi.org/10.1109/msn53354.2021.00113
http://www.bomeimedia.com/China-unicom/white_paper/20191101-06.pdf
http://www.bomeimedia.com/China-unicom/white_paper/20191101-06.pdf
https://www.rfc-editor.org/rfc/rfc2178.html
http://dx.doi.org/10.1109/TNSE.2020.3017751
http://dx.doi.org/10.1016/j.measurement.2021.108974
http://dx.doi.org/10.36548/jaicn.2021.1.006
http://dx.doi.org/10.1016/j.comcom.2021.12.015
http://dx.doi.org/10.1109/TII.2020.3031409
http://dx.doi.org/10.1016/j.comcom.2020.11.004
http://dx.doi.org/10.1109/TWC.2020.2986408
http://dx.doi.org/10.1109/TMC.2023.3235446
http://dx.doi.org/10.1007/s42354-019-0220-9
http://dx.doi.org/10.1109/ACCESS.2020.3025432
http://dx.doi.org/10.1109/TNSM.2020.3036911
http://dx.doi.org/10.1109/TNSM.2021.3132491
http://dx.doi.org/10.1109/ACCESS.2018.2877686

Sensors 2024, 24, 1086 20 of 20

29. Zhao, C.; Ye, M.; Xue, X.; Lv, J.; Jiang, Q.; Wang, Y. DRL-M4MR: An intelligent multicast routing approach based on DQN deep
reinforcement learning in SDN. Phys. Commun. 2022, 55, 101919. [CrossRef]

30. Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 1–5. [CrossRef]
31. Taheriyoun, M.; Karamouz, M.; Baghvand, A. Development of an entropy-based fuzzy eutrophication index for reservoir water

quality evaluation. J. Environ. Health Sci. Eng. 2010, 7, 1–14.
32. Carbó-Dorca, R.; Besalú, E. Geometry of n-dimensional Euclidean space Gaussian enfoldments. J. Math. Chem. 2011, 49, 2244–2249.

[CrossRef]
33. Clark, D.D.; Partridge, C.; Ramming, J.C.; Wroclawski, J.T. A knowledge plane for the internet. In Proceedings of the 2003

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany,
25–29 August 2003; pp. 3–10.

34. Mestres, A.; Rodriguez-Natal, A.; Carner, J.; Barlet-Ros, P.; Alarcón, E.; Solé, M.; Muntés-Mulero, V.; Meyer, D.; Barkai, S.; Hibbett,
M.J. Knowledge-defined networking. ACM SIGCOMM Comput. Commun. Rev. 2017, 47, 2–10. [CrossRef]

35. Black, U.D. IP Routing Protocols: RIP, OSPF, BGP, PNNI, and Cisco Routing Protocols; Prentice Hall Professional: Hoboken, NJ, USA,
2000.

36. Aldabbas, H. Efficient bandwidth allocation in SDN-based peer-to-peer data streaming using machine learning algorithm. J.
Supercomput. 2023, 79, 6802–6824. [CrossRef]

37. Martín, I.; Troia, S.; Hernández, J.A.; Rodríguez, A.; Musumeci, F.; Maier, G.; Alvizu, R.; de Dios, O.G. Machine learning-based
routing and wavelength assignment in software-defined optical networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 871–883.
[CrossRef]

38. Samadi, R.; Nazari, A.; Seitz, J. Intelligent energy-aware routing protocol in mobile IoT networks based on SDN. IEEE Trans.
Green Commun. Netw. 2023, 7, 2093–2103. [CrossRef]

39. Feng, H.; Wang, J.; Fang, Z.; Chen, J.; Do, D.T. Evaluating AoI-Centric HARQ Protocols for UAV Networks. IEEE Trans. Commun.
2023, 72, 288–301. [CrossRef]

40. Wang, J.; Jiao, Z.; Chen, J.; Hou, X.; Yang, T.; Lan, D. Blockchain-Aided Secure Access Control for UAV Computing Networks.
IEEE Trans. Netw. Sci. Eng. 2023, 1–14. [CrossRef]

41. ONF. SDN Architecture-Issue 1.1-ONF TR-521. 2019. Available online: https://opennetworking.org/wp-content/uploads/2014
/10/TR-521_SDN_Architecture_issue_1.1.pdf (accessed on 5 December 2023).

42. Liao, L.; Leung, V.C. LLDP based link latency monitoring in software defined networks. In Proceedings of the 2016 12th
International Conference on Network and Service Management (CNSM), Montreal, QC, Canada, 31 October–4 November 2016;
pp. 330–335.

43. Shu, Z.; Wan, J.; Lin, J.; Wang, S.; Li, D.; Rho, S.; Yang, C. Traffic engineering in software-defined networking: Measurement and
management. IEEE Access 2016, 4, 3246–3256. [CrossRef]

44. Ryu application API. Website, 2023. Available online: https://ryu.readthedocs.io/en/latest/ryu_app_api.html (accessed on
5 December 2023).

45. Achleitner, S.; Bartolini, N.; He, T.; La Porta, T.; Tootaghaj, D.Z. Fast network configuration in software defined networking. IEEE
Trans. Netw. Serv. Manag. 2018, 15, 1249–1263. [CrossRef]

46. Mammeri, Z. Reinforcement learning based routing in networks: Review and classification of approaches. IEEE Access 2019,
7, 55916–55950. [CrossRef]

47. Tijsma, A.D.; Drugan, M.M.; Wiering, M.A. Comparing exploration strategies for Q-learning in random stochastic mazes. In
Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016;
pp. 1–8.

48. Uhlig, S.; Quoitin, B.; Lepropre, J.; Balon, S. Providing public intradomain traffic matrices to the research community. ACM
SIGCOMM Comput. Commun. Rev. 2006, 36, 83–86. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.phycom.2022.101919
http://dx.doi.org/10.1155/2020/3564835
http://dx.doi.org/10.1007/s10910-011-9883-7
http://dx.doi.org/10.1145/3138808.3138810
http://dx.doi.org/10.1007/s11227-022-04929-y
http://dx.doi.org/10.1109/TNSM.2019.2927867
http://dx.doi.org/10.1109/TGCN.2023.3296272
http://dx.doi.org/10.1109/TCOMM.2023.3320696
http://dx.doi.org/10.1109/TNSE.2023.3324639
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
http://dx.doi.org/10.1109/ACCESS.2016.2582748
https://ryu.readthedocs.io/en/latest/ryu_app_api.html
http://dx.doi.org/10.1109/TNSM.2018.2874051
http://dx.doi.org/10.1109/ACCESS.2019.2913776
http://dx.doi.org/10.1145/1111322.1111341

	Introduction
	Related Work
	DCRMM
	Calculating the Basic Score
	Segmenting the Basic Score
	Matching the Cluster
	Selecting a Computing Node

	RSCR
	Overview
	Architecture

	SD-CFN Routing
	Reinforcement Learning Agent
	Routing Algorithm

	Results and Analysis
	Test Environment
	Traffic Generation
	Parameters Setup
	Results and Analysis

	Conclusions and Future Work
	References

