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Abstract: Due to their low cost and portability, using entertainment devices for indoor mapping 

applications has become a hot research topic. However, the impact of user behavior on indoor map-

ping evaluation with entertainment devices is often overlooked in previous studies. This article aims 

to assess the indoor mapping performance of entertainment devices under different mapping strat-

egies. We chose two entertainment devices, the HoloLens 2 and iPhone 14 Pro, for our evaluation 

work. Based on our previous mapping experience and user habits, we defined four simplified in-

door mapping strategies: straight-forward mapping (SFM), left–right alternating mapping (LRAM), 

round-trip straight-forward mapping (RT-SFM), and round-trip left–right alternating mapping (RT-

LRAM). First, we acquired triangle mesh data under each strategy with the HoloLens 2 and iPhone 

14 Pro. Then, we compared the changes in data completeness and accuracy between the different 

devices and indoor mapping applications. Our findings show that compared to the iPhone 14 Pro, 

the triangle mesh accuracy acquired by the HoloLens 2 has more stable performance under different 

strategies. Notably, the triangle mesh data acquired by the HoloLens 2 under the RT-LRAM strategy 

can effectively compensate for missing wall and floor surfaces, mainly caused by furniture occlusion 

and the low frame rate of the depth-sensing camera. However, the iPhone 14 Pro is more efficient 

in terms of mapping completeness and can acquire a complete triangle mesh more quickly than the 

HoloLens 2. In summary, choosing an entertainment device for indoor mapping requires a combi-

nation of specific needs and scenes. If accuracy and stability are important, the HoloLens 2 is more 

suitable; if efficiency and completeness are important, the iPhone 14 Pro is be�er. 

Keywords: indoor mapping; entertainment devices; HoloLens 2; iPhone 14 Pro; mapping strategies; 

augmented reality (AR) 

 

1. Introduction 

Over the past few decades, with the development of laser scanning technology, par-

ticularly the introduction of terrestrial laser scanning (TLS) technology in the 1990s [1,2], 

great progress has been made in indoor and outdoor mapping. TLS is capable of generat-

ing high-density point cloud data that accurately captures the three-dimensional (3D) 

structure of the scanning space [3]. Since then, TLS has been further expanded with the 

maturity of mobile laser scanning (MLS) technology and simultaneous localization and 

mapping (SLAM) [4,5]. MLS systems incorporate laser scanners on mobile platforms such 

as vehicles [6–8], drones [9–11], and backpacks [12,13], allowing them to capture data in 

indoor and outdoor environments while moving. At the same time, the use of SLAM tech-

nology allows the MLS system to locate and build maps in real time in unknown 
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environments, no longer limited by the mapping scope of static sensors. Nowadays, MLS 

systems are widely used in areas such as indoor and outdoor mapping [14,15], forest sur-

vey [16,17], and cultural heritage protection [18,19]. 

However, with the development of computer vision, sensor technologies, and 3D 

modelling tools, researchers are increasingly interested in the possibilities of employing 

entertainment devices like consumer-grade depth cameras [20–23], smartphones [24–26], 

and augmented reality (AR) headset devices [27–30] for indoor mapping. While these en-

tertainment devices are not specifically designed for indoor mapping, they are ge�ing a 

lot of a�ention in this field because of their advanced sensing technology and high-per-

formance computing, as well as their high degree of portability, which gives them great 

potential for indoor mapping. In comparison to the expensive industry-grade TLS and 

MLS mapping systems, the mapping approach using low-cost entertainment devices en-

ables more people to participate in indoor mapping and offers great potential for applica-

tions such as indoor navigation, building information modeling (BIM), and facility man-

agement. 

In 2010, Microsoft introduced the first-generation Kinect [31], a depth camera based 

on structured light technology for depth perception. Although Kinect was originally mar-

keted as an entertainment add-on for Xbox consoles, with its affordable depth-sensing 

capabilities, it has surprisingly become a catalyst for innovation across various domains. 

Among the groundbreaking advancements, KinectFusion [20] stood out as a technology 

that used the Kinect’s depth-sensing abilities to generate comprehensive 3D maps of in-

door environments. This innovation enabled users to scan and reconstruct real-world 

spaces in real-time with a depth camera [20,21,32], opening up new uses beyond gaming. 

Over time, next-generation depth cameras like Intel RealSense [33,34] and Azure Kinect 

[35] further enhanced the ability to acquire accurate depth information in indoor environ-

ments. 

For indoor mapping with smartphones, Google’s Project Tango [36] was an early ex-

perimental project in 2014 aimed at improving mobile devices’ spatial perception of the 

environment by integrating depth perception technology on Android smart devices. One 

of the goals of the project was to achieve 3D indoor mapping on mobile devices [37,38]. 

While Project Tango ended with the appearance of ARCore [39], its contribution to depth 

perception technology and indoor mapping has influenced the development of subse-

quent projects and technologies. In 2017, the emergence of AR frameworks like ARCore 

and ARKit [40] has significantly simplified the development of smartphone-based AR ap-

plications. In the work of Hasler et al.[25], they developed two smartphone indoor map-

ping applications based on the AR framework in their study. By evaluating them in com-

plex indoor environments, their work demonstrated the great potential of smartphone-

based 3D indoor mapping, with applications achieving an absolute 3D accuracy of around 

1% of walking distance in indoor environments, and sub-centimeter local 3D accuracy. 

To advance AR and depth perception technologies, in October 2020, Apple released 

its first mobile smart devices equipped with light detection and ranging (LiDAR) sensors. 

The main purpose of these LiDAR sensors is to improve camera focus speed in low-light 

environments and provide more accurate depth perception. While other devices such as 

the Samsung Galaxy S23 Ultra and Huawei Mate 60 Pro also have advanced camera sys-

tems and processing capabilities, they lack a dedicated depth sensor like LiDAR, which is 

a significant advantage for detailed indoor mapping tasks. 

For 3D mapping with LiDAR-equipped Apple smart devices, Díaz-Vilariño et al. [24] 

evaluated the potential of Apple’s smart devices for indoor and outdoor 3D mapping ap-

plications using a LiDAR-equipped iPad Pro. Their study indicated that Apple smart de-

vices are not suitable for mapping large environments and emphasized the importance of 

acquisition planning to avoid complex large trajectories. In addition, Jakovljević et al. [41] 

investigated the performance of rapid indoor 3D point cloud acquisition using an iPhone 

13 Pro equipped with LiDAR. Their results show that the iPhone 13 Pro is able to provide 

accurate and stable point clouds on flat or curved surfaces with an average absolute 
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distance of 9 cm compared to high-precision TLS data. The iPhone 13 Pro performs well 

in capturing detailed scenes, but noise increases on homogeneous surfaces and direct sun-

light decreases the accuracy of the point cloud. 

Along with the frameworks for AR applications that run on smartphones, there are 

also AR headset devices. To achieve a more stable immersive AR experience, AR headset 

devices often integrate advanced tracking and mapping algorithms. These algorithms 

help align virtual content with the real world with a high degree of accuracy, allowing 

users to interact with virtual objects and navigate in the real world. For indoor mapping, 

AR headset devices such as the Microsoft HoloLens [42], Magic Leap [43], and Google 

Glass [44] can be used.  

There are some notable evaluation studies of indoor mapping using AR headset de-

vices, for example, Hübner et al. [28,29] and Khoshelham et al. [30] first quantitatively 

evaluated the indoor mapping capabilities of Microsoft HoloLens (Version 1) regarding 

the context of indoor building geometry. Hübner et al. [28] also investigated the depth 

sensing and tracking capabilities of the HoloLens in their study. By comparing with TLS 

ground truth data, Hübner et al. [28,29] found that changes in room conditions may affect 

the final indoor mapping quality of the HoloLens, e.g., the presence or absence of furni-

ture in the indoor environment. Thus, when mapping in unfurnished or less textured in-

door environments, the transition area between different rooms may be a weak point in 

the mapping of the HoloLens, which is prone to large errors that affect the accuracy of the 

overall measurement data. Weinmann et al. [45,46] demonstrated that the data acquired 

by the HoloLens is accurate enough to be used to reconstruct semantically rich and topo-

logically correct indoor scene models. Jäger et al. [47] in their study performed neural 

radiance fields (NeRFs) [48–50] 3D reconstruction using internal camera poses and images 

provided by the HoloLens, and revealed the potential of combining the HoloLens with 

NeRFs for highly detailed, colored, mobile 3D mapping. Teruggi et al. [51] tested the map-

ping capabilities of the HoloLens 2 in complex monumental spaces. Aside from the study 

around the HoloLens, Demirkan et al. [52] conducted a study evaluating the performance 

of AR-assisted navigation in real underground mine conditions. Utilizing the embedded 

spatial mapping algorithm on the Magic Leap One, they found that AR-assisted naviga-

tion significantly facilitated evacuation, demonstrating effectiveness in supporting search 

and rescue efforts in challenging underground environments. Li et al. [53] implemented 

VisioMap using Google Glass. The system uses sparse photograph samples at eye-level to 

reconstruct 3D indoor scenes, and its lightweight approach, based on geometric features 

rather than image pixels, enables accurate localization without the need for dense finger-

prints or points of interest, confirming its usability as a prototype for natural indoor local-

ization. 

In addition to the entertainment devices described above, Holzwarth et al. [54] con-

ducted a comparative analysis of motion tracking for entertainment virtual reality (VR) 

devices, specifically SteamVR Tracking and Oculus Insight, in a medium room scale setup, 

using the Oculus Quest 2 [55] and HTC Vive Tracker [56], revealing the superior accuracy 

and precision in the height and position tracking of the Oculus Quest 2, making it a viable 

choice for various applications, including indoor mapping. Of course, there are also stud-

ies based on classical photogrammetry and computer vision algorithms for indoor map-

ping using cameras with different lenses [57–59], this approach generally requires using 

software based on Structure-from-Motion (SfM) [60,61] and Multi-View Stereo (MVS) [62] 

for 3D reconstruction, like COLMAP [63]. 

Some existing studies have evaluated the accuracy of entertainment devices for in-

door mapping applications at the level of built-in depth sensors, tracking algorithms, and 

indoor mapping capabilities. However, to the best of our knowledge, there is currently no 

in-depth study on the performance of entertainment devices in indoor mapping under 

different acquisition behaviors or strategies, such as directly forward mapping, alterna-

tively left and right mapping, and round-trip mapping while holding or wearing these 

devices. Users with different skill levels and experience may adopt different scanning 
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methods and habits when using these entertainment devices for mapping, which is some-

what random in nature. Due to the lack of uniform norms and standards, the impact of 

user behavior on the outcome of indoor mapping with these devices is notably significant. 

Although some studies have hinted at the importance of the data collection strategy, 

a thorough investigation into its effects is still lacking. This is crucial because different 

mapping strategies can significantly influence the results, as Askar et al. [64] have demon-

strated through their in-depth study using the iPhone 13 Pro for indoor mapping. They 

divided the entire room into two separate sections and repeated the scanning process mul-

tiple times to achieve optimal results. Additionally, Hübner et al. [28,29] found that oper-

ators using the HoloLens could improve indoor mapping accuracy by looking back at 

mapped spaces when entering new areas that had not been scanned, especially when in 

transitional spaces such as doors. This observation also highlights the importance of op-

erator behavior and suggests the need for further research into its impact on indoor map-

ping accuracy. 

Therefore, the aim of this study is to evaluate the potential impact that different map-

ping strategies may have on the final results when using entertainment devices for indoor 

mapping. In this study, we chose the HoloLens 2 and iPhone 14 Pro as our experimental 

devices. We hope that our work will provide a reference for future professionals and non-

professionals involved in indoor mapping applications on how to optimize mapping strat-

egies in order to make full use of the device’s capabilities and more rapidly and accurately 

acquire the best mapping data. 

In the following, we outline the experimental process in Section 2. Subsequently, Sec-

tion 3 presents the results, followed by an in-depth discussion in Section 4. Finally, Section 

5 concludes with our remarks. 

2. Materials and Methods 

In this section, we provide a detailed overview of the experimental process, which 

aims to assess the impact of different mapping strategies on indoor mapping accuracy 

using the HoloLens 2 and iPhone 14 Pro. First, in Section 2.1, we introduce the selected 

experimental space, ensuring that the experimental environment exhibits sufficient repre-

sentativeness. Subsequently, in Section 2.2, we define the various mapping strategies used 

in our study. Finally, in Section 2.3, we comprehensively describe a series of evaluation 

procedures employed throughout this study. A schematic overview of the whole evalua-

tion process is shown in Figure 1.  

 

Figure 1. Schematic overview of the evaluation of the impact of different strategies on indoor map-

ping accuracy using the HoloLens 2 and iPhone 14 Pro, respectively. 
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2.1. Experimental Space 

Due to the complexity and variability of indoor environments, it is difficult to choose 

a representative space that is universally applicable. When selecting the experimental en-

vironment, based on our prior knowledge, we mainly considered three criteria: simplicity 

of the space structure, stability of the lighting conditions and applicability of the equip-

ment. Finally, we chose a corridor inside a building as the experimental site, as shown in 

Figure 2. 

 

Figure 2. The experimental space. The ceiling is removed for be�er visibility. 

The relatively simple layout of the experimental space helps to minimize potential 

interfering factors such as furniture, curtains, and plants, allowing for be�er control of the 

experimental conditions and resulting in more interpretable results. 

Compared to rooms with rich furniture arrangements, the central part of this corridor 

has only a small amount of furniture blocking the walls. This arrangement not only creates 

more conducive conditions for the propagation of signals from sensors such as LiDAR 

and vision sensors, making image acquisition easier, but also facilitates our assessment of 

the impact of a small amount of furniture occlusion on different indoor mapping strate-

gies. 

Additionally, the illumination in the corridor is relatively stable, which minimizes 

the potential interference caused by lighting condition changes during sensor signal ac-

quisition. Moreover, with a total length of approximately 30 m and a width ranging from 

2 to 3 m, the corridor offers a moderate scale. Especially the width of the space is well 

within the maximum depth perception of the HoloLens 2 and iPhone 14 Pro, and this 

makes the corridor particularly suitable for the evaluation of different indoor mapping 

strategies with the HoloLens 2 or iPhone 14 Pro. 

2.2. Strategies Description 

During the process of indoor mapping using entertainment devices such as the Mi-

crosoft HoloLens 2 or iPhone 14 Pro, user behavior often exhibits significant randomness, 

and the mapping process lacks a uniform specification and is challenging to classify. Ac-

cording to our experience, specific pa�erns of walking and looking at the surrounding 

environment are developed habitually by the user when frequently using these devices 

for indoor mapping tasks. 

In general indoor scenarios, ceilings are often obstructed by luminaires and decora-

tive materials, making it challenging to scan ceilings completely with the HoloLens 2 or 

iPhone 14 Pro. In addition, ceilings are usually removed in studies to enhance visibility. 

Therefore, in this study, we primarily focus on the surrounding walls and the floor within 

indoor environments when defining mapping strategies. Based on our experience with 

indoor mapping research, we make a first step towards classifying mapping strategies in 

user behavior during indoor mapping by defining four simplified mapping strategies, as 

shown in Figure 3, including: 

a. Straight-Forward Mapping (SFM): Devices are oriented directly ahead. 
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b. Left–Right Alternating Mapping (LRAM): Devices oscillate horizontally while map-

ping. 

c. Round-Trip Straight-Forward Mapping (RT-SFM): In the experimental environment, 

the user walks a round trip while the devices are oriented directly ahead during the 

mapping process. 

d. Round-Trip Left–Right Alternating Mapping (RT-LRAM): Similar to RT-SFM, the 

user walks a round trip while the devices oscillate horizontally while mapping. 

We conducted a series of indoor mapping experiments with these four strategies us-

ing the HoloLens2 and iPhone 14 Pro, respectively.  

 

Figure 3. Four different mapping strategies in our research, from left to right are SFM, LRAM, RT-

SFM and RT-LRAM. 

2.3. Evaluation Method 

To evaluate the influence of different mapping strategies on indoor mapping using 

entertainment devices, we conducted a series of experiments with the Microsoft HoloLens 

2 and iPhone 14 Pro, respectively.  

The HoloLens 2 used in this study is shown in Figure 4. For HoloLens indoor map-

ping, Hübner et al. [29], in their research, utilized the commercial app SpaceCatcher to 

generate triangle mesh data in their HoloLens 1 indoor mapping evaluation work. Alt-

hough we intended to use the same app for data collection, we found the SpaceCatcher 

has stopped being updated and is incompatible with the HoloLens 2. 

 

Figure 4. The HoloLens 2 used in our research and the user’s view during mapping. 

To the best of our knowledge, currently there is no specific off-the-shelf HoloLens 2 

app for triangle mesh data collection. However, this gives us the opportunity to evaluate 

only the built-in algorithms of the HoloLens 2. Unlike other software applications that 

may include their own tracking and mapping algorithms or optimize the built-in algo-

rithms, our focus is solely on the performance of the built-in algorithms of the HoloLens 2.  

Through the open-source HoloLens 2 Sensor Streaming (hl2ss) Library [65], which is 

based on the officially provided Application Programming Interface (API), we can obtain 

the raw tracking and mapping data directly from the HoloLens 2 without any post-pro-

cessing or algorithm modifications. This approach ensures that our findings are solely at-

tributed to the device’s capabilities and not influenced by external software applications. 

Our self-developed indoor mapping script has been tested and is now able to gener-

ate large scale 3D triangle mesh data with associated mapping trajectories, as shown in 

Figure 5. Compared to the method of exporting OBJ format triangle meshes data directly 
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from the web device portal, we were able to configure our mapping process more flexibly 

to meet our desired resolution requirements and to record movement trajectories. In this 

study, we set the maximum triangles per cubic meter to 10,000. This approach provides 

greater flexibility and extensibility, allowing us to do further in-depth research with the 

HoloLens 2. Moreover, we also utilized the augmented reality (AR) feature of the Ho-

loLens 2 to add the virtual triangle meshes in the user’s field of view during mapping, so 

that we can have a be�er immersive experience during the mapping process, as shown in 

Figure 4. 

 

Figure 5. HoloLens 2 indoor mapping test between two floors of a building. The trajectory starts at 

blue and ends at green. 

Unlike the HoloLens 2, for indoor mapping with the iPhone 14 Pro, we can directly 

download off-the-shelf apps from the App Store for our evaluation work. Due to the dif-

ference in algorithms and parameter configurations, indoor mapping accuracy may be 

different among applications. Although we were unable to fully evaluate all mapping ap-

plications in the App Store, with reference to [24,64,66,67], we selected PIX4DCatch and 

3D Scanner as representatives and conducted a comparison experiment. In this way, we 

explored whether variations in mapping accuracy on the iPhone 14 Pro exhibit con-

sistency when employing different mapping strategies for indoor mapping using different 

applications. Subsequently, we conducted a comparative analysis between the mapping 

results of the iPhone 14 Pro and HoloLens 2 to investigate if differences in mapping accu-

racy remained consistent across various mapping devices. 

Both PIX4DCatch and 3D Scanner support high-precision 3D scanning of the sur-

rounding environment using the LiDAR sensor on the iPad Pro or iPhone 14 Pro. Both of 

them support the output of triangle mesh data in OBJ format, which allows us to easily 

process and use them for subsequent processing. During our experiments, we installed 

PIX4DCatch version of 1.28.1 (813) and 3D Scanner version of 2.0.17 (2) on the iPhone 14 

Pro, respectively. For PIX4DCatch, we chose to skip low-quality images during the scan-

ning process, selected normal mode for the resolution of the acquired images, set the over-

lap between images to 90%, and set the camera to autofocus. For 3D Scanner, we selected 

the advanced LiDAR scanning mode for the mapping process. The scanning confidence 

parameter was set to the highest level, and the maximum depth range was set at 5.0 m. 

The resolution of the generated data was established at 50 mm. Additionally, we did not 

enable the masking feature, which has the capability to mask LiDAR data based on the 

type of object in view. It is worth mentioning that all data acquisition and processing were 

performed on the iPhone 14 Pro and finally exported in OBJ format. The views of indoor 

mapping with PIX4DCatch and 3D Scanner are shown in Figure 6. 
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(a) (b) 

Figure 6. The views of indoor mapping with the iPhone 14 Pro: (a) PIX4DCatch view; (b) 3D Scanner 

view. 

The schematic overview depicted in Figure 1 illustrates the evaluation process in this 

paper. For the collection of the experimental data, we used the HoloLens 2 and iPhone 14 

Pro to scan the corridor environment, respectively. Each data collection session started 

from the same point, with the direction of travel for each mapping strategy shown in Fig-

ure 3. When performing manual mapping, since it is challenging to maintain complete 

consistency in the trajectory, speed, and pose of the device during each mapping, a set of 

principles was applied to maximize the consistency across each scan. These principles in-

clude walking along the middle of the corridor, maintaining a steady pace frequency, and 

avoiding hand jerks up and down. In order to reduce the impact of human factors, we 

performed five data collections for each mapping strategy. Such processing helps to im-

prove the consistency and reliability of the data. 

For the ground truth data, we used the dataset created by Schmidt et al. [68], which 

is point clouds collected by the terrestrial laser scanner Imager 5016 by Zoller & Fröhlich. 

The 5016 imager has the capability to capture up to 1 million points per second. The scan-

ning process was executed from diverse scanner positions without the need for fixed 

points or targets. Then, the software Scantra (v.3.2) (Technet GmbH, Berlin, Germany) was 

used for registering the point clouds. The processed point clouds were exported as E57-

files. In the evaluation work, we extracted the corridor area of the dataset as our ground 

truth. 

The software CloudCompare 2.13.alpha version [69] was used for the process of data 

evaluation. First, we performed data preprocessing to remove redundant data unrelated 

to the evaluation. Then, we manually selected point pairs to align the mesh entities and 

point cloud entities, and performed fine registration using the iterative closest point (ICP) 

algorithm [70–72]. During the fine registration phase, we set the number of iterations to 

20, the root mean square (RMS) difference to 1.0 × 10−5, the final overlap to 100%, and the 

random sampling limit to 50,000. In this process, we chose to rotate and translate the 

aligned data in the XYZ axis without adjusting the scale. We did not enable the removal 

of the farthest points, and we did not utilize cloud-to-mesh (C2M) signed distances, as our 

focus was on overall alignment rather than on the directionality of discrepancies. 

For the accuracy evaluation, we adopt the cloud-to-cloud (C2C) Gaussian mean dis-

tance as the metric, which is the mean distance between two point clouds to measure the 

match accuracy between the data collected and the ground truth. Referring to the work of 

Hübner et al. [28], we employed the vertices of the triangle mesh data and points from the 

ground truth for the calculation.  
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During the C2C distance computation in CloudCompare, we configured the related 

parameters as follows: the octree subdivision level was set to automatic for optimal bal-

ance, the maximum distance was set to default 2.25 m, and we did not split the distances 

into X, Y, and Z components. Additionally, we did not apply any local surface modeling. 

These se�ings were chosen to focus on the global spatial relationships within the collected 

triangle mesh and ground truth, without being influenced by local geometric variations 

or axis-specific deviations. 

As for the evaluation of data completeness, our study focused on the inclusion and 

coverage of critical environmental features within the collected triangle mesh. We specif-

ically examined elements such as walls, pillars, and furniture, ensuring that the mesh ac-

curately represented the full extent of the surveyed environment. 

3. Results 

In this section, we present the results of the indoor mapping experiments with the 

Microsoft HoloLens 2 and iPhone 14 Pro under the four different mapping strategies. First, 

in Section 3.1, we present the outputs of the indoor mapping using the HoloLens 2 and 

iPhone 14 Pro with PIX4DCatch and 3D Scanner. Afterwards, the results of the indoor 

mapping accuracy are presented in Section 3.2. 

It should be mentioned that when using the iPhone 14 Pro for round-trip indoor map-

ping, there was occasional significant drift. For instance, when using 3D Scanner for RT-

LRAM strategy indoor mapping on the iPhone 14 Pro, the walls were severely misaligned, 

as shown in Figure 7. Occasionally, a similar situation also occurred when using 

PIX4Dcatch for round-trip mapping. However, no such significant drift was observed dur-

ing data acquisition with the HoloLens 2. When significant drift occurred, we discarded 

the existing data and acquired new data using the same strategy as a replacement. 

 

Figure 7. An instance of occasional significant drift that occurred when mapping with the iPhone 14 

Pro under round-trip strategies. The ceiling is removed for be�er visibility. 

3.1. Indoor Mapping Outputs 

The outputs of indoor mapping using the HoloLens 2 and iPhone 14 Pro through 

different mapping strategies are shown in Figures 8–10, respectively. Considering that the 

mapping outputs of the HoloLens 2 lack texture from images, we computed per-triangle 

faceted mesh normal in CloudCompare to enhance visualization. In contrast, the mapping 

outputs from the iPhone 14 Pro are presented as a textured triangle mesh. 

To provide a more intuitive visualization for observing the performance of the Ho-

loLens 2 and iPhone 14 Pro under the four simplified mapping strategies. We selected the 

corresponding five scan sequences under each strategy and presented them in order. With 

our top and back views, we can clearly observe the completeness of the output triangle 

mesh data. It should be mentioned that in our data presentation and evaluation, we 

mainly retained the relevant triangle mesh of the experimental environment from the out-

put of both the HoloLens 2 and iPhone 14 Pro, the irrelevant data beyond this were care-

fully removed to prevent their potential impact on the evaluation results. 
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Figure 8. The indoor mapping outputs using the HoloLens 2 under different mapping strategies. 

The ceiling is removed for be�er visibility. 
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Figure 9. The indoor mapping outputs with PIX4DCatch on the iPhone 14 Pro under different map-

ping strategies. The ceiling is removed for be�er visibility. 
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Figure 10. The indoor mapping outputs with 3D Scanner on the iPhone 14 Pro under different map-

ping strategies. The ceiling is removed for be�er visibility. 
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By comparing with the scene depicted in Figure 2, we can assess the overall perfor-

mance of indoor mapping using the HoloLens 2, iPhone 14 Pro with PIX4DCatch, and 

iPhone 14 Pro with 3D Scanner across different strategies. 

3.2. Indoor Mapping Accuracy  

In this section, we present the results of the indoor mapping accuracy across the 

Gaussian mean of the distance between the vertices in triangle mesh data and the points 

in ground truth data, as shown in Table 1. For enhanced visibility, we present the Gaussian 

mean in Figure 11 using box plots. Moreover, we list the Gaussian standard deviation in 

Table 2 which is associated with the Gaussian mean. 

   

(a) (b) (c) 

Figure 11. Box plot of the Gaussian mean for indoor mapping accuracy: (a) accuracy of the HoloLens 

2; (b) accuracy of the iPhone 14 Pro with PIX4DCatch; (c) accuracy of the iPhone 14 Pro with 3D 

Scanner. 

Table 1. The Gaussian mean for indoor mapping accuracy. Indoor mapping using the HoloLens 2, 

iPhone 14 Pro with PIX4DCatch, and iPhone 14 Pro with 3D Scanner under SFM, LRAM, RT-SFM, 

and RT-LRAM (values in cm). 

Devices Sequence SFM LRAM RT-SFM RT-LRAM 

HoloLens 2 

1 2.1 4.6 3.9 * 3.2 

2 2.8 5.7 4.1 3.5 * 

3 4.7 4.0 * 3.3 2.5 

4 3.2 * 3.7 5.1 3.6 

5 4.1 3.3 3.3 3.8 

Average 3.4 4.3 3.9 3.3 

iPhone 14 Pro  

with PIX4Dcatch 

1 3.3 3.9 4.2 4.2 

2 4.0 5.9 4.9 * 3.8 

3 3.9 * 2.8 4.3 3.2 

4 4.1 4.2 * 5.5 4.0 * 

5 3.7 4.6 5.8 5.2 

Average 3.8 4.3 4.9 4.1 

iPhone 14 Pro  

with 3D Scanner 

1 3.4 * 4.5 3.5 3.5 

2 2.3 2.3 7.3 4.7 * 

3 2.4 4.4 * 4.2 5.7 

4 3.6 4.5 6.3 3.4 

5 3.5 3.0 4.6 * 5.4 

Average 3.0 3.7 5.2 4.5 

* The median of the Gaussian mean in each of the 5 sequences. 
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Table 2. The Gaussian standard deviation associated with the Gaussian mean for indoor mapping 

using the HoloLens 2, iPhone 14 Pro with PIX4DCatch, and iPhone 14 Pro with 3D Scanner under 

SFM, LRAM, RT-SFM, and RT-LRAM (values in cm). 

Devices Sequence SFM LRAM RT-SFM RT-LRAM 

HoloLens 2 

1 3.4 5.5 3.9 3.5 

2 4.0 5.5 4.0 4.2 

3 5.3 4.4 * 4.3 * 3.0 

4 4.1 * 3.9 5.0 3.6 * 

5 4.8 4.1 4.3 3.8 

Average 4.3 4.7 4.3 3.6 

iPhone 14 Pro  

with PIX4Dcatch 

1 3.2 4.3 * 4.2 4.8 

2 3.5 * 5.2 4.4 * 3.5 

3 3.5 3.7 4.3 3.8 

4 3.6 4.0 4.5 3.9 * 

5 3.6 4.3 5.2 4.9 

Average 3.5 4.3 4.5 4.2 

iPhone 14 Pro  

with 3D Scanner 

1 3.7 4.9 4.0 3.8 

2 2.4 3.6 6.0 4.8 * 

3 2.6 4.9 4.3 * 6.5 

4 3.3 * 4.5 * 5.9 4.2 

5 3.9 3.8 4.2 5.1 

Average 3.2 4.3 4.9 4.9 

* The median of the Gaussian standard deviation in each of the five sequences. 

For a more in-depth analysis, we calculated the average of the accuracy of the five 

scanning sequences under each mapping strategy and presented them in line charts. At 

the same time, we also depicted the trend of the median variation of the accuracy of these 

five scanning sequences by line charts. The line charts in Figure 12 illustrate both the av-

erage and median values of the indoor mapping accuracy in Table 1. Correspondingly, 

Figure 13 presents the average and median values of the standard deviation for Table 2.  

In this way, the accuracy distribution of the scanning sequences and its variation un-

der different mapping strategies can be more intuitively shown to provide strong support 

for the subsequent analyses. 

  

(a) (b) 

Figure 12. Line chart of the average and the median of the Gaussian mean for indoor mapping ac-

curacy: (a) the average of the Gaussian mean; (b) the median of the Gaussian mean. 
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(a) (b) 

Figure 13. Line chart of the average and the median of the Gaussian standard deviation associated 

with the Gaussian mean for indoor mapping: (a) the average of the Gaussian standard deviation; 

(b) the median of the Gaussian standard deviation. 

4. Discussion 

In the following, we discuss the indoor mapping results presented in Section 3. We 

first analyze the output results of indoor mapping in Section 4.1, and then discuss the 

results of the indoor mapping accuracy evaluation using the HoloLens 2, iPhone 14 Pro 

with PIX4DCatch, and iPhone 14 Pro with 3D scanner under different strategies in Section 

4.2. 

4.1. Indoor Mapping Outputs Analysis 

From the triangle mesh data presented in Figures 8–10, we can see that both the Ho-

loLens 2 and iPhone 14 Pro obtained the highest data completeness using the RT-LRAM 

scanning strategy. Both the surrounding walls and floors have high completeness. Overall, 

the HoloLens 2 obtained more stable data than the iPhone 14 Pro, especially for the con-

tours of the four pillars in the corridor. As shown in Figure 14, the contours of pillars in 

the triangle mesh obtained by the HoloLens 2 are more regular and uniform. 

   
(a) (b) (c) 

Figure 14. Example of pillar contours detail in the output triangle mesh: (a) mesh output by the 

HoloLens 2; (b) mesh output by the iPhone 14 Pro with PIX4DCatch; (c) mesh output by the iPhone 

14 Pro with 3D Scanner. 

For the triangle mesh obtained with the HoloLens 2 and iPhone 14 Pro under the 

SFM, LRAM, and RT-SFM strategies, we found that there is a certain degree of surfaces 

missing on both walls and floors. Obviously, the data completeness collected under the 

SFM strategy is the worst, especially in the central area of the corridor where the wall is 

missing the most. By comparing the mapping results of the HoloLens 2 and iPhone 14 Pro, 

we can see that the completeness of the data captured by the iPhone 14 Pro is slightly 

higher than that of the HoloLens 2 under the SFM and LRAM strategies. The data obtained 

by the HoloLens 2 under these two mapping strategies is missing not only on the wall 

surface but also on the floor surface. In contrast, the missing portion of the surface of the 

data obtained by the iPhone 14 Pro was concentrated on the walls in the central area of 

the corridor.  

We speculate that the main reason for the incomplete walls with the SFM, LRAM, 

and RT-SFM strategies, is the presence of suspended tables and cabinets on the walls in 
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the central area of the corridor, as shown in Figure 2. This obstruction interferes with the 

infrared light emi�ed by the HoloLens 2 and the LiDAR signal emi�ed by the iPhone 14 

Pro, preventing the perception of depth information and the generation of a complete tri-

angle mesh. However, the data completeness under the LRAM and RT-SFM strategies is 

be�er than SFM, suggesting that left–right alternative mapping and round-trip mapping 

can compensate for the effects of occlusion to some extent. 

In addition, for the surfaces missing in the triangle mesh obtained by the HoloLens 2 

under the SFM and LRAM strategies, particularly on floors, we speculate that the main 

reason is due to the low frame rate of the long-throw depth-sensing camera of the Ho-

loLens 2. However, from the output results of RT-SFM and RT-LRAM, we can see that 

round-trip mapping can compensate for the low frame rate of the long-throw depth-sens-

ing camera and make the collected data more complete. 

It is important to mention that when we use the HoloLens 2 for data collection, we 

can export the trajectories of the HoloLens 2 and the timestamps corresponding to each 

pose. As a result, we can calculate the average speed at which the HoloLens 2 moved dur-

ing each scan, which ranges from 0.335 ± 0.024 m per second across a total of 20 data ac-

quisitions. Additionally, through the output files provided by PIX4DCatch and 3D Scan-

ner, we also calculated the average speed at which the iPhone 14 Pro moved during each 

scan, ranging from 0.400 ± 0.036 m per second with PIX4DCatch to 0.343 ± 0.040 m per 

second with 3D Scanner. From the average speed, we can see that we took meticulous 

measures to ensure a consistent step rate for both the HoloLens 2 and the iPhone 14 Pro 

during each mapping process. 

Nevertheless, we performed thorough mapping using the HoloLens 2 and iPhone 14 

Pro, respectively. While these mapping processes are difficult to describe accurately in 

words, we tried to keep the scanning speed slower and scan every part of the scene until 

the live-mapping visualization is as good as can be. Finally, after multiple a�empts, we 

obtained the most accurate results for the data collected in the thorough mapping mode 

as a reference. The outcomes were as follows: The HoloLens 2 delivered an accuracy of 3.1 

cm and an average speed of 0.275 m per second. When utilized with PIX4DCatch, the 

iPhone 14 Pro achieved an accuracy of 3.5 cm and an average speed of 0.261 m per second. 

On the other hand, when working with 3D Scanner, the iPhone 14 Pro delivered an accu-

racy of 2.7 cm and an average speed of 0.308 m per second. It should be mentioned that in 

order to obtain more complete data, the movement trajectories of the devices in thorough 

mapping mode are round-trip mapping. 

Generally, it is clear that round-trip mapping can produce a more complete data out-

put, but during data acquisition, we found that using the iPhone 14 Pro for round-trip 

data acquisition using PIX4DCatch and 3D Scanner occasionally resulted in significant 

drift, as shown in Figure 7. However, when using the HoloLens 2 for round-trip mapping, 

this did not occur. We hypothesize that in the round-trip situation, the HoloLens 2 de-

tected loop closure and corrected the device’s position accordingly and locally removed 

the incorrectly positioned meshes, while the built-in indoor mapping algorithms of 

PIX4DCatch and 3D Scanner may not consider loop closure detection, resulting in occa-

sional significant drifts in the output triangle mesh. 

4.2. Indoor Mapping Accuracy Evaluation 

In Section 3.2, we separately calculated the accuracy of indoor mapping under four 

different mapping strategies for HoloLens 2 and iPhone 14 Pro.  

As shown in Figure 12, for HoloLens 2 indoor mapping accuracy, the maximum dif-

ference between the average values, as well as the maximum difference between the me-

dian values, is around 1 cm for different mapping strategies, which indicates that the in-

door mapping accuracy of HoloLens 2 remains almost consistent across the four different 

scanning strategies. Furthermore, as observed in Figure 15, the cross section comparison 

of the data obtained by HoloLens 2 also highlights its exceptional stability. 
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Figure 15. The cross section comparison of the data acquired by HoloLens 2, represented by the data 

with median accuracy in Table 1. Red represents data across the SFM strategy, yellow represents 

LRAM, blue represents RT-SFM, green represents RT-LRAM, and grey represents the ground truth 

data. 

Although different mapping strategies have limited impact on the indoor mapping 

accuracy of HoloLens 2, choosing an appropriate mapping strategy can still improve data 

accuracy and data completeness. By observing the indoor mapping accuracy of HoloLens 

2 in Figure 12, we can see that the data accuracy obtained under the LRAM strategy is the 

worst compared to other mapping strategies. The data accuracy under the SFM strategy 

appears to be higher than that of LRAM, but the obtained triangle meshes have the worst 

completeness. To improve the completeness of the obtained triangle mesh, mapping strat-

egies like LRAM, RT-SFM or RT-LRAM may be utilized.  

However, under the premise of ensuring the good completeness of the acquired tri-

angle mesh data, the data accuracy across the RT-SFM and RT-LRAM strategies is higher 

than that of LRAM, especially the data accuracy under the RT-LRAM strategy is the high-

est in Figure 12, indicating that round-trip mapping can compensate to some extent for 

errors caused by drifts of the HoloLens 2 during data acquisition, as the indoor mapping 

algorithm of HoloLens 2 includes loop closure detection and local error correction capa-

bilities.  

Similarly, by observing the indoor mapping accuracy of the iPhone 14 Pro using 

PIX4DCatch and 3D Scanner in Figure 12, we can see that under different mapping strat-

egies, the fluctuation range of the indoor mapping accuracy for the iPhone 14 Pro is larger 

than that of the HoloLens 2. Especially with the cross section comparison in Figures 16 

and 17, we can clearly see that the data obtained by the iPhone 14 Pro using PIX4DCatch 

and 3D Scanner under different strategies is less stable than the HoloLens 2. The difference 

in mapping accuracy between PIX4DCatch and 3D Scanner under the same strategy is 

around 1cm. This suggests that when performing indoor mapping with the iPhone 14 Pro, 

the accuracy difference between different off-the-shelf commercial applications may not 

be significant, since most of them are developed based on Apple’s ARKit framework. 
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Figure 16. The cross section comparison of the data acquired by the iPhone 14 Pro with PIX4DCatch, 

represented by the data with median accuracy in Table 1. Red represents data across the SFM strat-

egy, yellow represents LRAM, blue represents RT-SFM, green represents RT-LRAM, and grey rep-

resents the ground truth data. 

 

Figure 17. The cross section comparison of the data acquired by the iPhone 14 Pro with 3D Scanner, 

represented by the data with median accuracy in Table 1. Red represents data across the SFM strat-

egy, yellow represents LRAM, blue represents RT-SFM, green represents RT-LRAM, and grey rep-

resents the ground truth data. 

Furthermore, we found that the two applications generally have the same trend in 

data accuracy under different mapping strategies. Although there is a slight difference in 
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the accuracy trend under RT-LRAM, the variation is only around 1cm. In combination 

with the occasional significant drift in the triangle mesh data during the round-trip map-

ping process mentioned in Section 3, we can conclude that round-trip mapping with the 

iPhone 14 Pro may not necessarily reduce errors in the triangle mesh data. In some in-

stances, it might even increase the probability of noticeable drift occurrences. Therefore, 

we hypothesize that PIX4DCatch and 3D Scanner may not incorporate loop closure detec-

tion in their indoor mapping algorithms. Consequently, when the iPhone 14 Pro utilizes 

these two applications for indoor mapping, the errors may gradually accumulate over 

time. Despite the potential for drift with round-trip mapping, the RT-LRAM strategy is 

still a good choice for higher data completeness, especially suitable for medium-scale in-

door spaces. 

5. Conclusions 

This study explored the often overlooked issue of the impact of user behavior on the 

evaluation of indoor mapping with entertainment devices, which may lead to potential 

errors and limitations in practical applications. Our evaluation shed light on the varying 

degrees of data completeness and accuracy in indoor mapping using the HoloLens 2 and 

iPhone 14 Pro across different strategies. 

According to our prior knowledge, we first defined four simplified mapping strate-

gies based on different user behaviors. Subsequently, we collected triangle mesh data un-

der each strategy using the HoloLens 2 and iPhone 14 Pro. For indoor mapping with the 

HoloLens 2, we collected triangle mesh data using an in-house developed mapping script 

based on an open-source library, and for indoor mapping with the iPhone 14 Pro, we used 

two different off-the-shelf applications, PIX4DCatch and 3D Scanner, for triangle mesh 

data acquisition. In this work, we used the point clouds collected by an industrial-grade 

terrestrial laser scanner as the ground truth, and finally carried out the data accuracy as-

sessment work with CloudCompare. 

The study shows that the HoloLens 2 performs be�er in indoor mapping compared 

to the iPhone 14 Pro. The triangle mesh accuracy collected by the HoloLens 2 is more 

stable and less affected by different strategies. Under the RT-LRAM strategy, the Ho-

loLens 2 achieves the best data results, which effectively compensates for the surface miss-

ing on walls and floors caused by furniture occlusion and the low frame rate of long-throw 

depth-sensing camera of the HoloLens 2. In addition, the round-trip mapping strategy 

slightly reduces the mapping errors of the HoloLens 2. For the iPhone 14 Pro, triangle 

mesh data acquired using PIX4DCatch and 3D Scanner showed similar indoor mapping 

accuracy for the same strategy, with a difference of approximately 1 cm. However, the 

triangle mesh data collected by the round-trip mapping strategy using PIX4DCatch and 

3D scanner is more prone to drift and error accumulation. In terms of mapping complete-

ness, the iPhone 14 Pro is more efficient than the HoloLens 2 and is more likely to scan 

quickly to get a more complete triangle mesh with the same mapping strategy. 

Therefore, in practical applications, which entertainment device to choose for indoor 

mapping needs to be weighed against specific needs and scenarios. If the requirements 

for triangle mesh accuracy and stability are high, the HoloLens 2 may be more suitable; 

while if more a�ention is paid to mapping completeness and efficiency, the iPhone 14 Pro 

may be more beneficial. At the same time, to address the limitations of different devices, 

technical optimization and algorithmic improvements can be made to improve their map-

ping performance to meet the needs of different scenarios. 

In this work, we only evaluated the indoor mapping accuracy under four simplified 

strategies utilizing the HoloLens 2 and iPhone 14 Pro. However, real-world applications 

may need to consider a wider range of factors, including various spatial environments, 

object materials, and reflective properties. Our results are mainly relevant to the devices 

mentioned above. We are also aware of possible differences in software and hardware 

between generations, as well as the challenges posed by more complex indoor 
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environments. In future studies, we will conduct more in-depth investigations to address 

these challenges and improve the applicability of our findings. 
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