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Abstract: The extensive use of corrugated board in the packaging industry is attributed to its excellent
cushioning, mechanical properties, and environmental benefits like recyclability and biodegradability.
The integrity of corrugated board depends on various factors, including its geometric design, paper
quality, the number of layers, and environmental conditions such as humidity and temperature. This
study introduces an innovative application of convolutional neural networks (CNNs) for analyzing
and classifying images of corrugated boards, particularly those with deformations. For this purpose,
a special device with advanced imaging capabilities, including a high-resolution camera and image
sensor, was developed and used to acquire detailed cross-section images of the corrugated boards.
The samples of seven types of corrugated board were studied. The proposed approach involves
optimizing CNNs to enhance their classification performance. Despite challenges posed by deformed
samples, the methodology demonstrates high accuracy in most cases, though a few samples posed
recognition difficulties. The findings of this research are significant for the packaging industry, offering
a sophisticated method for quality control and defect detection in corrugated board production. The
best classification accuracy obtained achieved more than 99%. This could lead to improved product
quality and reduced waste. Additionally, this study paves the way for future research on applying
machine learning for material quality assessment, which could have broader implications beyond the
packaging sector.

Keywords: corrugated board; flute type; cross-section image; convolutional neural network

1. Introduction

Corrugated board is widely utilized in packaging food products, transporting various
goods and other applications. Its main advantages include being lightweight and easy
to handle, along with the ability to be printed with custom designs. As a recyclable and
biodegradable material, corrugated board is an eco-friendly choice for businesses and
consumers. It is a versatile and well-liked material employed in the packaging sector [1,2].
Its structure comprises a ridged sheet, a flute and two smooth linerboards, providing
resilience and flexibility.

The flute in the corrugated board is produced by feeding paper through grooving rolls,
which create the distinctive ridges and depressions, giving the board its name. The flutes
vary in dimensions, with higher flutes offering more strength and cushioning, and lower
flutes providing a smoother surface for printing. The outer layers of corrugated board
typically made from kraft paper, known for its durability and tear resistance, make it an
ideal packaging material.

However, corrugated board can become distorted during production, storage, trans-
portation or use due to factors like temperature and humidity fluctuations, or mechanical
loads. There are two types of corrugated board imperfections: global or local. The literature
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includes studies on these imperfections and their impacts on mechanical properties. Models
of large-scale deflections of cardboard have been developed by Beck and Ficherauer [3]. The
authors mainly analyzed local imperfections. Nordstrand studied the impact of their size
on the compressive strength of boxes made of corrugated board [4]. Later, the same author
analyzed the nonlinear buckling of Rhodes and Harvey orthotropic plates to study local
imperfections [5]. Lu et al. examined the behavior of the corrugated boards with imperfec-
tions during compression to analyze their mechanical properties [6]. An analytical study of
double-walled corrugated board during a bending test was proposed by Garbowski and
Knitter-Piątkowska [7]. Mrówczyński et al. developed a method to analyze single-walled
corrugated board by introducing initial imperfections [8]. Cillie and Coetzee investigated
corrugated boards under in-plane compression [9]. The corrugated boards included both
local and global imperfections. Recently, Mrówczyński and Garbowski applied the finite
element method and representative volumetric element to study the effective stiffness of
corrugated board with geometrical imperfections [10].

In the literature, one can find many techniques for testing the corrugated board that
boxes are made from. Compressive, tensile, or bursting strength tests are commonly
performed to evaluate the mechanical properties of corrugated board. The box compression
test (BCT) and the edge crush test (ECT) [11,12] are the best known in the packaging
industry. The mechanical strength of paperboard or corrugated cardboard boxes has a
strong connection to two distinct in-plane directions of orthotropy. These directions are
perpendicular to the main axis of the fluting and parallel to the alignment of the paperboard
fibers. One direction is known as the machine direction (MD), which goes parallel to the
fibers, and the other is the cross direction (CD), which goes parallel to the fluting. Another
approach in assessing the mechanical strength of boxes made from corrugated board is to
use analytical formulas, e.g., the very famous McKee formula [13] or its modifications, such
as those proposed in [14,15]. On the other hand, one can perform numerical analyses of the
corrugated board [16–19], which is also a common methodology used in much research in
this area. The approach presented in this paper can lead to the automatic creation of a 3D
model of the real corrugated board structure based on images in future research. Here, we
propose a first step towards this.

Analyzing corrugated board using image processing techniques and computer vision
is not a common problem addressed in the literature. However, there are some works in
this area, mainly those related to designing systems for automatic waste sorting. Transfer
learning and model fusion were applied by Liu et al. to propose a new method for garbage
classification [20]. Template matching was used by Rahman et al. to classify and sort
recyclable waste paper [21]. In terms of corrugated boards, studies have focused on the
automatic counting of its layers using image processing techniques. For example, Cebeci
applied classical image processing operations for counting corrugated boards [22]. Similarly,
Suppitaksakul and Rattakorn employed a machine vision system and image processing
techniques for this purpose [23]. Suppitaksakul and Suwannakit proposed a procedure for
stitching corrugated board images [24].

A convolutional neural network (CNN) is a deep learning model specifically designed
for processing and analyzing visual data, such as images and videos. Inspired by the hu-
man brain’s visual cortex, CNNs are highly effective in tasks like image classification, object
detection, and other image processing challenges. These networks utilize convolutional lay-
ers to automatically detect and extract patterns from input data, which can include various
visual features loke edges, shapes, textures, and other characteristics. Convolutional layers
employ filters, or kernels, to analyze the input data by performing element-wise multiplica-
tion and summation, thus producing a feature map. This process aims to highlight specific
characteristics presented in the data.

The study of cross-section geometry and material classification based on images is
relatively rare in the literature. However, there are some examples. These studies primarily
utilize machine learning techniques, including CNNs. Caputo et al. applied support vector
machines to classify materials from images [25] also acquired under various illumination



Sensors 2024, 24, 1051 3 of 15

and pose conditions [26], using a pretrained ResNet-50 network architecture. Wyder and
Lipson identified the static and dynamic properties of cantilever beams using the CNNs,
basing their classification on raw cross-section images [27]. Li et al. explored different deep
learning techniques to analyze the geometric features of self-piercing riveting cross-section,
with SOLOv2 and U-Net architectures yielding the best results [28]. Ma et al. conducted
a study on the geometrical parameters of crushed thin-walled carbon fiber-reinforced
polymer tubes cross-sections [29]. Daigo et al. proposed the use of PSPNet to estimate
the thickness of steel in heavy melting scrap [30]. The CNN and conditional generation
antagonism model were utilized by Liu et al. to predict the cross-sectional shape and
damage morphology of self-piercing riveted joints in carbon fiber-reinforced composites
and aluminum alloy [31]. Recently, Kato et al. evaluated the internal cracks of timbers using
CNNs [32,33]. The optimal thickness of blending composite laminates was determined by
Huynh et al. using the CNN and genetic algorithm [34].

In this paper, the authors proposed using CNNs for classifying types of corrugated
board. This classification depends on the flute of the board, a feature significantly influenc-
ing its mechanical properties. To the best knowledge of the authors, such an approach has
not yet been applied to analyze the geometry of the corrugated board cross-section. The
study involved analyzing twenty-seven CNN structures. The most effective models were
selected for further discussion regarding their accuracy in the final classification process of
this innovative approach.

The automatic classification of the corrugated board was previously considered by the
authors of [35,36]. However, in the previous approach, classical image processing methods
and genetic algorithms were used to identify geometric features of the corrugated board
and later to automatically classify its type [37]. In this paper, the CNNs were proposed for
the same purpose. This methodology gave much better results than the approach based on
the classical image processing techniques and genetic algorithm, even if the sample was
significantly deformed. Furthermore, the computation time is much lower. To the best
knowledge of the authors, there are no other papers that consider the classification of the
corrugated boards based on its images. This can be a first step in the automatization of
corrugated board modeling based on their cross-sectional pictures, which can lead to more
realistic numerical analyses of these structures with real imperfections.

2. Materials and Methods
2.1. Corrugated Boards and Their Types

The basic structure of the corrugated board consists of two liners and one flute for a
single-wall corrugated board, see Figure 1a. On the other hand, the double-wall corrugated
board includes three liners and two flutes—see Figure 1b.
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Figure 1. Cross-sections of the corrugated boards for: (a) single-walled (3-ply) board; (b) double-
walled (5-ply) board.

The corrugated boards can be classified based on their geometrical features. In the
case of single-walled boards, the most important feature is the height of the flute. Based on
this parameter, the most corrugated boards include [35]:

• A—flute with a height of approximately 5 mm;
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• B—flute with a height of approximately 3 mm;
• C—flute with a height of approximately 4 mm;
• E—flute with a height of approximately 1.6 mm;
• F—flute with a height of approximately 0.8 mm.

The corrugated boards offer various features of the structures depending on the flute
type. For instance, the corrugated board containing a higher flute gives more mechanical
strength and cushioning properties, while the smaller flutes provide a smoother surface.
Therefore, the former are utilized, for example, for heavy goods protection and trans-
portation, like for furniture, and the latter are useful for detail packaging or packaging for
printing purposes. The abovementioned flutes are schematically depicted in Figure 1a.

The benefits resulting from the application of these types of flutes can be merged by
combining two types of flutes in double-walled corrugated boards. These can be applied
also for improving some specific features of the corrugated boards, for instance, their
mechanical strength. The double walls available on the market are often composed of BC
(5–7 mm), EB (3.5–5 mm), or EC (4–5.5 mm) flutes [7]. They are schematically depicted in
Figure 2b.
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Figure 2. Schematic representations of the corrugated boards commonly available on the market:
(a) single-walled corrugated boards; (b) double-walled corrugated boards.

In this study, both single- and double-walled corrugated boards are considered. One
should notice that in Figures 1 and 2, the ideal structures are presented. In the real situation,
where the cross-section is obtained from the image, the structure is deformed, which
makes the automatic classification of the original structure more difficult. Figure 2 shows
schematic representations of the corrugated board types considered in this study, which
are commonly available on the market.

2.2. Data Acquition

A specialized device was developed and built for capturing images of the corrugated
board’s cross-section. This device ensures consistent conditions for recording the cross-
sectional images of the samples. As depicted in Figure 3a, the device includes a sample
holder on the door, which can be opened to easily mount the sample. Neodymium magnets
in the door frame secure the door’s closure and prevent unintended opening. The camera,
affixed to the device’s frame, is positioned to aim its optical axis straight at the sample’s
surface (see Figure 3b). The surface is evenly lit by two LED strips, each with 4.8 W/m
power, placed on the partition wall. The light is manually operated with a bistable key
switch. External connections from the device include a power cable for the lighting and a
USB cable for image transfer to a computer. The device’s components were created using
3D printing.
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Figure 3. Device for corrugated board image acquisition: (a) visualization of the device; (b) layout
diagram of the most important components of the device (1—corrugated board sample; 2—camera;
3—LED strip (all dimensions in this picture are given in mm)).

For image capture, the system utilizes an ArduCam B0197 camera, featuring autofocus
and an 8 MPx Sony IMX179 (1/3.2′′) image sensor. Images captured by the camera are
saved in JPEG format with a maximum resolution of 3264 × 2448 pixels.

2.3. Dataset

The samples used for the presented research were obtained from FEMAT [38], a
company that specializes in the strength analysis of corrugated board and with whom
many local board producers have established collaborative relationship. Some of the
samples were deliberately deformed by creasing, allowing for a detailed examination of
the visual systems’ response to such deformations. This partnership with FEMAT not only
facilitated access to high-quality, relevant samples but also ensured that the experiments
were grounded in real-world applications of corrugated board analysis.

Using the equipment presented in the previous section, a total number of 646 samples
were acquired, and as the results, images of their cross-sections were obtained. Some
samples were deformed manually in a random way or using a creasing machine. Within
the group of samples with the same flute type, the numbers for non-deformed, manually de-
formed and creasing machine deformed were the same. The number of images representing
the corrugated boards with the specific types of flutes is given in Table 1. In order to unify
the number of images in the database for each flute type, smaller images with dimensions
of 800 × 800 px were cut out from a large image with dimensions of 3264 × 2448 px. The
smaller images were cut out at a random distance from the left image boundary. The idea
of creating smaller images from the originally acquired image is schematically presented in
Figure 4.

Table 1. Number of the corrugated board samples used to generate the dataset.

Flute Type
Number of

Non-Deformed
Samples

Number of
Manually Deformed

Samples

Number of Samples
Deformed Using

Creasing Machine

Total
Number of

Samples

flute B 48 48 48 144
flute BC 40 40 40 120
flute C 28 28 28 84
flute E 36 36 36 108

flute EB 44 44 44 132
flute EC 8 8 8 24
flute EE 12 12 12 36

Total number of
samples 216 216 216 648
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Figure 4. Example of acquired image with smaller images (presented yellow, red, and blue frames) of
dimension used to generate the dataset applied in this study.

After the process of generating the images, in the manner presented in Figure 4, seven
classes were obtained (classes B, BC, C, E, EB, EC, and EE). However, the classifiers studied
in this paper should also be used to recognize images with no sample of the corrugated
board. Therefore, images with an additional class (class Not) were generated to represent
situations in which the sample is not present in the acquisition device, the door of the
device is not closed, etc. If there were no additional class, the model would give an answer
within the seven classes it knows, which would be an obvious mistake. Examples of all
eight classes are presented in Figure 5.
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The final number of images representing each class and form of sample (non-deformed,
deformed manually or deformed using creasing machine) is summarized in Table 2.
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Four divisions of the dataset (dataset1, dataset2, dataset3, dataset4) ae randomly gener-
ated. However, it was ensured that all data types containing 70 images were uniformly
represented in training, validation and test sets within each dataset division. Each data
type contained 70 images (for instance, the images presenting the manually deformed
corrugated board with flute B):

• 49 images (70%) were randomly selected for the training set;
• 10 images (14.3%) were randomly selected for the validation set;
• 11 images (15.7%) were randomly selected for the test set.

For class Not, 147 images were used in the training set, 32 in the validation, and 31 in
the test set. This resulted in a training set containing 1176, a validation set including 240,
and a test set with 264 images in total for each dataset (dataset1, dataset2, dataset3, dataset4).

Additionally, data augmentation was applied in the current study. This means that the
images were randomly rotated by a random angle, or flipped horizontally or vertically. This
process ensures that the trained model will also be able to classify images that differ from
the images used in the generated dataset. The images do not always need to be acquired
horizontally as in the acquisition device used in this study. Examples of data augmentation
from the generated dataset are presented in Figure 6.
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Table 2. Number of corrugated board images used in the dataset.

Class
Number of

Non-Deformed
Samples Images

Number of
Manually Deformed

Samples Images

Number of Samples
Deformed Using

Creasing Machine

Total
Number of

Images

class B 70 70 70 210
class BC 70 70 70 210
class C 70 70 70 210
class E 70 70 70 210

class EB 70 70 70 210
class EC 70 70 70 210
class EE 70 70 70 210

Total number of
samples 490 490 490 1470

class Not 210 1680

2.4. Convolutional Neural Network

An example of the CNN structure studied in this paper is presented in Figure 7. This
represents the structure for which the best results were obtained. However, in this study
some parameters of this structure were changed: number of convolutional layers, layer size
(number of filters), and number of dense layers. The structure shown in Figure 7 consists of
six convolutional layers with ReLu activation functions (blue box in Figure 7). After each
convolution, one can observe the MaxPooling layer (red box), which reduces the size of the
feature map. After this layer, the Flatten layer (to transform a tensor to a vector) and the
Dense layers, with a number of neurons equal to the number of filters and ReLu activation
functions, can be applied. However, the structure yielding the best results did not include
these elements. Here, a Dropout layer is applied to avoid overfitting. In the end, one Dense
layer is applied with the eight neurons and Sofmax activation functions. Each neuron in
this layer is responsible for the classification of other flute types, as presented in Figure 5.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 7. Example of the convolutional neural network structure applied in this study. 

3. Results 

In order to find the most accurate and universal convolutional neural network archi-

tecture, trainings and tests of the CNN were performed by changing the following hy-

perparameters of the CNN: 

 Number of convolutional layers—4, 5 or 6; 

 Layer size (number of filters)—32, 64 or 128; 

 Number of dense layers—0, 1 or 2. 

Combinations of the abovementioned parameters result in 27 various structures of 

the CNNs. 

The training and evaluation process of all 27 types of models was carried out four 

times on the basis of four previously prepared test datasets: dataset1, dataset2, dataset3, and 

dataset4. This is a kind of cross-validation, which is intended to provide an objective as-

sessment of the suitability of networks with different structures for the issue under con-

sideration. Training and evaluating models with the same hyperparameters for several 

different arrangements of divisions into training and testing sets ensures the greater reli-

ability of the obtained results. 

The results for all the trained models, in the form of accuracies obtained on test sets 

from four different datasets, are presented in Table 3. The highest average accuracy of 

99.04% was obtained for the convolutional neural network 6conv_0dense_128nodes. This is 

a neural network with six convolutional layers with 128 filters in each layer and no dense 

layer. When analyzing Table 3, one can notice that the best results were obtained for ar-

chitectures with five and six convolutional layers, and with or without one dense layer. 

Table 3. Accuracy results obtained for studied structures of the convolutional neural networks. 

CNN Model 
Accuracy (%) Average  

Accuracy (%) dataset1 dataset2 dataset3 dataset4 

6conv_0dense_128nodes 98.85 98.85 98.47 100.00 99.04 

6conv_1dense_128nodes 98.09 99.24 97.71 99.62 98.67 

5conv_0dense_32nodes 96.95 99.24 97.71 98.85 98.19 

5conv_0dense_128nodes 96.56 99.24 99.24 97.71 98.19 

6conv_0dense_64nodes 96.56 98.09 98.47 99.24 98.09 

5conv_1dense_128nodes 96.18 97.71 98.47 99.62 98.00 

5conv_1dense_64nodes 96.56 97.71 98.47 98.85 97.90 

6conv_0dense_32nodes 97.71 96.56 98.09 98.85 97.80 

4conv_0dense_128nodes 96.18 96.56 97.33 98.85 97.23 

Figure 7. Example of the convolutional neural network structure applied in this study.

During the training process, the ADAM (Adaptive Moment Estimation) optimizer
was utilized. The sparse categorical cross-entropy was chosen as the loss function and the
classification accuracy was adopted as the metric. The training process was always limited
to a number of epochs equal to 35, and a batch size of 32 was utilized.
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3. Results

In order to find the most accurate and universal convolutional neural network ar-
chitecture, trainings and tests of the CNN were performed by changing the following
hyperparameters of the CNN:

• Number of convolutional layers—4, 5 or 6;
• Layer size (number of filters)—32, 64 or 128;
• Number of dense layers—0, 1 or 2.

Combinations of the abovementioned parameters result in 27 various structures of
the CNNs.

The training and evaluation process of all 27 types of models was carried out four times
on the basis of four previously prepared test datasets: dataset1, dataset2, dataset3, and dataset4.
This is a kind of cross-validation, which is intended to provide an objective assessment
of the suitability of networks with different structures for the issue under consideration.
Training and evaluating models with the same hyperparameters for several different
arrangements of divisions into training and testing sets ensures the greater reliability of the
obtained results.

The results for all the trained models, in the form of accuracies obtained on test sets
from four different datasets, are presented in Table 3. The highest average accuracy of
99.04% was obtained for the convolutional neural network 6conv_0dense_128nodes. This
is a neural network with six convolutional layers with 128 filters in each layer and no
dense layer. When analyzing Table 3, one can notice that the best results were obtained for
architectures with five and six convolutional layers, and with or without one dense layer.

Table 3. Accuracy results obtained for studied structures of the convolutional neural networks.

CNN Model
Accuracy (%) Average

Accuracy (%)dataset1 dataset2 dataset3 dataset4

6conv_0dense_128nodes 98.85 98.85 98.47 100.00 99.04
6conv_1dense_128nodes 98.09 99.24 97.71 99.62 98.67
5conv_0dense_32nodes 96.95 99.24 97.71 98.85 98.19
5conv_0dense_128nodes 96.56 99.24 99.24 97.71 98.19
6conv_0dense_64nodes 96.56 98.09 98.47 99.24 98.09
5conv_1dense_128nodes 96.18 97.71 98.47 99.62 98.00
5conv_1dense_64nodes 96.56 97.71 98.47 98.85 97.90
6conv_0dense_32nodes 97.71 96.56 98.09 98.85 97.80
4conv_0dense_128nodes 96.18 96.56 97.33 98.85 97.23
5conv_0dense_64nodes 96.18 98.09 94.66 99.62 97.14
6conv_1dense_64nodes 98.09 93.51 97.71 98.47 96.95
6conv_2dense_128nodes 97.33 92.75 98.09 98.85 96.76
4conv_0dense_64nodes 95.42 98.47 95.80 97.33 96.76
5conv_2dense_128nodes 95.04 96.95 96.56 97.33 96.47
4conv_1dense_128nodes 93.51 97.71 95.04 96.95 95.80
5conv_1dense_32nodes 89.69 97.33 95.80 98.09 95.23
4conv_1dense_64nodes 92.37 97.33 94.27 96.56 95.13
5conv_2dense_64nodes 93.51 93.89 93.89 98.09 94.85
6conv_2dense_64nodes 90.08 96.56 95.80 96.16 94.65
6conv_1dense_32nodes 95.42 93.51 96.56 91.22 94.18
4conv_0dense_32nodes 92.75 93.89 92.75 96.56 93.99
4conv_2dense_128nodes 93.13 95.42 92.75 94.27 93.89
4conv_2dense_64nodes 93.51 91.98 91.60 92.75 92.46
4conv_1dense_32nodes 91.22 91.60 90.84 95.42 92.27
5conv_2dense_32nodes 90.46 91.22 88.55 92.37 90.65
6conv_2dense_32nodes 87.79 80.92 87.79 88.55 86.26
4conv_2dense_32nodes 86.64 79.77 89.69 85.11 85.30

Examples of training curves of models with the best accuracy presented in Table 3
are shown in Figure 8. The models, after about 25 epochs, achieved a relatively high
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training accuracy of about 97%. The values of the training and validation loss also provide
information about how well the network copes with a given issue. An increase in the value
of the loss on the validation set for subsequent iterations could indicate, for example, the
overtraining of the network. In the case presented in Figure 8d, an initial decrease in the
loss value is visible, which then stabilizes with the continuation of the training process.
Due to dropout regularization, the accuracy and loss for the validation sets achieved better
values than for the training sets.
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structure with the best results obtained.

Figure 9 shows the confusion matrices obtained for all four versions of the trained
model with the best convolutional neural network architecture 6conv_0dense_128nodes. In
these tables, the rows indicate the actual class, and the columns indicate the predicted
class. The diagonal represents the number of correctly classified examples for all eight
classes included in the datasets. All versions of the model incorrectly predicted the class for
10 images, while in 1038 cases, the flute class was correctly classified. It is visible that if the
trained models make an error, they have the highest tendency to misclassify samples with
flutes B and C. The confusion matrices indicate that each time, the incorrectly recognized
cardboard samples with flutes B and C were assigned to the class representing a lower
wave (flutes E and B, respectively). This is most likely directly related to the crease, as a
result of which the overall wave thickness and the fluting height are reduced.



Sensors 2024, 24, 1051 11 of 15

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16 
 

 

  

(c) (d) 

Figure 8. Training curves: accuracy vs. number of epochs (a) and loss vs. number of epochs (b) plots 

for six structures with the best results obtained; accuracy vs. number of epochs (c) and loss vs. num-

ber of epochs (d) for training and validation datasets for the convolutional neural network structure 

with the best results obtained. 

Figure 9 shows the confusion matrices obtained for all four versions of the trained 

model with the best convolutional neural network architecture 6conv_0dense_128nodes. In 

these tables, the rows indicate the actual class, and the columns indicate the predicted 

class. The diagonal represents the number of correctly classified examples for all eight 

classes included in the datasets. All versions of the model incorrectly predicted the class 

for 10 images, while in 1038 cases, the flute class was correctly classified. It is visible that 

if the trained models make an error, they have the highest tendency to misclassify samples 

with flutes B and C. The confusion matrices indicate that each time, the incorrectly recog-

nized cardboard samples with flutes B and C were assigned to the class representing a 

lower wave (flutes E and B, respectively). This is most likely directly related to the crease, 

as a result of which the overall wave thickness and the fluting height are reduced. 

  

(a) (b) 

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16 
 

 

  

(c) (d) 

Figure 9. Confusion matrices for the convolutional neural network 6conv_0dense_128nodes obtained 

in the training and testing process based on: (a) dataset1; (b) dataset2; (c) dataset3; (d) dataset4. 

Examples of correctly classified samples are presented in Figure 10. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Examples of classification results for: (a) flute BC; (b) flute B; (c) flute C; (d) no sample case. 

4. Discussion 

In this section, the analysis of incorrectly recognized corrugated cardboard samples 

is performed for the convolutional neural network architecture 6conv_0dense_128nodes, for 

which the best accuracy was obtained. In the confusion matrices (Figure 9), one can notice 

that for dataset1 and dataset2, there were three incorrectly classified samples, for dataset3 

there were four incorrectly classified samples, and for dataset4, all the samples were 

Figure 9. Confusion matrices for the convolutional neural network 6conv_0dense_128nodes obtained
in the training and testing process based on: (a) dataset1; (b) dataset2; (c) dataset3; (d) dataset4.

Examples of correctly classified samples are presented in Figure 10.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16 
 

 

  

(c) (d) 

Figure 9. Confusion matrices for the convolutional neural network 6conv_0dense_128nodes obtained 

in the training and testing process based on: (a) dataset1; (b) dataset2; (c) dataset3; (d) dataset4. 

Examples of correctly classified samples are presented in Figure 10. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Examples of classification results for: (a) flute BC; (b) flute B; (c) flute C; (d) no sample case. 

4. Discussion 

In this section, the analysis of incorrectly recognized corrugated cardboard samples 

is performed for the convolutional neural network architecture 6conv_0dense_128nodes, for 

which the best accuracy was obtained. In the confusion matrices (Figure 9), one can notice 

that for dataset1 and dataset2, there were three incorrectly classified samples, for dataset3 

there were four incorrectly classified samples, and for dataset4, all the samples were 

Figure 10. Examples of classification results for: (a) flute BC; (b) flute B; (c) flute C; (d) no sample case.



Sensors 2024, 24, 1051 12 of 15

4. Discussion

In this section, the analysis of incorrectly recognized corrugated cardboard samples
is performed for the convolutional neural network architecture 6conv_0dense_128nodes,
for which the best accuracy was obtained. In the confusion matrices (Figure 9), one can
notice that for dataset1 and dataset2, there were three incorrectly classified samples, for
dataset3 there were four incorrectly classified samples, and for dataset4, all the samples were
correctly classified. This resulted in 10 cases of incorrect classification in total. Figure 11
shows all these examples. One can see that 9 out of 10 incorrectly classified images showed
crushed samples. Regarding the number of layers, 9 of 10 images show three-layer samples.
As shown in the results section, if the trained models made errors, they tended to classify
images to a class with a smaller wavelength than the one presented (class C classified to
class B, class B to class E). It is also worth analyzing the samples presented in the images
for other types of imperfections than creasing. None of the samples presented have an
exceptionally high number of paper fibers. There are also no inclined samples or samples
with delamination. Therefore, the degree of creasing of the sample has the most significant
impact on the correct classification of the type of corrugated board among the types of
imperfections taken into account. The obtained results also show that the trained network
models coped better with classifying five-layer samples than three-layer samples. It is
unclear why the trained models classified the sample with flute E as flute EE and flute BC
as flute C. However, one can notice that there was only one case of wrongly classified flutes
for each of these two corrugated board types within all datasets.
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In the previous study, an identification of geometrical features was proposed based
on images and genetic algorithms [35,36]. These identified parameters can be used as the
inputs for a simple feedforwad neural network and compared with the current approach.
This was performed within a conference paper [37]. The presented comparison clearly
shows that the approach based on the CNNs gives better results in comparison with the
algorithm based on classical image processing operations and genetic algorithms (accuracy
of 99.4% vs. 98.3%).

5. Conclusions

This study demonstrates the effective use of convolutional neural networks (CNNs)
for classifying various types of corrugated board, a critical component in the packaging
industry. The research highlights the potential of CNNs in accurately identifying flute
types of corrugated boards, essential for determining their mechanical properties. The
methodology showed high accuracy in classifying even deformed samples, indicating the
robustness of the approach. These findings are significant for quality control and defect
detection in corrugated board production, potentially leading to improved product quality
and reduced waste. The study also opens up avenues for future research in applying
machine learning to broader material quality assessment, extending beyond the confines of
packaging. This innovative application of CNNs showcases a significant advancement in
the intersection of material science and machine learning, providing a new perspective on
automated quality control in manufacturing.

Furthermore, the methodology presented is the first step towards the automatic
modeling of corrugated board structures. It is proven in this paper that the application of
deep learning techniques in image recognition systems can evolve and help us to more
accurately identify and analyze the unique characteristics of corrugated board structures
from images. This involves the development of specialized algorithms that can discern
subtle variances in flute size, wall construction, and paper quality. As is shown, the use
of CNNs plays a pivotal role in this, enabling the systems to learn from a vast dataset
of corrugated board images and improve their accuracy over time. Additionally, the
incorporation of 3D modeling techniques will allow for the creation of detailed digital
twins of these structures, providing invaluable insights for quality control, structural
analysis, and design optimization. This progress in image recognition and modeling
technology holds the promise of significant efficiency gains in manufacturing processes,
quality assurance, and product development in the corrugated board industry.
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