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Abstract: A novel approach for video instance segmentation is presented using semisupervised
learning. Our Cluster2Former model leverages scribble-based annotations for training, significantly
reducing the need for comprehensive pixel-level masks. We augment a video instance segmenter,
for example, the Mask2Former architecture, with similarity-based constraint loss to handle partial
annotations efficiently. We demonstrate that despite using lightweight annotations (using only 0.5%
of the annotated pixels), Cluster2Former achieves competitive performance on standard bench-
marks. The approach offers a cost-effective and computationally efficient solution for video instance
segmentation, especially in scenarios with limited annotation resources.

Keywords: transformers; video processing; instance segmentation; semisupervised learning

1. Introduction

Video instance segmentation (VIS) involves identifying and delineating individual
objects in a video sequence, while distinguishing between different instances of the same
object category. This task combines three main components: object detection: identifying
and localizing objects within each video frame; object tracking: keeping track of the same
objects as they move across frames, maintaining their identities; and instance segmentation:
providing a pixel-level mask for each object instance.

Video instance segmentation plays a key role across diverse applications, such as
autonomous driving, surveillance, robotics, and video analysis. By identifying and tracking
individual instances of objects, this technique is instrumental in enabling systems to compre-
hend the details of object movements and interactions within a temporal context in a given
video stream. Its applications extend beyond visual comprehension, providing insights into
the spatial and temporal relationships among objects. In autonomous driving scenarios,
for instance, video instance segmentation is indispensable for real-time decision making,
ensuring the safe navigation of vehicles through complex environments. In surveillance
and robotics, this technology facilitates the precise monitoring and manipulation of objects,
improving the efficiency and accuracy of these systems. Furthermore, in video analysis,
the capability to discern and isolate specific instances greatly contributes to extracting
meaningful information and patterns from large datasets. As technological advancements
continue, the importance of video instance segmentation becomes increasingly apparent,
changing the way we perceive and interact with visual data across various domains.

Cutting-edge VIS models currently rely on comprehensive video annotations from VIS
datasets [1,2] to face this demanding challenge. However, video annotation is expensive,
especially when creating precise object masks. In addition, there are instances where it
becomes difficult to precisely delineate the boundaries of objects due to occlusion [3] or
blurring. Even the less precise polygon-based mask annotations are significantly more
time-consuming than annotating videos with bounding boxes [4,5] or scribbles. This issue
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is particularly critical for recent transformer-based VIS models [6–8], as they have a high
demand for training data.

Our objective in this paper is to develop a competitive video instance segmentation
model using lightweight annotations. We found that scribbles—free-hand curvy lines
drawn across the characteristic parts of the instance—are not only an effective way to
provide partial mask information, but also sufficient to achieve competitive performance
on VIS benchmarks.

We combine the Mask2Former [7,9] model (to achieve high VIS performance) with
similarity-based constraint loss (to enable the semisupervised nature of clustering-based
methods). For an illustration of clustering-based methods, see Figure 1.

Figure 1. Illustration of the clustering-based approach. Based on the learned object queries, we
compute the output of the decoder for a pixel, representative of the features of the object the pixel
is embedded in, as a probability distribution. Our learning objective guides the decoder to output
similar distributions for pixels embedded in the same object and different distributions for a pixel
pair embedded in different objects.

To our knowledge, our Cluster2Former model is the first VIS method trained in partial
masking that achieves high-quality segmentation results (for a survey of recent VIS models,
see [10]). The main contributions of this paper are summarized as follows:

• We propose a VIS model, which is trained by scribbles drawn on the training video
frames. Our model achieves competitive performance despite using only 0.5% of the
pixel count of the full training masks as annotation.

• The above result is achieved by modifying the learning objective only, leaving the
architecture of the transformer (in this work, Mask2Former) intact. This not only
eliminates costly architecture-specific hyperparameter optimization, but also enables
the application of the same loss function modification to future, more advanced VIS
architectures.

• We demonstrate that the pairwise approach for training, based on feature vectors ob-
tained by transformers, provides an efficient solution to video instance segmentation.

2. Related Works

With the development of the DETR model [11], a paradigm shift took place in the field
of image instance detector development. Beforehand, a technical change implemented to
improve performance typically complicated the algorithm to such a degree that further
incremental enhancements became increasingly difficult. Starting with DETR, it has been
important to maintain the simple and transparent end-to-end scheme, replacing proxy-
based approaches. This has enabled developments such as the Mask2Former model [9]
for still images, which, due to its simplicity, reaches a state-of-the-art level in solving
several different tasks, such as semantic segmentation, instance segmentation, and panoptic
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segmentation. With a minor change, Mask2Former became capable of handling video
instance segmentation, beating the competition at the time of its introduction [7].

Clustering-based approaches like [12,13] have already shown that they can achieve
state-of-the-art performance in proposal-free instance segmentation. They utilized one
important property of instance labeling: the pairwise relationship between pixels as the
supervision to formulate the learning objective. That leads to a semisupervised clustering
problem, which we also employ. This approach beats the conventional two-stage method
(feature embedding with k-means) by a significant margin [12].

In a related work, pairwise constraints and subset allocation have been employed
to redefine similarity-based constraints and accurately utilize strong-supervised infor-
mation [14]. The efficacy of pixelwise clustering techniques has been demonstrated in
challenging video instance segmentation tasks, such as tracking identical objects, utilizing
pairwise clustering methods [15].

CMT-DeepLab [16] has a targeted segmentation as a pixel clustering problem. It
considers the object queries as cluster centers, and is responsible for grouping pixels
for segmentation. That way, it improved the performance of the existing approaches,
and achieved a state-of-the-art result on COCO test-dev. Although it achieved a remarkable
result, the price of this was the complexity of the architecture, which limits its applicability
in various research areas.

Clustering, in particular incorporating clustering features into the learning process,
has been shown to improve image segmentation with class imbalanced datasets [17].
The precision of the segmentation at critical edges can be enhanced by using a supervised
edge attention module [18].

We aim to keep the idea of the cluster-based approach and provide a much simpler
solution, which can then be further successfully developed to target other areas, like video
instance segmentation and multiview problems.

Video instance segmentation (VIS) stands as a significant domain within computer
vision, tasked with the challenging goal of simultaneously detecting, tracking, and seg-
menting objects in video sequences. Unlike conventional image-based tasks, VIS operates
in the dynamic realm of videos, necessitating the ability to identify objects across multiple
frames and provide precise pixel-level segmentation masks for each object instance. To gain
a better understanding of this field, it is important to categorize the existing methods as
two-stage approaches and one-stage approaches. The two-stage approaches [1,19,20] first
tackle object detection in each frame, and then proceed to perform instance segmentation.
It is akin to the well-established two-stage architecture seen in image-based tasks and
includes well-known models like faster R-CNN [21] and mask R-CNN [22]. One-stage
methods, on the contrary, integrate object detection and instance segmentation into a single
process. Although they are more computationally efficient, they may sacrifice accuracy.
YOLACT [23] and BlendMask [24] are examples of one-stage approaches.

Track-then-segment approaches [25,26] initially focus on object tracking across video
frames, and subsequently apply instance segmentation. They rely on specialized tracking
algorithms to establish object identities across frames before segmentation. Recent advances
in deep learning have led to end-to-end deep learning models [27] that directly address
video instance segmentation, often using temporal information to enhance results. Online
and real-time methods [28–31] are tailored for applications like autonomous vehicles and
robotics; these methods are optimized for real-time or online video processing, emphasizing
low-latency inference. Multiobject tracking and segmentation [32–37] aim to track and
segment multiple objects simultaneously to address complex scenarios involving multiple
interacting or overlapping objects.

Temporal consistency models [6,16,27,28,31,38,39] tackle object tracking and segmenta-
tion challenges by leveraging temporal relationships between frames in videos. Attention-
based models, which use attention mechanisms to focus on relevant frame details at
different time steps, excel in capturing object motion, occlusion, and appearance changes
over time. This makes attention a crucial component for maintaining consistency in video
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instance segmentation. Most of these models use full pixel-level mask annotation of the
objects to be segmented. In contrast, our approach only uses a fraction of this during train-
ing. CMT [16] is a transformer-based segmentation framework that transforms traditional
transformer architectures for segmentation and detection to utilize object queries as cluster
centers, which play a pivotal role in pixel grouping for segmentation. The clustering process
involves two alternating steps: initially assigning pixels to clusters based on feature similar-
ity and subsequently updating cluster centers and pixel features. Cluster2Former follows
similar principles, but only with the application of the training objective, without changing
the architecture.

Given the expense and complexity of annotating videos, semisupervised and weakly
supervised methods aim to reduce annotation requirements by using fewer annotated
frames or less detailed annotations (such as bounding boxes) for training. In the early stages
of VIS, there were explorations of using videos for segmentation tasks that involve weak,
semisupervised, or unsupervised methods, with a focus on motion or temporal consistency.
However, many of these earlier methods did not specifically tackle object coherence and
relied on optical flow for frame-to-frame matching. An approach to unsupervised feature
learning leverages low-level motion-based grouping cues [40], resulting in an effective
visual representation trained using unsupervised motion-based segmentation on videos.
Ref. [41] predicts segmentation masks of multiple instances by learning instance tracking
networks using labeled images and unlabeled video sequences. MinVIS [42] achieves
VIS performance without specialized video architectures by training an image-based in-
stance segmentation model and treating video frames as independent images, thanks to
its query-based approach for temporal consistency and memory-efficient inference on-
line. MaskFreeVIS [5] achieves competitive VIS performance using only bounding-box
annotations. The approach leverages temporal mask consistency through the temporal
KNN-patch loss without any labeled masks, significantly reducing annotation costs. That
method outperforms the optical flow-based baselines, using bounding box annotation.
While boundary boxes require even less information than the scribble method we employ,
it can be misleading in scenarios of significant occlusion, making uncertain which object
it encompasses. Additionally, for objects with ambiguous boundaries, obtaining precise
human annotation becomes challenging.

3. Methods

In this section, we present an overview of the key aspects of our proposed methodology.
We explain how scribble-based annotation can effectively represent and replace the full
mask ground truth, describe the loss function that can capture data from partial annotation,
provide details on our strategy to select positive and negative pairs, and finally show how
all this is put together and trained.

3.1. Annotation Based on Scribbles

As mentioned in the Introduction, in this paper, we advocate the utilization of partial
annotation in the form of scribbles. Scribbles are continuous curvy lines passing through
representative parts of the image of the instance.

While the full mask contains complete information about the pixels of the instance,
partial annotations such as a bounding box and scribbles (see Figure 2 (left) for illustration)
have their own advantages. Scribbles have the edge, especially for more challenging
situations, where the annotator can select regions of high confidence, avoiding ambiguous
locations; see Figure 2 (right) for illustration.

We return to a detailed comparison of the different annotation techniques in the
Section 5.
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Figure 2. Annotations—the first instance is marked by blue, the second by red. (Left): Three
annotation methods are displayed: full mask (shown as a surrounding boundary), bounding box
(minimal enclosing rectangle), and scribble. (Right): For a more challenging example containing both
occlusion and blurry regions, neither the full mask nor the bounding box can provide unambiguous
annotation. Using scribbles, however, one can select representative regions with high confidence.

3.2. Similarity-Based Constraint Loss

A novel learning objective was introduced in Ref. [13] to train deep neural networks to
perform end-to-end image pixel clustering, with a specific focus on instance segmentation.
This method takes advantage of the fundamental pairwise relationships between pixels in
the context of instance labeling as a form of supervision. It utilizes the Kullback–Leibler
(KL) loss to encourage the model to generate distinct representations for pixels belonging to
different objects while producing similar representations for pixels associated with similar
objects. The resulting clusters serve as direct instance labeling, contributing to the field of
image segmentation.

Meta-classification learning (MCL) is a multiclass classification technique that relies
on pairwise similarity information instead of class-specific labels. The method optimizes
a binary classifier for predicting pairwise similarities, ultimately learning a multiclass
classifier as a submodule. MCL provides several notable advantages for various machine
learning and computer vision applications. First, it simplifies the model training process by
eliminating the need for hyperparameter tuning, resulting in more straightforward and
efficient development. Second, MCL excels in complex and dynamic scenarios, demon-
strating robustness in handling diverse data types and variations in data distribution. Its
flexibility allows it to adapt to the nuances of challenging settings. Additionally, MCL is
well suited for unsupervised and semisupervised learning, making it valuable in situations
with limited labeled data. ClusterRCNN [15] has exploited these properties to track identi-
cal individuals. Through pairwise clustering of pixels on consecutive frames, we adapt it
for to the requirements of VIS.

The similarity-based constraint loss is a key element for guiding our semisupervised
clustering process. We employ the pairwise constraint and subset allocation deep embedded
clustering (PCSA-DEC) approach [14], as it has shown the effectiveness of similarity-based
constraint loss over other pair-based clustering procedures. The method relies on the
comparison of point pairs, distinguishing between “positive” pairs (where the points from
the pair belong to the same cluster) and “negative” pairs (where the points from the pair
belong to different clusters). A cluster can be considered the region of an object or the
background, and a point is represented by a feature vector p, whose components are
the results of the queries with a softmax applied. The positive and negative point–point
relationships are represented by a binary vector R, where the entries are set to 1 for a
positive point pair and 0 for a negative pair.

For each point pair, we compute the cosine similarity Scos, which ranges between −1
and 1. The cosine similarity quantifies the degree of resemblance between the two points:

S(cos)
ij =

pi · pj

|pi| |pj|
,
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where pi and pj are the feature vectors of the points i and j. The cosine similarity is
transformed into a dissimilarity measure D, in the range [0, 1], by

Dij =
1 − S(cos)

ij

2
,

which is clamped to the interval [ϵ, 1 − ϵ] to ensure numerical stability for the calculation
of the cross-entropy in the next step. We used ϵ = 10−6 in our numerical experiments.

The core of the similarity-based constraint loss function involves a cross-entropy loss
L, designed to minimize the deviation between each pair of points based on the computed
dissimilarities D and the positive–negative relationships R:

Rij =

{
1 if i and j are in the same instance
0 otherwise.

This loss is computed as

Lij = −Rij log(1 − Dij)− (1 − Rij) log(Dij).

Additionally, to account for variations in the importance of point pairs based on their
distances, a weighting mechanism is introduced; see Section 3.3 for details. The weights W
are applied to the computed loss, resulting in a weighted loss term. Finally, the similarity-
based constraint loss LSC is obtained as the mean across the N point pairs (ij) of the
weighted loss terms:

LSC =
1
N ∑

(ij)
LijWij.

The total loss for training is then

L = λclsLcls + λSCLSC,

where Lcls is the classification loss (as in Mask2Former), and λcls and λSC are hyperparameters.

3.3. Pairing Strategies

The performance of our method on VIS benchmarks critically depends on the way
pixel pairs are sampled. In the context of semisupervised clustering, to keep resource
requirements under control, we do not use all pixels within the instance mask, unlike the
previous approaches [12,13,22].

Our approach leverages the flexibility and robustness of transformers, mitigating
the limitations associated with similarity-based constraint losses used with convolutional
networks [12,13]. In particular, we do not employ binary preclassification to separate
foreground and background, and we do not impose an upper limit on the number of
possible clusters. Instead, our upper limit is determined by the number of transformer
queries. Therefore, annotating the background with a simple scribble, similarly to the
instances, is sufficient. We make a distinction between how we select positive pairs for
individuals and background. While we choose positive pairs within individual instances,
we do not do so for the background; see Figure 3 for illustration. This choice permits
the model to autonomously segment the background into multiple clusters, a practical
solution given that the semantic classes in the training data do not encompass all objects
in the video. Consequently, distinct and clearly discernible entities may appear on the
unannotated background, and we do not constrain the model to interpret them as a single
entity, as demonstrated in Figure 4.
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Figure 3. Selection of pixel pairs in foreground and background regions. The foreground object
(lion) is annotated by a cyan scribble, the background by a pink scribble. Positive pairs (green lines)
are selected between points of the foreground object, but not between points of the background.
Negative pairs (red lines) are selected between points of different clusters: in this figure between the
background and the foreground object. This way, the model is not forced to recognize the background
as a single homogeneous object; instead, it can segment into unlabeled distinct clusters, e.g., other
animals, ground, mountain, and sky in this figure.

Figure 4. Benefits of omitting the positive pairs between background points. Top row: ground truth
frames. The scribbles are shown at the original resolution (1 pixel wide curves), and the bounding
boxes are displayed only as visual guides for the scribbles. Bottom row: prediction. The parrot at
the top-right corner of both frames is detected correctly, even though it was not annotated. By not
enforcing similarity between different regions of the background, it can maintain its heterogeneity.

Within the same (foreground) instance, we establish positive connections between all
selected pixels, the pairs being weighted by

W(positive)
ij = wmin + (1 − wmin)

dij

dmax
,

where dij is the Euclidean distance between the points i and j, dmax is the maximum
possible distance (the diagonal of the image frame), and wmin is a hyperparameter. This
way, faraway pixels of the same instance, including those separated by occlusion, are helped
to be clustered together. Conversely, for negative pixel pairs from different instances, we
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assign weights decreasing with distance, preventing nearby, similar objects to be grouped
as a single entity:

W(negative)
ij = 1 − (1 − wmin)

dij

dmax
.

To address the variations in object sizes and the availability of annotated pixels, we
adjust the sampling to select roughly equivalent portions from each object. This not only
enhances the training process, but also reduces the use of computational and memory
resources. Furthermore, we introduce sparsification into our approach (removing some of
the low-weight negative pairs), recognizing that separating distant, dissimilar objects is
straightforward. Therefore, retaining only a fraction of the pairs is sufficient to achieve our
clustering objectives.

For further implementation details, see Section 4.2.

3.4. Architecture and Training

Leveraging the Mask2Former [7] architecture, our approach introduces pivotal changes
in the training process, while maintaining the model’s original structure. Inspired by [13],
we adopt a similar pixel sampling strategy. This involves randomly sampling points from
scribble-based ground truth masks for segmentation. Our method diverges in the use
of similarity-based constraint loss for segmentation and cross-entropy loss for classifi-
cation. The Hungarian matcher is adapted to incorporate this new loss, ensuring that
Cluster2Former retains the inference efficiency of the original Mask2Former.

4. Results

In this section, we present details about the datasets used, the implementation, and the
experimental results. We provide detailed ablation studies in addition to standard benchmark
results to illustrate the effectiveness of individual parameter settings and their combinations.

4.1. Datasets

We conducted our experiments using the datasets YouTube-VIS 2019 and 2021. The
YouTube-VIS 2019 dataset consists of 2883 videos with annotations for 131,000 object
instances spanning 40 categories. To address more intricate scenarios, the 2021 version
of YouTube-VIS introduces an additional 794 training videos and 129 validation videos,
featuring tracklets with intricate motion trajectories.

We made a scribbled version of both datasets. With the DAVIS Interactive Robot [43,44]—
which generates realistic scribbles that simulate human interaction—we modified the annotations
for the training process. Instead of the original ground truth masks, which cover the whole
objects, we used the scribble annotations.

4.2. Implementation Details

As mentioned in the Section 3, we adapt Mask2Former [7] (especially sampling and
training loss), but keep the architecture unchanged. Unless otherwise specified, all other
training schedules and settings are kept the same as in the original model. To generate the
pixel pairs for the similarity-based constraint loss, 300 pixels are sampled randomly from
each frame foreground scribble, distributed evenly between the instances on that frame,
as well as 300 pixels from the background scribbles. The choice of framewise sample count
(as opposed to instancewise sample count as in [13]) enables good memory control. In case
either the foreground or the background scribbles contain less than 300 possible pixels for
sampling, e.g., due to cropping, the sample count is reduced for both to keep the balance.
We make two disjoint sets of pixel-pair connections: in-frame and interframe connections.
The in-frame connections contain a pixel pair, where the two pixels come from the same
frame, while the interframe connections contain pixel pairs, where the two pixels come
from different frames. When only a single frame is considered, there are no interframe
connections set. For in-frame connections, we connect each pixel from the instances with
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all other pixels from the instances (they can be positive or negative pairs, depending on
whether the pixels are from the same instance) and with the background pixels (these are
all negative pairs). In the case of interframe connections for each frame pair, we connect
each instance pixel from one frame with all other instance pixels from the other frame (they
can be positive or negative pairs; see Figure 5). Additionally, we connect the background
pixels for each of the two frames with all instance pixels from the other frame (negative
pairs). We do not use pixel-pair sparsification—we do not drop out any connection. We set
the prefactor of the similarity-based constraint loss to λSC = 10 (keeping λcls = 2) and the
minimum weight to wmin = 0.9. In case of inference, after applying a softmax for the mask
logits along the queries dimension, we produce the predictions by thresholding the given
values with 0.1. In this way, a point makes a prediction mask if its value is bigger than 0.1.
We call this hyperparameter the inference threshold.

Figure 5. Pairing of points on consecutive frames. The two objects are annotated by a magenta
scribble (antelope) and cyan scribble (cheetah). The dots on the scribbles are sampled pixels (for
clarity, only a few representative sample pixels and pixel pairs are shown in this figure). The positive
pairs are connected by green lines, the negative pairs by red lines. The thickness of the connecting
lines represents the weight of the pair: close negative and distant positive pairs are given heavier
weight. The lines connecting pixels in different frames are drawn by dashed lines.

Originally, Mask2Former [7]-based models are trained with a batch size of 16 and a
learning rate of 10−4. We adapted these to our hardware resources, which were initially
two NVIDIA RTX TITAN GPUs, followed by NVIDIA A100 GPUs. If we do not specify it
otherwise, we use a batch size of 4 with a learning rate of 2.5 × 10−5. We also increased the
number of iterations to 24k (32k) and the steps for the learning rate decay to 16k (22k) for the
YouTube-VIS 2019 (2021) val datasets to allow the model to see the same number of inputs
as with the original configuration. As the architecture is unchanged, the computational
requirements for prediction (inference) are identical to those of Mask2Former.

4.3. Experiments

Our first results, shown in Table 1, demonstrates the power of our method. We
compare the standard YouTube-VIS average precision and average recall benchmarks [1]
for different model configurations on the YouTube-VIS 2019 val dataset. The integration
of similarity-based constraint loss with Mask2Former’s segmentation losses (first row)
showed no change in performance. When training with our Cluster2Former schedule
(few sampled pixels only, randomly selected from the full mask; third row), a slight decay
is observed, which we attribute to the information reduction of sampled pixels vs. full
mask use (note that Mask2Former also samples pixels, but 12,544 of them with the default
configurations). Our main point is the fourth row: when the sampling of Cluster2Former



Sensors 2024, 24, 997 10 of 17

is performed from pixels with a scribble curve, only a slight reduction in performance is
observed, while the training involves typically 100 times less pixels.

Table 1. Comparison of different configurations of Mask2Former and our Cluster2Former model on
the YouTube-VIS 2019 validation dataset using the ResNet-50 backbone. From top to bottom: the
original Mask2Former model, Mask2Former with mask losses and similarity-based constraint loss,
Cluster2Former with similarity-based constraint loss using the original full mask annotations, and
Cluster2Former with similarity-based constraint loss using the scribble annotations.

Losses Annotation AP AP50 AP75 AR1 AR10

Mask2Former [7] mask 46.4 68.0 50.0 - -
Mask2Former [7] + SC loss (ours) mask 46.3 68.1 50.3 47.7 59.5

Cluster2Former (ours) mask 41.7 66.1 45.6 42.9 51.5
Cluster2Former (ours) scribble 38.3 62.5 42.5 39.3 46.6

The same experiment has been performed on the more challenging YouTube-VIS
2021 val dataset as well; see Table 2. It is remarkable that simply adding similarity-based
constraint loss (second row) outperforms the original Mask2Former model without altering
resource requirements. We stress that if, unlike the rest of this paper, the objective is to use
full annotation masks to achieve best segmentation performance, then the best strategy is
to take the linear combination of Mask2Former’s original mask losses with the similarity-
based constraint loss. This dataset is more difficult than the 2019 version, which is reflected
in the benchmark figures for model configurations using only the pairwise-sampling-based
loss. We offer a possible explanation in Section 5.

Table 2. Comparison of different configurations of Mask2Former and Cluster2Former on YouTube-VIS
2021 val using the R50 backbone. The model configurations are the same as in Table 1.

Losses Annotation AP AP50 AP75 AR1 AR10

Mask2Former [7] mask 40.6 60.9 41.8 - -
Mask2Former [7] + SC loss (ours) mask 41.6 65.1 44.4 39.0 52.9

Cluster2Former (ours) mask 34.1 55.8 37.4 33.8 42.3
Cluster2Former (ours) scribble 29.5 51.7 30.4 30.3 37.2

Next, we compare our system with a few (original) state-of-the art models for the two
datasets; the results are presented in Tables 3 and 4. Similar conclusions can be drawn
as above.

Table 3. Comparison of state-of-the-art models on the YouTube-VIS 2019 val dataset using the
R50 backbone.

Method Annotation AP AP50 AP75 AR1 AR10

Mask2Former [7] mask 46.4 68.0 50.0 - -
MaskFreeVIS [5] bbox 43.8 70.7 46.9 41.5 52.3
SOLO-Track [41] wo video 30.6 50.7 33.5 31.6 37.1

Cluster2Former (ours) scribble 38.3 62.5 42.5 39.3 46.6

Table 4. Comparison of state-of-the-art models on the YouTube-VIS 2021 val dataset using the
ResNet-50 backbone.

Method Annotation AP AP50 AP75 AR1 AR10

Mask2Former [7] mask 40.6 60.9 41.8 - -
MaskFreeVIS [5] bbox 37.2 61.9 40.3 35.3 46.1

Cluster2Former (ours) scribble 29.5 51.7 30.4 30.3 37.2
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4.4. Ablation Experiments

In the context of our ablation study within the YouTube-VIS 2019 validation set and
using the ResNet-50 backbone, we meticulously dissect Cluster2Former. As our baseline
VIS method, we employ Mask2Former [7], fully integrating it into our approach, the only
modification being the replacement of mask losses with our custom losses. We analyze
the distinct components of the pixel-pair selection strategies with a focus on the following
aspects (see Table 5):

(1) Investigation of the interaction among background pixels. This exploration stems
from the hypothesis that allowing our model the freedom to distinguish background
elements into multiple clusters could potentially enhance performance.

(2) Examination of pixel relations within instances based on their spatial proximity.
By emphasizing distant positive pairs and nearby negative pairs, we aim to facilitate
the connection of occluded regions while effectively separating different instances in
close contact.

(3) Evaluation of pixel relationships across instances in successive frames, elucidating
the impact of temporal relations on tracking. This involves the classification of consecutive
pixels belonging to the same instance into a shared cluster.

Table 5. Ablation results of Cluster2Former with the ResNet-50 backbone on the YouTube-VIS 2019
val dataset. Checkmarks indicate the application of the following components: “Neg BG Only”:
background pixels participate only in negative pairs. “Weighted Pairs”: use weights for the pixel
pairs. “Temp Pairs”: temporal pairs employ pairing across consecutive frames.

Neg BG Only Weighted Pairs Temp Pairs AP AP50 AP75 AR1 AR10

✓ ✓ 35.1 59.8 37.5 36.5 43.1
✓ ✓ 33.8 58.4 36.6 36.2 42.8
✓ ✓ 36.4 61.2 39.7 39.2 45.4
✓ ✓ ✓ 38.3 62.5 42.5 39.3 46.6

Furthermore, we extend our analysis to consider scenarios where more than two
frames are interconnected in this manner, offering a perspective on the temporal aspect.
In this experiment, a varying number of frames (“tube length”) are selected randomly from
a 20-frame video sequence; benchmark results are shown in Table 6. As expected, discarding
temporal links (tube length 1) deteriorates performance. However, it is interesting to see
that the best results are obtained for tube length 2; for a longer tube length, the temporal
connections might have been diluted.

Table 6. Results of varying tube lengths (number of frames taking part in temporal pixel pairing)
during training on YouTube-VIS 2019 val using the R50 backbone. Tube length 1 denotes the training
of the model with only spatial pixel pairs.

Tube Length AP AP50 AP75 AR1 AR10

1 33.1 57.9 35.1 35.4 42.4
2 38.3 62.5 42.5 39.3 46.6
3 37.0 61.6 40.8 39.7 46.7
4 35.9 59.6 39.9 38.7 45.5

5. Discussion

In the previous sections, we presented our Cluster2Former model designed to tackle
VIS and showed that competitive results can be obtained despite using lightweight, scrib-
ble annotation.

Annotation based on scribbles has several benefits compared with both full pixel-level
masks and another popular lightweight masks: the bounding boxes. When compared
full masks, they have a number of advantages: (1) Scribbles require significantly less
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annotator time and training. Full mask annotation can be extremely time-consuming and
costly, while scribbles are quicker and easier for annotators. Scribbles are more forgiving to
annotator errors and require less skills to provide good-quality annotations. (2) Scribbles
are less prone to ambiguity: in challenging scenarios with blurred images or a strong object
overlap, determining precise object boundaries for full masks can be ambiguous. Scribbles,
on the other hand, provide a clear indication of object locations without the need for exact
boundary delineation. (3) Scribbles are computationally efficient: training VIS models with
scribbles typically requires less computational resources than full mask-based training,
making it a more feasible option for resource-limited scenarios.

It has been shown by MaskFreeVIS [5] that the performance of state-of-the-art tra-
ditional VIS algorithms can be approached by using another light annotation: bounding
boxes. Still, scribbles offer a number of advantages over bounding boxes as well: (1) Better
object separation and reduced ambiguity. Scribbles provide a more effective means of
separating objects, especially when they overlap or intersect. The ambiguity of object
reference for nearly coinciding bounding boxes is dissolved by applying scribbles in clearly
identifiable parts of the image. See Figure 6 for illustration.

Figure 6. Left: Although the image is not completely sharp, the extent of the individuals can be
specified with the help of a bounding box. Right: The instances are still clearly distinguishable,
despite the fact that the edges are blurred, but the bounding boxes that border them almost completely
coincide, since the two individuals cross each other. It is not clear which bounding box is the
annotation of which instance. On the other hand, the surfaces belonging to each individual can be
clearly marked with scribbles. Blue and red bounding boxes and scribbles identify different instances.

(2) Enhanced object location and adaptability to object shape. Scribbles offer finer-
grained localization information. Unlike bounding boxes, which encompass a fixed rectan-
gular area, scribbles can guide the model to better capture the object contour, especially
complex shapes. (3) Reduced annotation effort. Although both methods are partial annota-
tions, scribbles typically require less annotator time than meticulously aligning bounding
boxes to object edges, making the annotation process more efficient.

We show that Cluster2Former can successfully address challenging VIS situations.
Figure 7 demonstrates that disjoint parts of an occluded object are combined to make a
proper instance. In Figure 8, we show that the edges separating neighboring instances are
correctly delineated despite the fact that scribbles provide only an approximation to the
full shape.

Figure 9 demonstrates that Cluster2Former successfully copes with situations of
multiple occlusions. The two objects (turtle and human) are correctly segmented despite
the fact that the pixels of the human are split into a number of disjoint regions.

Limitations: since the scribbles we use in the experiments (generated by DAVIS
Interactive, similar to skeletons) sample pixels typically from the inner parts of the objects,
pixels near the edges are less represented; consequently, the segmentation quality near the
edges might suffer. See Figure 10 for illustration. On the one hand, this is not necessarily a
serious impediment, for example, for applications where tracking of similar instances is
the ultimate task. On the other hand, there are solutions to overcome this issue, including
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using scribbles that approach object edges at places or strengthening the segmentation near
the edges, for example, using supervised edge attention [18].

Figure 7. Instance segmentation of an occluded object. Top row shows the annotated frames; bottom
row is prediction. The bounding boxes are only guiding the eye to localize the annotation scribbles,
as in Figure 4.

Figure 8. VIS of directly adjacent instances; the separating edge is correctly found.

Based on the above arguments, we believe that Cluster2Former can be one of the best
overall VIS methods in a number of practical situations when training is limited by annota-
tion resources. Even though, for a fixed-size training dataset, our model is slightly weaker
than full mask methods, using a fixed amount of annotator time, much larger training sets
can be prepared with scribbles than full masks, resulting in a better overall performance.
As an outlook, one of the applications we have in mind is tracking almost-identical-looking
individuals (“instances”) of animals, where maintaining the identity of individuals through
frames is much more important than segmentation quality. Additionally, we work on an
extension of our model, which is capable of handling a mixture of scribbles and full masks.
Full or nearly full masks, which are easy for the annotator, enable maintaining the full VIS
benchmark of the underlying architecture, but can fall back to scribbles where a full mask
is costly or impossible due to blur, still enabling suitable precision for tracking.
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Figure 9. VIS of frames containing many occlusions.

Figure 10. Limitation of our model. Left column: frames segmented by Cluster2Former (ours)
from the test set of the YouTube-VIS 2021 dataset. Even though both instances (person and snow-
board) are correctly found, the detected edge of the snowboard is quite far from the ground truth.
Right column: the same frames segmented by Mask2Former; the edge of the snowboard is accurate.
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Architecture. In Proceedings of the International Conference on Neural Information Processing, Vancouver, BC, Canada, 6–12
December 2020; pp. 436–447.

16. Yu, Q.; Wang, H.; Kim, D.; Qiao, S.; Collins, M.; Zhu, Y.; Adam, H.; Yuille, A.; Chen, L.C. Cmt-deeplab: Clustering mask
transformers for panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2560–2570.

17. Zhao, Y.; Liu, S.; Hu, Z. Focal learning on stranger for imbalanced image segmentation. IET Image Process. 2022, 16, 1305–1323.
[CrossRef]

18. Chen, X.; Lian, Y.; Jiao, L.; Wang, H.; Gao, Y.; Lingling, S. Supervised edge attention network for accurate image instance
segmentation. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August
2020; pp. 617–631.

19. Bertasius, G.; Torresani, L. Classifying, segmenting, and tracking object instances in video with mask propagation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9739–9748.

20. Ke, L.; Li, X.; Danelljan, M.; Tai, Y.W.; Tang, C.K.; Yu, F. Prototypical cross-attention networks for multiple object tracking and
segmentation. Adv. Neural Inf. Process. Syst. 2021, 34, 1192–1203.

21. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

22. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

23. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166.

24. Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. Blendmask: Top-down meets bottom-up for instance segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 8573–8581.

25. Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast online object tracking and segmentation: A unifying approach. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 1328–1338.

26. Kopácsi, L.; Dobolyi, Á.; Fóthi, Á.; Keller, D.; Varga, V.; Lőrincz, A. RATS: Robust Automated Tracking and Segmentation of
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