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Abstract: Future UAV (unmanned aerial vehicle) operations in urban environments demand a PNT
(position, navigation, and timing) solution that is both robust and resilient. While a GNSS (global
navigation satellite system) can provide an accurate position under open-sky assumptions, the
complexity of urban operations leads to NLOS (non-line-of-sight) and multipath effects, which in
turn impact the accuracy of the PNT data. A key research question within the research community
pertains to determining the appropriate hybrid fusion architecture that can ensure the resilience
and continuity of UAV operations in urban environments, minimizing significant degradations of
PNT data. In this context, we present a novel federated fusion architecture that integrates data
from the GNSS, the IMU (inertial measurement unit), a monocular camera, and a barometer to cope
with the GNSS multipath and positioning performance degradation. Within the federated fusion
architecture, local filters are implemented using EKFs (extended Kalman filters), while a master filter
is used in the form of a GRU (gated recurrent unit) block. Data collection is performed by setting
up a virtual environment in AirSim for the visual odometry aid and barometer data, while Spirent
GSS7000 hardware is used to collect the GNSS and IMU data. The hybrid fusion architecture is
compared to a classic federated architecture (formed only by EKFs) and tested under different light
and weather conditions to assess its resilience, including multipath and GNSS outages. The proposed
solution demonstrates improved resilience and robustness in a range of degraded conditions while
maintaining a good level of positioning performance with a 95th percentile error of 0.54 m for the
square scenario and 1.72 m for the survey scenario.

Keywords: UAV; urban air mobility; computer vision; multipath; resilient navigation; hybrid fusion;
GRU; EKF

1. Introduction

The emergence of the UAM (urban air mobility) concept necessitates more stringent
requirements and regulations to ensure safe operations between manned and unmanned
vehicles within the same airspace. Authorities such as EASA (European Union Aviation
Safety Agency), CAA (Civil Aviation Authority), and FAA (Federal Aviation Administra-
tion) have already established specific requirements for regulating the air traffic in urban,
semi-urban, and rural environments for UAVs, as specified in [1–3]. In this context, to en-
sure the safety of operations in urban environments, the PNT solutions provided by UAVs
operating in the proximity of buildings and obstacles must be continuous, robust, and
resilient. In addition, as it can be seen from [4], UAVs can play a key role in multi-spectral
mapping applications and other civil applications [5], where the need for a stable PNT
system is crucial to fulfilling all the mission requirements.

Given that the GNSS receivers serve as the primary source of PNT data for UAVs,
which can provide good accuracy in open-sky conditions as presented in [6], where an
RTK (real-time kinematics) system is implemented, external disturbances can quickly
degrade their accuracy. Due to the nature of urban and semi-urban environments, NLOS
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(non-line-of-sight) and multipath signal propagation can decrease the quality of the GNSS
signals, leading to erroneous localization. As the GNSS receivers are low-powered, low-cost
jamming devices can easily emit electromagnetic interference over the same frequencies
used by the GNSS receivers, resulting in an untrustworthy PNT solution. Spoofing is
another threat affecting the PNT integrity, where false GNSS signals are broadcasted to
deliberately degrade the PNT data. Thus, considering all the potential threats to the GNSS
receivers, A-PNT (alternative position, navigation, and timing) sensors should be used
to achieve better navigation performance, even when the GNSS is not able to provide a
reliable PNT solution.

An IMU serves as an A-PNT sensor, typically formed by three accelerometers and
three gyroscopes, providing data regarding the linear acceleration and angular velocity
of the carrier in each direction of the body frame. Usually, UAVs are equipped with
MEMS (microelectromechanical system) IMU sensors to derive the position and attitude
using an INS (inertial navigation system) mechanization process. Unfortunately, the INS
mechanization leads to positioning drift over time as specified in [7,8], making the IMU
unreliable when used in a standalone mode for long flight operations.

A-PNT sources, including sensors such as stereo or monocular optical cameras, are
alternative methods of improving positioning accuracy and precision in situations when
the GNSS is unavailable. Motion estimation for optical A-PNT sources can be classified
into two categories: RVL (relative visual localization) or AVL (absolute visual localization).
RVL is computed through the application of VO (visual odometry) [9,10] and SLAM
(simultaneous localization and mapping) algorithms, as presented in [11–13]. VO methods
involve the analysis of the frames captured by an optical sensor to estimate its motion
through the environment. Instead, the SLAM (simultaneous localization and mapping)
approach represents a more intricate navigation algorithm capable of estimating the relative
motion of the UAV while simultaneously building the surroundings on the map. Therefore,
VO can be regarded as a subset of SLAM-based navigation. However, it is important to
note that in challenging environments characterized by low light conditions or scarcity of
distinctive features, both VO and SLAM algorithms can cause divergence in their motion
estimation due to drift. Instead, for estimating the UAV’s absolute position, the VPS
(visual positioning system) algorithm can be used, as presented in [14,15]. To successfully
implement the VPS, it is essential to have a proper dataset with georeferenced aerial images
that covers the AoI (area of interest). Additionally, the tilt angle of the camera during
the flight should align with the used dataset in order to enhance its overall performance.
Positioning accuracy can be affected by additional factors, such as seasonal changes and
the ongoing construction of new buildings and roads, potentially causing mismatches with
the dataset in use. Therefore, updated and recurrent datasets are required.

Although it is possible to extract PNT information from various sensors, a fusion
approach is required in order to combine all the advantages offered by each A-PNT sensor.
Multi-sensor fusion frameworks can be categorized into either CF (centralized fusion) or
DF (decentralized fusion) frameworks. Even if a CF architecture can provide a reliable
PNT solution, its high computational cost can lead to the so-called ‘computational disaster’
effect, as described in [16]. To mitigate computational costs and enhance the robustness of
the fusion framework, a DF approach can be used. Instead of using only one filter, as in the
CF architecture, the DF framework implements multiple local filters in parallel, fusing their
output into a final master filter. Thus, the computational cost can be divided among all the
local filters, and multiple A-PNT sensors can be added easily as subsystems. This method
results in a federated DF framework suitable for real-time applications, as described in [17],
where KFs (Kalman filters) were implemented. While the FF (federated fusion) architecture
with KFs demonstrates good performances, it is important to note that in the real world,
A-PNT sensors are susceptible to external noise, as discussed in [18], which can negatively
impact the accuracy of KFs. In addressing non-linear systems, various solutions such as
EKFs (extended Kalman filters), UKFs (unscented Kalman filters), and PFs (particle filters)
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have been widely used before, as specified in [19]. Their effectiveness is contingent upon
prior knowledge of the measurement noise and processing noise.

Instead, fusion frameworks based on RNNs (recurrent neuronal networks) have
demonstrated good performance in modeling and predicting the behavior of A-PNT sensors
in real-world testing scenarios, as presented in [20], by fusing the INS and GNSS to cope
during GNSS outages. This approach has demonstrated a notable 60% improvement against
a traditional EKF (extended Kalman filter). However, there are certain drawbacks to using
RNNs, including their high computational cost and the challenge of long-term data storage,
which can introduce errors over extended periods of time. Moreover, if the weights are
too small, the learning rate becomes slow, and managing data over time can decrease the
performance of the RNN, leading to the so-called ‘vanishing gradient’ effect. Conversely, if
the weight is too large, the output can diverge, leading to an ‘exploding gradient’ effect.
Hence, to improve the performance of RNNs, LSTM (long short-term memory) and GRUs
(gated recurrent units) introduce gates that aid in the longer-term memory capability of the
RNN. As it can be seen in [21,22], LSTM models are used to enhance positioning accuracy
in urban environments. Even better performances were obtained by implementing a GRU
model to cope with GNSS outages, as presented in [23,24].

Thus, to assess the performance of combining GRUs with traditional fusion methods
such as EKFs, this paper introduces a hybrid federated fusion architecture for 3D posi-
tioning. The federated architecture uses two EKFs as local filters and a GRU model as a
master filter to predict the position of the UAV during a flight mission performed in an
urban environment. The system gathers data from various A-PNT sensors, including a
GNSS receiver, a MEMS IMU sensor, a monocular camera, and a MEMS barometer. To
enhance the realism of the data collected, a HIL (hardware in the loop) set-up is used,
which involves using Spirent’s GSS7000 simulator tools (SimGEN and SimSENSOR) along
with OKTAL-SE (Sim3D) to gather GNSS data with multipath and MEMS IMU data. At the
same time, a virtual environment in Unreal Engine is used to integrate a monocular camera
to be used by a VO algorithm in order to estimate the UAV’s ego motion through the urban
environment. In addition, the MEMS barometer readings from the virtual UAV in Unreal
Engine are integrated into the federated fusion framework to cope with the instabilities
introduced by the VO on the z axis during the flight mission. The paper’s key contributions
can be summarized as follows:

1. The research introduces, in a three-dimensional scenario, a hybrid fusion architecture
that integrates GRU (gated recurrent unit) and EKF (extended Kalman filter) systems.
This study offers a detailed comparison of the new hybrid approach against the
traditional FF (federated fusion) architecture.

2. To evaluate the performance of the proposed hybrid FF architecture using a range of
realistic trajectories with the aim of mimicking real-world UAV operations, including
multipath and GNSS outages.

3. To assess the influence of the optical part of the fusion algorithm by introducing
various weather conditions, including dust and fog. In addition, the VO algorithm
was tested during different light intensities, both in the afternoon and in the evening,
using realistic photogrammetry data.

The reminder of the paper is structured as follows: In Section 3, the proposed hybrid
federated fusion architecture is presented; in Section 4, the HIL configuration is detailed; in
Section 5, the trajectories, the camera calibration steps, and the performances of the hybrid
federated fusion architecture are discussed; and in Section 6, the conclusions and future
work are given.

2. Related Works

Multi-sensor fusion frameworks have been widely used to assure a robust and resilient
position and navigation for autonomous systems. With the advent of ML, hybrid fusion
frameworks have been increasingly adopted in recent times by combining KFs and ML
models. Standalone ML fusion models can be used without the integration of any KF, but
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their performance is limited when used with MEMS IMU sensors, as presented in [25].
The main disadvantage of implementing standalone ML models used to fuse GNSS and
MEMS IMU sensors without KFs is represented by the absence of feedback to update the
measurement model of the MEMS IMU inertial sensor, which is crucial due to its rapid
change in dynamics over time. Thus, hybrid fusion methods can combine the advantages
of KFs and ML models, which can be divided into three categories, as specified in [26].

In the first category, ML models are used as aids to tune KFs, as presented in [27],
where a RBFN (radial basis function network) and a PSO (particle swarm optimization) are
used as aids to cope with the non-linearities of the system. On the other hand, in [28], the
authors developed a NN (neuronal network) as an aid to an AKF (adaptive Kalman filter)
to adjust the system noise parameters.

Instead, in the second category, hybrid fusion methods are used in combination with
ML models to predict INS errors, while GNSS signals are not available. As presented in [29],
an UKF is used with a BP (back propagation) neuronal network to cope with GNSS outages.
When the GNSS receiver is not affected by external disturbances, the BP model is trained
using the position errors provided by the UKF as input, and when there are GNSS outages,
the BP-trained model is used to enhance the positioning output by correcting the INS data.
Although the solution proposed by the authors improves the position output during GNSS
outages, the BP model has inferior performance compared to the UKF model during normal
operations when the GNSS is available. Meanwhile, better results are presented in [30],
where the authors implemented a GRU model along with an AKF to cope with GNSS
outages. The GRU model is trained with GNSS data when available and used to predict
GNSS position measurements during GNSS disturbances, measurements that are used as
input for an AKF with INS data. Results showed a reduction in root mean square error of
83.03% and 75.39% during the 180 and 120 seconds of GNSS outages, respectively, proving
the efficiency of the GRU-trained model in combination with an AKF. As a drawback, the
solution presented by the authors considers only one scenario, and further data collection
is required to better evaluate the presented hybrid fusion framework.

In the third category, ML models can be used to enhance fusion methods in combi-
nation with fault detection approaches for real-time applications and in complex environ-
ments. As presented in [31], a RBFNN (radial basis function neuronal network) is used
to predict pseudo-GNSS measurements when faulty GNSS data is detected, aiming to
improve fault isolation and system reconfiguration in a tightly coupled approach. The main
challenge in the solution proposed by the authors is to optimally tune the POP (precision
of positioning) and RDOP (relative differential precision of positioning) thresholds, which
define the filter precision.

Hybrid fusion methods have been widely used to predict errors related to GNSS/IMU
fusion configurations. Considering the complexity of urban environments, it is unlikely
that UAVs will rely solely on GNSS and MEMS IMU sensors to cope with all the external
disturbances. Hence, the proposed fusion framework is investigating the performance of a
hybrid federated fusion framework in a complex urban environment, relying solely on a
GNSS, a MEMS IMU, an optical camera, and a MEMS barometer.

3. Proposed Hybrid Federated Fusion Solution

The proposed hybrid federated fusion architecture involves the fusion of four different
sensors, formed by a GNSS receiver, a MEMS IMU sensor, a monocular camera, and a
MEMS barometer sensor, to enhance the PNT solution, even in proximity to urban and
sub-urban areas. The proposed fusion architecture adopts a hybrid approach, combining
machine learning techniques using a GRU with traditional fusion architectures such as the
EKF, as can be seen in Figure 1. The hybrid approach is used to improve the accuracy of the
final positioning output, particularly when dealing with GNSS data affected by multipaths
and outages.
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3.1. Trained INS GRU

To cope with the INS drift over time, which leads to an erroneous position estimation,
a GRU model is used to enhance the INS positioning output by predicting the INS behavior
in time, as can be seen in the left part of Figure 2. During the training part, the GRU gathers
raw MEMS IMU data as the input, formed by readings from the MEMS accelerometer and
the MEMS gyroscope. As depicted in the right part of Figure 2, the input layer of the GRU
block, which takes data from the provided dataset, is formed by the following components:
a representing the linear acceleration and ω representing the angular velocity. For the
training part, 80% of the dataset was used, while the other 20% was used for the testing
part. As output, the GRU model provides INS corrections by comparing the estimated
INS corrections against the ground truth, where δPN

INS, δPE
INS, and δPD

INS represent the
position error in the NED frame without using the input block called ‘time since last GNSS’,
as presented in [24].
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Once the GRU model has been trained, the estimated INS data are utilized to provide
input to the federated fusion architecture, feeding the output into the two local filters, as
can be seen in Equation (1). As a result, the impact of INS drift on the local filters diminishes
over time.

PNED
INS/GRU = PNED

INS − δPNED
INS (1)

3.2. GNSS/INS EKF

The first local filter fuses data from the GRU block, presented in the previous section,
and the GNSS in a loosely coupled approach. To fuse the output from the two sensors, both
have to share the same navigation frame, as defined in Appendix B. Thus, GNSS data must
be converted from the LLA (latitude, longitude, and altitude) frame to a NED coordinated
frame as it can be seen in Figure 3. To set the conversion, an LLA reference base is
defined as:

φREF = 43.604441◦ λREF = 1.4427133◦ hREF = 0 m (2)
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where φREF, λREF, and hREF are the initial altitude, longitude, and altitude, respectively.
With the initial starting point coordinates, it is possible to realize the conversion from
geodetic coordinates to geocentric coordinates. To begin, it is necessary to convert the data
from the WGS84 (World Geodetic System 1984) to an ECEF (Earth-centered, Earth-fixed)
coordinate system, as presented in [32]. After that, the ECEF position is converted to a NED
coordinate frame, as specified in [33] and in Appendix B. Once the GNSS data is converted
to NED coordinates, it can be fused with the GRU output. The state vector for the EKF is
defined as follows:

xk =

PxN
PyE
PzD

 (3)
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The initialization step of the EKF is given by the UAV base position in the NED
frame along the initial covariance matrix. Furthermore, the prediction step has the aim of
estimating future states and is defined as follows:

x̂−k = g
(

x̂−k−1, uk−1

)
x̂−k = x̂−k−1Fk−1

P−
k = Fk−1Pk−1FT

k−1 + Gk−1Qk−1GT
k−1

(4)

where x̂−k−1 is the initial UAV position, uk−1 is the control input given by the INS GRU
source, Fk−1 is the dynamic covariance matrix, P−

k is the priori covariance matrix, Gk−1
is the noise covariance matrix, and Qk−1 is the process noise covariance matrix. The last
step is represented by the update step (correction step). The number of states dictates the
number of columns of the measurement matrix, and the number of measurements dictates
the size of the rows. Once the measurement matrix is defined, the measurement residual,
or innovation, can be defined as:

yk = z − h
(
x̂−k

)
(5)

where yk is the measurement residual, z is the observation vector, and h
(
x̂−k

)
is the measure-

ment equation based on the predicted states. Once the measurement residual is obtained,
the Kalman gain can be calculated, as defined in Equation (6). If its value is low (closer to
0), the predicted values are closer to the actual states; otherwise, the value will be closer to
1, meaning that the predicted values have more errors.

Kk = P−
k HT

k

(
HkP−

k HT
k + Rk−1

)−1
(6)
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The measurement update from the GNSS is defined as:

zGNSSk =

1 0 0
0 1 0
0 0 1

PxN
PyE
PzD

+ ϑ1,k

zGNSSk =

PxN_GNSS
PyE_GNSS
PzD_GNSS

 (7)

where zGNSS_k is the measurement vector, HGNSS is the measurement matrix for the GNSS
measurements, and ϑ1,k is the Gaussian noise related to the measurements formed by a
covariance matrix defined as RGNSS

k . Finally, the predicted state vector and the predicted
matrix are defined as:

xk = x̂−k + Kk
(
z − h

(
x̂−k

))
Pk = (I − Kk Hk)P−

k
(8)

3.3. INS/VO/Barometer EKF

The second local filter relies on positioning data from the trained INS GRU block and
the positioning data generated by the VO algorithm along the MEMS barometer sensor. The
VO algorithm is a visual-based technique widely implemented in robotics that can be used
to estimate user motion from a sequence of images, especially when a GNSS solution cannot
be provided. VO algorithms can be divided into two main categories: appearance-based
and feature-based.

The appearance-based approach estimates the robot’s motion by analyzing pixel
intensity information obtained from the output of an optical camera, as defined in [34].
Based on this approach, it is possible to derive two additional methods. The first method
consists of using a template matching method, which can provide a motion solution by
aligning two consecutive frames and measuring local unchanged similarities. The second
method implements an optical flow algorithm that directly analyzes the changing intensity
of pixels in two consecutive frames, computing a field of vectors from which motion can
be estimated.

The second category is formed by feature-based methods, which do not track all the
data from two consecutive frames but only key features such as lines or corners, which
are effective in environments rich in details. From a computational point of view, the
feature-based methods are more effective than the appearance-based methods.

Considering that urban and sub-urban environments are characterized mainly by a
multitude of details, the authors implemented a feature-based approach.

Different feature-based algorithms can be implemented, each having different perfor-
mances, such as the Harris-Corner detector [35], Shi-Tomasi corners [36], FAST (features
from accelerated segment test) corners [37], SURF (speeded-up robust features) features [38],
SIFT (scale invariant feature transform) features [39], and ORB (oriented FAST and rotated
BRIEF) features [40]. In a more detailed analysis, as specified in [41], ORB shows the best
performance in terms of computational load; thus, an ORB approach is chosen to deal
with real-time missions. Furthermore, the ORB feature detector algorithm can be utilized
without the requirement for a license. In contrast, other methods such as SIFT and SURF
are subject to patents and, as a result, entail associated costs for usage.

The first step in using the ORB algorithm is to detect features using the FAST corners
approach. The FAST algorithm begins by selecting a reference pixel to serve as the center
and then considers all the pixels within a radius. After that, a threshold based on pixel
intensity is calculated, and the position of features can be determined. Although the
features can be detected, the FAST approach does not provide any direction information.
Thus, as specified in [40], the intensity centroid (IC) approach is used to find and define the
orientation vector, as specified in [42]. This solution increases the robustness of the detected
features during rotatory movements, as specified in [40]. Furthermore, a steered BRIEF
(binary robust independent elementary feature) descriptor is used, as defined in [40].
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To match the descriptors between two frames, a matcher algorithm is needed. Thus, the
FLANN (Fast Library for Approximate Nearest Neighbors) [43] is used for its real-time features
and matching performance when many features occur against the BFmatcher algorithm.

After the feature matching step, a motion estimation method is needed to compute
the ego motion of the camera, which is rigidly attached to the UAV. There are mainly three
methods to estimate the ego motion of the camera, as follows [44]:

- 2D to 2D (both features are specified in 2D image coordinates between two frames)
- 3D to 3D (both features are specified in 3D image coordinates between two frames)
- 3D to 2D (previous features are specified in 3D coordinates and the current features in

2D image coordinates)

Considering that a single monocular camera is used, a 2D–2D method is adopted.
Furthermore, the essential matrix is required in order to extract the ego motion of the
camera, defined in [9] as follows:

E = [t]xR (9)

where R is the rotational matrix and t is the translational vector. From the estimated
essential matrix, it is possible to extract the rotational matrix and the translation vector.
Usually, four solutions are provided, but with triangulation, one single solution is extracting
the ego motion of the monocular camera. In addition, to increase the accuracy of the
estimated trajectory, the authors implemented the RANSAC (random sample consensus)
algorithm, as specified in [45]. To utilize the VO data accurately, it is necessary to execute a
conversion from the camera frame to the navigation frame, as specified in [46,47] and in
Equation (A1). pn

t,N
pn

t,E
1

 = λK−1[TNED
camera; TNED

camerarn
nc
]−1

u
v
1

 (10)

where TNED
camera is the transformation from camera to the navigation frame, K is the intrinsic

camera matrix, rn
nc is the position of the camera in the navigation frame, and λ is the scale

factor. In comparison to the previous EKF presented in Section 3.2, a barometer is used
to provide altitude information to cope with the instabilities provided by the monocular
camera on the z axis. Thus, the N and E positioning coordinates are provided by the
monocular camera using the VO algorithm, and the D positioning coordinate is provided
by the barometer. Furthermore, the output from the VO and barometer is fused with the
NED positioning output from the GRU model, which provides an enhancement of the INS
output, as presented in Section 3.1.

3.4. Master Filter

The final section of the fusion framework is represented by three GRU models, used
to enhance the output from the two EKFs as depicted in Figure 4. Since only the N, E, and
D positions are considered, the first GRU model is used to process only the N position data,
while the second and third GRU models are used to process only the E and D position
data, respectively.

Each GRU model is formed by a layer consisting of 128 GRUs, a RELU activation layer,
and a dense layer, followed by the final output layer. Each GRU model was trained using
80% of the dataset and tested using the remaining 20% of the dataset. After the training
phase, the final output is defined as follows:

PNED = P̂N + P̂E + P̂D (11)
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4. Hardware in the Loop Configuration

To enhance the realism of the dataset used by the hybrid sensor fusion architecture, a
HIL configuration is established, as can be seen in Figure 5. For the HIL set-up, a Pixhawk
2.4.8 board is used and configured in the HIL mode by running the px4fmu-v2_default
firmware, which represents the main FCU (flight control unit) of the UAV responsible for
the navigation, control, and stability of the flying device.
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Furthermore, once the connection is established with the hosting computer, the Pix-
hawk is calibrated properly by using the QGroundControl interface. After the calibration
step, on the same hosting computer, Unreal Engine 4.27.2, Cesium v2.0.0, and AirSim
1.7.0 are launched with the HIL configuration file (required by AirSim), starting the HIL
simulation. Unreal Engine is a 3D graphics interface that can be used to model specific
simulation environments, such as urban, semi-urban, and rural environments. The hosting
computer is equipped with an Intel Keon CPU E5-1650 v4, 32 GB of RAM, and an NVIDIA
GeForce GTX 1080Ti 11 GB GPU (Lenovo, Bratislava, Slovakia). In addition, with the aid
of Google Earth and Cesium, photogrammetry data can be easily imported into the UE
interface, and the UAV dynamics and sensors are included using the AirSim plugin.

Once the set-up is finalized, a Python v3.6.0 file is used to establish a UDP connection
between the Spirent GSS7000 hardware (Spirent PLC, Paignton, UK), and the hosting
computer. Thus, a link between AirSim and the GSS7000 allows the recording of IMU data
using the SimGEN v7.02 software. At the same time, RF signals are generated and sent
further to the C009-F9P Ublox board (u-blox AG, Zürcherstrasse, Switzerland), which is
responsible for processing the GNSS signals. By using OKTAL-SE Sim3D v4.7 in conjunction
with Spirent’s GSS7000 hardware, the generated RF GNSS signals also include multipath
effects. More details regarding the IMU and U-Blox F9P GNSS receiver can be viewed in
Table 1.
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Table 1. INS and U-Blox specifications.

Sensor Specifications

Accelerometer Gyroscope U-Blox F9P GNSS Receiver Specification

Scaling factor (ppm) 500 Scaling factor (ppm) 500 Pseudo-range accuracy (m) 3
Bias (mg) 0.1 Bias (deg/h) 0.001 Pseudo-range rate accuracy (m/s) 0.5

ARW (m/s/sqrt(h)) 0.003 GRW (deg/sqrt(h)) 0.003 Update rate (Hz) 1
Update rate (Hz) 100 -

5. Evaluation
5.1. Scenario Definition

To evaluate the hybrid FF architecture, Unreal Engine is implemented along with
AirSim, as specified in Section 3. For this specific simulation, real photogrammetry data
from the city center of Toulouse is integrated into Unreal Engine to replicate an urban
environment. To further assess the fusion framework, two trajectories are used, as can be
seen in Figure 6. The first trajectory is formed by different waypoints covering a larger
area, while the second trajectory is limited to a 150-meter square area. Both trajectories are
replicating a survey mission conducted in an urban environment. The simulation aims to
test the VO algorithm while assessing the influence of multipath on the GNSS and the drift
introduced by the MEMS IMU over time.
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5.2. Light and Weather Evaluation

In addition, both fusion architectures are tested under different light and weather
conditions. The first scenario simulates the flight of the UAV during normal daylight
conditions at 14:51 p.m. local time in Unreal Engine, while the second flight is at 18:00 p.m.,
as can be seen in Figure 7. Additionally, to further evaluate the accuracy of the VO
algorithm, two more scenarios are considered, performing the two trajectories under fog
and dust conditions, as can be seen in Figure 8.

5.3. Camera Calibration Set-Up

Considering the realism introduced into the simulation, before evaluating both fusion
architectures, the monocular camera, rigidly fixed on the UAV and pointing downward, is
configured in AirSim with an image width of 752 pixels and an image height of 480 pixels.



Sensors 2024, 24, 981 11 of 23

Sensors 2024, 24, x FOR PEER REVIEW 11 of 24 
 

 

5.2. Light and Weather Evaluation 
In addition, both fusion architectures are tested under different light and weather 

conditions. The first scenario simulates the flight of the UAV during normal daylight con-
ditions at 14:51 p.m. local time in Unreal Engine, while the second flight is at 18:00 p.m., 
as can be seen in Figure 7. Additionally, to further evaluate the accuracy of the VO algo-
rithm, two more scenarios are considered, performing the two trajectories under fog and 
dust conditions, as can be seen in Figure 8. 

  
Figure 7. Toulouse in UE during the afternoon—left; Toulouse in UE during the evening—right. 

  
Figure 8. The UAV during fog operations—left; the UAV during dust operations—right. 

5.3. Camera Calibration Set-Up 
Considering the realism introduced into the simulation, before evaluating both fu-

sion architectures, the monocular camera, rigidly fixed on the UAV and pointing down-
ward, is configured in AirSim with an image width of 752 pixels and an image height of 
480 pixels. 

Before using the monocular camera with the VO algorithm, a chessboard is intro-
duced into Unreal Engine in order to calibrate the camera by finding the intrinsic matrix, 
defined as K, formed by the focal lengths 𝑓  and 𝑓  and by the optical centers 𝑐  and 𝑐 . 
The chessboard is characterized by 10 rows and 10 columns, featuring alternating white 
and black squares, as can be seen in Figure 9. Each block has a dimension of 2 m in both 
length and width on the defined chessboard. Furthermore, in Unreal Engine, the UAV 
performed a small square trajectory over the chessboard at a cruise altitude of 70 m while 
recording all the camera frames. Then, the 220 frames extracted from Unreal Engine are 
processed using the MATLAB 2023b ‘Camera Calibrator’ toll, obtaining the intrinsic ma-
trix, as defined in Equation (A3). Thus, the intrinsic matrix is used to enhance the realism 
of the VO algorithm. 

𝐾 = 𝑓 0 𝑐0 𝑓 𝑐0 0 1 = 378.6062 0 376.25840 378.6560 240.42310 0 1  (12)

Figure 7. Toulouse in UE during the afternoon—left; Toulouse in UE during the evening—right.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 24 
 

 

5.2. Light and Weather Evaluation 
In addition, both fusion architectures are tested under different light and weather 

conditions. The first scenario simulates the flight of the UAV during normal daylight con-
ditions at 14:51 p.m. local time in Unreal Engine, while the second flight is at 18:00 p.m., 
as can be seen in Figure 7. Additionally, to further evaluate the accuracy of the VO algo-
rithm, two more scenarios are considered, performing the two trajectories under fog and 
dust conditions, as can be seen in Figure 8. 

  
Figure 7. Toulouse in UE during the afternoon—left; Toulouse in UE during the evening—right. 

  
Figure 8. The UAV during fog operations—left; the UAV during dust operations—right. 

5.3. Camera Calibration Set-Up 
Considering the realism introduced into the simulation, before evaluating both fu-

sion architectures, the monocular camera, rigidly fixed on the UAV and pointing down-
ward, is configured in AirSim with an image width of 752 pixels and an image height of 
480 pixels. 

Before using the monocular camera with the VO algorithm, a chessboard is intro-
duced into Unreal Engine in order to calibrate the camera by finding the intrinsic matrix, 
defined as K, formed by the focal lengths 𝑓  and 𝑓  and by the optical centers 𝑐  and 𝑐 . 
The chessboard is characterized by 10 rows and 10 columns, featuring alternating white 
and black squares, as can be seen in Figure 9. Each block has a dimension of 2 m in both 
length and width on the defined chessboard. Furthermore, in Unreal Engine, the UAV 
performed a small square trajectory over the chessboard at a cruise altitude of 70 m while 
recording all the camera frames. Then, the 220 frames extracted from Unreal Engine are 
processed using the MATLAB 2023b ‘Camera Calibrator’ toll, obtaining the intrinsic ma-
trix, as defined in Equation (A3). Thus, the intrinsic matrix is used to enhance the realism 
of the VO algorithm. 

𝐾 = 𝑓 0 𝑐0 𝑓 𝑐0 0 1 = 378.6062 0 376.25840 378.6560 240.42310 0 1  (12)

Figure 8. The UAV during fog operations—left; the UAV during dust operations—right.

Before using the monocular camera with the VO algorithm, a chessboard is introduced
into Unreal Engine in order to calibrate the camera by finding the intrinsic matrix, defined
as K, formed by the focal lengths fx and fy and by the optical centers cx and cy. The
chessboard is characterized by 10 rows and 10 columns, featuring alternating white and
black squares, as can be seen in Figure 9. Each block has a dimension of 2 m in both
length and width on the defined chessboard. Furthermore, in Unreal Engine, the UAV
performed a small square trajectory over the chessboard at a cruise altitude of 70 m while
recording all the camera frames. Then, the 220 frames extracted from Unreal Engine are
processed using the MATLAB 2023b ‘Camera Calibrator’ toll, obtaining the intrinsic matrix,
as defined in Equation (A3). Thus, the intrinsic matrix is used to enhance the realism of the
VO algorithm.

K =

 fx 0 cx
0 fy cy
0 0 1

 =

378.6062 0 376.2584
0 378.6560 240.4231
0 0 1
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5.4. Conventional Federated Filter Architecture

To compare the advantages of the proposed hybrid FF architecture, a conventional
FF architecture formed only by EKFs is used, as can be seen in Figure 10, in a loosely
coupled approach.
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Thus, the INS block does not have any GRU model that predicts the IMU drift over
time, and the master filter is only formed by a conventional EKF that fuses the positioning
output from the two local filters. To further evaluate the FF, the same architecture is used,
but while using the trained GRU model to enhance the INS position output.

5.5. Evaluation of the Square Trajectory

To evaluate the performance of both fusion architectures, various metrics are imple-
mented, including 3D positioning, horizontal and vertical error, and RMSE (root mean
square error) on each axis, as specified in Appendix B.

Although the pseudo-range accuracy of the GNSS receiver is 3 m as it can be seen
in Table 1, the multipath introduced is consistently affecting the position accuracy of the
first local filter when no GRU correction are used. As it can be seen in Table 2, for the
square trajectory, significant positioning improvements can be observed in the first EKF by
fusing the output from the GRU aid, which enhances the INS position output, with GNSS
data, obtaining an equivalent horizontal error of 0.59 m (95th percentile). In contrast, the
EKF without the GRU model shows a higher horizontal error of 9.76 m (95th percentile).
Analysing the vertical error in both local filters, it can be observed that the filter without
GRU corrections has the worst performance against the local filter with GRU corrections.

Table 2. Positioning performance for Toulouse under different light conditions—square trajectory.

Toulouse—Afternoon

Position Source

3D Position
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 10.40 9.76 3.5 4.49 1.35 3.36 5.77
EKF2 IMU/VO/BO (no GRU aid) 9.09 9.03 1.58 4.17 1.60 0.78 4.54

Master EKF filter (no GRU aid) 9.09 9.03 1.50 4.18 1.35 0.77 4.46
EKF1 IMU/GNSS (with GRU aid) 0.64 0.59 0.29 0.20 0.17 0.13 0.30

EKF2 IMU/VO/BO (with GRU aid) 4.57 4.57 1.48 1.32 1.45 0.76 2.11
Master GRU filter (with GRU aid) 0.58 0.54 0.27 0.16 0.14 0.12 0.25
Master EKF filter (with GRU aid) 0.76 0.73 0.29 0.21 0.21 0.13 0.33

Toulouse—Evening

EKF2 IMU/VO/BO (no GRU aid) 9.16 9.00 2.54 4.17 1.64 1.40 4.68
Master EKF filter (no GRU aid) 9.13 8.95 2.44 4.15 1.63 1.37 4.58

EKF2 IMU/VO/BO (with GRU aid) 5.07 4.92 1.63 1.52 1.58 1.00 2.35
Master GRU filter (with GRU aid) 0.59 0.54 0.27 0.16 0.14 0.12 0.25
Master EKF filter (with GRU aid) 0.77 0.75 0.29 0.22 0.21 0.13 0.34
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On the other hand, the second local filter, which fuses the output from the IMU with
the VO and barometer data, shows slightly better performance with a horizontal error of
9.03 m (95th percentile) without relying on any corrections from the GRU model. Instead,
when the IMU/GRU corrections are implemented, the horizontal error tends to achieve an
equivalent positioning output of 4.57 m (95th percentile), with an improvement in the N, E,
and D coordinates with an equivalent RMSE of 1.32 m, 1.45 m, and 0.76 m, respectively.
The overall RMSE, considering all the NED coordinates, equals 2.11 m against the filter
without GRU corrections, which equals 4.54 m. By analyzing the output of the master
filters, it is possible to notice an enhancement in positioning, shifting from a horizontal
error of 9.03 m (95th percentile) to 0.54 m (95th percentile) when employing the GRU model
as the master filter instead of the master EKF. If a master EKF is considered with a GRU aid,
slightly worse performances can be observed, maintaining a sub-meter horizontal error.
By changing the light conditions from a daylight flight to an evening flight, in Table 2, it is
possible to notice the influence of the VO over the output of the EKF. Despite the change in
light conditions while executing the same trajectory, comparable performances are attained,
as can be seen in Figure 11. Although comparable positioning performances are achieved
during both afternoon and evening flights, a degradation in positioning is evident when
weather conditions change from clear-sky conditions to the presence of fog and dust effects.
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From Figure 11, it is possible to notice that the distribution of the horizontal error
under fog and dust conditions is greater compared to the horizontal error observed in
flights conducted during the afternoon and evening conditions. By analyzing the outputs



Sensors 2024, 24, 981 14 of 23

of the second local EKF, which uses VO for positioning, from Table 3, it is possible to
highlight that fog, in comparison to dust, degrades the EKF positioning output more,
leading to a horizontal error of 14.25 m (95th percentile). In comparison, the dust effect
leads to a horizontal error of 13.62 m (95th percentile). On the one hand, processing both
fog and dust outputs with a master EKF leads to similar results due to the fusion with
the output from the first local filter. On the other hand, the aid of the master GRU filter
substantially improves the positioning output, decreasing the horizontal error to 0.57 m
during fog conditions and 0.55 m during dust conditions. On the one hand, the master
GRU model does cope with all the additional instabilities introduced by the VO during
adverse and challenging weather conditions. In contrast, if a master EKF is used with a
GRU aid, comparable results are obtained, as in the previous cases, during afternoon and
evening flights. Thus, the VO algorithm can increase the overall position of an UAV in an
urban environment during normal conditions, up to good light and weather conditions.

Table 3. Positioning performance for Toulouse under different weather conditions—square trajectory.

Toulouse—Fog

Position Source

3D Positioning
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF2 IMU/VO/BO (no GRU aid) 14.63 14.25 3.00 6.34 5.07 1.60 8.28
Master EKF filter (no GRU aid) 9.44 8.96 2.98 4.12 1.71 1.60 4.74

EKF2 IMU/VO/BO (with GRU aid) 8.63 8.63 3.25 2.80 2.53 1.48 4.07
Master GRU filter (with GRU aid) 0.61 0.57 0.28 0.17 0.17 2.30 0.27
Master EKF filter (with GRU aid) 0.89 0.87 0.29 0.25 0.24 0.13 0.37

Toulouse—Dust

EKF2 IMU/VO/BO (no GRU aid) 13.74 13.62 4.90 6.54 3.90 2.54 8.03
Master EKF filter (no GRU aid) 9.65 8.82 4.85 4.09 1.57 2.50 5.06

EKF2 IMU/VO/BO (with GRU aid) 6.00 5.51 2.50 1.77 1.61 1.45 2.80
Master GRU filter (with GRU aid) 0.60 0.55 0.27 0.16 3.07 0.12 0.25
Master EKF filter (with GRU aid) 0.79 0.77 0.29 0.22 0.22 0.13 0.34

5.6. Evaluation of the Survey Trajectory

If a more complex trajectory is considered, it can be observed from Table 4 that
the second local filter introduces more errors into the fusion system. This correlates to
the drift introduced into the second EKF filter over time by the VO algorithm and INS.
Considering that the survey trajectory covers a larger area, green areas such as parks
decrease the efficiency of the VO algorithm due to the lack of features. Although slightly
better performances are achieved when the VO output is fused with the output from the
MEMS barometer and MEMS IMU with GRU corrections, the horizontal error is higher in
comparison to the values presented in both Tables 2 and 3. Although the perturbances of
the VO algorithm are higher, it can be observed that both the master EKF and master GRU
models substantially reduce the final positioning error.

As can be seen in Figure 12, the master EKF has better performance during the
afternoon flight, while the master EKF with data collected during evening conditions has
more errors. In contrast, the master GRU model shows better performance, boasting a
horizontal error of 1.72 m (95th percentile) and a vertical error of 0.28 m (95th percentile).
Considering the effects of weather on the VO algorithm, as presented for the square
trajectory, it can be seen from Figure 12 and Table 5 that more errors are introduced into the
fusion framework during foggy conditions. However, in both situations, the trained GRU
model, by filtering both fusion outputs and considering all the NED coordinates, achieves
an RMSE of 0.83 m.



Sensors 2024, 24, 981 15 of 23

Table 4. Positioning performance for Toulouse under different light conditions—survey trajectory.

Toulouse—Afternoon

Position Source

3D Positioning
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 11.37 10.19 4.05 1.77 4.52 3.77 6.15
EKF2 IMU/VO (no GRU aid) 22.92 22.90 5.00 9.38 7.36 1.60 12.03

Master EKF filter (no GRU aid) 10.44 10.19 2.11 1.94 4.48 1.80 5.21
EKF1 IMU/GNSS (with GRU aid) 1.86 1.85 0.26 0.76 0.49 0.16 0.92

EKF2 IMU/VO (with GRU aid) 11.74 11.74 4.10 4.79 4.63 1.27 6.79
Master GRU filter (with GRU aid) 1.72 1.72 0.28 0.67 0.44 0.12 0.81
Master EKF filter (with GRU aid) 1.93 1.93 0.26 0.77 0.53 0.16 0.95

Toulouse—Evening

EKF2 IMU/VO (no GRU aid) 23.43 23.43 5.53 10.00 7.55 1.64 12.64
Master EKF filter (no GRU aid) 10.57 10.40 5.31 2.71 4.48 1.57 5.47
EKF2 IMU/VO (with GRU aid) 13.38 13.32 3.99 5.27 5.46 1.73 7.79

Master GRU filter (with GRU aid) 1.73 1.73 0.28 0.67 0.16 0.12 0.82
Master EKF filter (with GRU aid) 1.97 1.96 0.26 0.78 0.54 0.16 0.97
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Table 5. Positioning performance for Toulouse under different weather conditions—survey trajectory.

Toulouse—Fog

Position Source

3D Positioning
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF2 IMU/VO (no GRU aid) 23.76 23.76 10.44 9.10 7.95 3.01 12.50
Master EKF filter (no GRU aid) 11.36 10.21 10.31 1.80 4.52 3.10 5.77
EKF2 IMU/VO (with GRU aid) 25.22 25.19 8.34 10.39 9.92 2.80 14.64

Master GRU filter (with GRU aid) 1.74 1.73 0.29 0.67 0.46 0.13 0.83
Master EKF filter (with GRU aid) 2.22 2.21 0.26 1.07 0.87 0.60 1.07

Toulouse—Dust

EKF2 IMU/VO (no GRU aid) 36.78 36.75 8.04 14.83 10.24 2.77 18.24
Master EKF filter (no GRU aid) 11.32 10.18 3.97 1.84 4.5 3.71 6.12
EKF2 IMU/VO (with GRU aid) 22.51 22.12 5.95 8.73 9.12 4.08 13.27

Master GRU filter (with GRU aid) 1.74 1.73 0.29 0.67 0.46 0.13 0.83
Master EKF filter (with GRU aid) 2.53 2.53 0.26 10.03 0.56 0.16 1.18

5.7. Evaluation of the Square and Survey Trajectories Considering GNSS Outages

To further investigate the performance of the proposed hybrid fusion architecture,
GNSS outages are introduced into the simulation. For the square trajectory, two small
outages lasting 15 seconds each are considered, along with the introduction of a more
extended outage lasting 50 seconds. As can be seen from Table 6, the local EKF fusing data
from the GNSS and IMU have an equivalent horizontal error of 12.16 m (95th percentile),
which is higher in comparison to the previous scenario where outages were not considered,
as can be seen in Figure 13. On the one hand, when the GNSS data are fused with the
second local filter and the master EKF, an improvement in position can be seen, leading
to a horizontal error of 9.44 m (95th percentile). Although the GNSS data is affected by
multipaths and outages, it can be observed that the VO algorithm along the barometer from
the second local EKF contains the errors introduced by GNSS outages. On the other hand,
the GRU model used to predict INS errors substantially reduces the GNSS errors, leading
to a horizontal error of 0.82 m (95th percentile), while the master GRU filter further reduces
the horizontal error, improving it by 32%. Although similar performances are obtained
during the evening flight scenario, it can be observed that due to the VO degradation in
foggy and dusty conditions, the master EKF leads to a higher position error. In contrast,
the trained master GRU filter achieves a sub-meter position error, despite the disturbances
introduced during the simulation. Similar results are obtained using a master EKF with
GRU corrections, leading to sub-meter accuracy with a horizontal error of 0.75 m (95th
percentile) and a vertical error of 0.31 m (95th percentile).

Instead, for the survey trajectory, two short GNSS outages lasting 15 seconds and two
extended GNSS outages lasting 50 seconds are introduced into the simulation, as can be
seen from Figure 14. The horizontal and vertical errors are degraded in comparison to
the scenario where outages are not considered. At the same time, in the square scenario,
the IMU, monocular camera, and MEMS barometer sensor reduce the errors introduced
by the GNSS trying to cope with all the outages. It can be observed from Table 7 that
even if a federated multi-sensor fusion framework is implemented, the master EKF cannot
guarantee a reliable and stable flight in a multipath environment with outages. However, if
a master GRU filter is used, the horizontal error tends to be within 2 m (95th percentile)
despite all the external instabilities. Instead, if a master EKF filter is implemented with INS
GRU corrections, the horizontal error tends to be within 4 m (95th percentile).
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Table 6. Positioning performance for Toulouse under different light conditions with GNSS outages—
square trajectory.

Toulouse—Afternoon

Position Source

3D Position
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 15.81 12.16 11.73 5.19 5.51 7.22 13.92
Master EKF filter (no GRU aid) 9.48 9.44 1.52 4.03 2.23 0.82 6.01

EKF1 IMU/GNSS (with GRU aid) 0.98 0.82 0.59 0.34 0.33 0.34 1.01
Master GRU filter (with GRU aid) 0.60 0.55 0.27 0.17 0.18 0.12 0.28
Master EKF filter (with GRU aid) 0.80 0.75 0.31 0.23 0.23 0.17 0.37

Toulouse—Evening

Master EKF filter (no GRU aid) 9.81 9.59 2.74 4.43 4.04 1.49 6.18
Master GRU filter (with GRU aid) 0.60 0.56 0.28 0.18 0.17 0.15 0.29
Master EKF filter (with GRU aid) 0.81 0.76 0.31 0.23 0.23 0.17 0.37

Toulouse—Fog

Master EKF filter (no GRU aid) 19.66 19.44 2.94 8.29 7.59 1.65 11.36
Master GRU filter (with GRU aid) 0.86 0.81 0.43 0.28 0.17 0.16 0.37
Master EKF filter (with GRU aid) 0.92 0.88 0.31 0.25 0.26 0.17 0.40

Toulouse—Dust

Master EKF filter (no GRU aid) 19.29 19.07 2.94 8.14 7.40 1.65 11.12
Master GRU filter (with GRU aid) 0.62 0.58 0.28 0.19 0.17 0.15 0.30
Master EKF filter (with GRU aid) 0.73 0.83 0.31 0.23 0.23 0.17 0.37
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Table 7. Positioning performance for Toulouse under different light conditions with GNSS outages—
survey trajectory.

Toulouse—Afternoon

Position Source

3D Position
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 17.83 17.83 13.16 6.34 8.91 10.85 15.41
Master EKF filter (no GRU aid) 17.82 17.78 4.99 6.35 8.88 1.59 11.03

EKF1 IMU/GNSS with GRU aid 3.39 3.35 0.60 1.71 0.83 0.49 1.98
Master GRU filter (with GRU aid) 1.77 1.77 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.42 3.37 0.60 1.68 0.87 0.49 1.96

Toulouse—Evening

Master EKF filter (no GRU aid) 17.79 17.75 5.51 6.38 8.85 1.63 11.03
Master GRU filter (with GRU aid) 1.77 1.76 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.43 3.39 0.60 1.69 0.87 0.49 1.96

Toulouse—Fog

Master EKF filter (no GRU aid) 17.87 17.74 10.64 6.35 8.85 3.20 11.36
Master GRU filter (with GRU aid) 1.76 1.76 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.50 3.46 0.60 1.69 0.89 0.49 1.98

Toulouse—Dust

Master EKF filter (no GRU aid) 18.01 17.81 8.02 6.50 8.89 2.77 11.36
Master GRU filter (with GRU aid) 1.76 1.76 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.48 3.44 0.60 1.69 0.89 0.49 1.97

5.8. Performance Comparison

To evaluate the results obtained for the second local filter, which fuses the position
output from the VO algorithm, the altitude from the MEMS barometer, and the position
from the MEMS IMU, the following paper [48] is used as a benchmark. The paper im-
plements a VINS-mono [49] algorithm that gathers real data from a monocular camera
mounted on a UAV pointing downward. It can be observed that the output from the second
local filter shows significant improvements at 60 m while considering both the square and
survey trajectories, with an equivalent improvement of 61.78% for the square scenario and
17.89% for the survey trajectory. It can be observed that with longer trajectories, the errors
introduced by the VO accumulate over time, decreasing the position accuracy.

Instead, to compare the overall performances obtained by the proposed hybrid fed-
erated fusion architecture, the solution presented in [50] is used as a comparison. The
paper presents a robust adaptive Kalman filter for gathering data from a GNSS sensor, an
IMU MEMS sensor, and an optical camera. As observed in Table 8, the proposed solution
with an ML aid shows better performances considering both scenarios during normal VO
operations and with multipaths.

Table 8. Benchmark analysis.

Algorithm MAE N
[m]

MAE E
[m]

MAE D
[m]

RMSE NED
[m] Square Scenario Survey Scenario

Mono-VIO [48] - - - 16.54 61.78% 17.89%

Robust Adaptive
Kalman filter [50] 0.06 0.07 0.06 -

N 193% N 188%

E 180% E 192%

D 187% D 199%

6. Conclusions

In this study, the authors presented and demonstrated the following:
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- A novel hybrid sensor fusion framework based on a federated approach was devel-
oped and tested in a loosely coupled set-up, integrating data from diverse sources, in-
cluding a GNSS receiver, a MEMS IMU sensor, a monocular camera, and a
MEMS barometer.

- A virtual environment was developed in UE, along with AirSim, Cesium, and pho-
togrammetry data imported from Google Earth, allowing the authors to test and
validate the effects of the VO algorithm over the hybrid fusion framework under
different light and weather conditions. To further validate the framework, the hybrid
FF architecture was compared to a classic FF framework. GNSS data were enhanced
using the Spirent GSS7000 simulator with the OKTAL-SE Sim 3D software stack, intro-
ducing multipath during the data collection phase, and collected using a C009-F9P
Ublox board. At the same time, IMU data were gathered using the Spirent GSS7000.
In addition, GNSS outages were considered for both scenarios.

- Based on the performance metrics presented in Tables 2 and 3 for a square trajectory
and Tables 4 and 5 for a survey trajectory, it is evident that the corrections offered
by the master GRU model surpass those of the master EKF filter. The master GRU
model demonstrates the capability to achieve a sub-meter positioning error in terms
of horizontal and vertical error for the square trajectory and below 2 m for the survey
trajectory, under different weather and light conditions.

- The presented feature-based VO algorithm does improve the position accuracy of the
UAV, as can be seen in Tables 2 and 3 under good weather and light conditions. If
more complex and longer missions are considered, the VO algorithm does not provide
major position correction.
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Appendix A. Coordinate Systems Definition and Transformations

Appendix A.1. Body Frame

The first coordinate system is defined by the body frame having its origin in the UAV’s
center of gravity, where the x axis points ahead, the z axis downwards, and the y axis
on the right side of the flying vehicle, while rotation on the x axis is defined as φ (roll),
rotation on the y axis as θ (pitch), and rotation on the z axis as ψ (yaw), as can be seen in the
figure below.

Appendix A.2. ECEF (Earth-Centered Earth-Fixed Frame)

The Earth-Centered Earth-Fixed Frame has its origin at the Earth’s center, and it is
fixed and rotates with the Earth. The x axis points to the prime meridian, the z axis points
towards the North Pole, and the y axis completes the right-hand frame.

Appendix A.3. Inertial Frame

The inertial frame aligns with the Earth’s center, similar to the ECEF frame, except its
rotation is independent. The x axis points towards the mean vertical equinox, the z axis is
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parallel with the Earth’s rotation, and the y axis completes the right-handed frame, similar
to the ECEF frame.
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to the ECEF frame. 

 
Figure A1. UAV’s body frame definition in AirSim. 

  

Figure A1. UAV’s body frame definition in AirSim.

Appendix A.4. Navigation Frame

A NED (North, East, and Down) [51] navigation coordinate frame attached to the
vehicle is adopted by the author. Thus, the x axis points towards north (N), the z axis points
downwards (D), and the y axis points east (E), considering a WGS84 ellipsoid Earth model.

Appendix A.5. Conversion from WGS84 to ECEF

xECEF = (N + h)cos φcos λ
yECEF = (N + h)cos φsin λ

zECEF =
[
N
(
1 − e2)+ h

]
sin φ

(A1)

N = a√
1−e2sin φ2

e2 = 2 f − f 2

f = a−b
a

PECEF =

xECEF
yECEF
zECEF


where xECEF, yECEF, and zECEF are the positions in the ECEF frame; φ, λ, and h are the
initial altitude, longitude, and altitude, respectively; N is the radius curvature in prime
vertical; a is the semi-major Earth axis; b is the semi-minor Earth axis; e2 is the eccentricity
of Earth; and f is the flattening.

Appendix A.6. Conversion from ECEF to NED

PNED = R(PECEF − PREF) (A2)

R =

−sinφREFcosλREF − sinφREFsinλREF cosφREF
−sinλREF cosλREF 0

−cosφREFcosλREF −cosφREFsinλREF −sinφREF


xREF = (N + hREF)cos φREFcos λREF
yREF = (N + hREF)cos φREFsin λREF

zREF =
[
N
(
1 − e2)+ h

]
sin φREF

where PREF represents the vector with the initial LLA coordinates in an ECEF coordinate system.



Sensors 2024, 24, 981 21 of 23

Appendix A.7. Coordinate Frame Transformations

To convert the body frame defined previously to the NED frame, a DCM (direction
cosine matrix) is used, as follows:

Cn
b =

cosθ cosψ − cosφ sinψ + sinφ sinθ cosψ sinφ sinψ + cosφ sinθ cosψ
cosθ sinψ cosφ cosψ + sinφ sinθ sinψ −sinφ cosψ + cosφ sinθ sinψ
−sinθ sinφ cosθ cosφ cosθ

 (A3)

where Cn
b is the DCM matrix and θ , ψ, and φ are the pitch, yaw, and roll angle in radians,

respectively.

Appendix B. Metrics

To assess the two fusion architectures, the following metrics were used:

Vertical error =
√(

Di − D̂i
)2 (A4)

Horizontal error =
√(

Ni − N̂i
)2

+
(
Ei − Êi

)2 (A5)

3D error =
√(

Ni − N̂i
)2

+
(
Ei − Êi

)2
+

(
Di − D̂i

)2 (A6)

RMSEN =

√
1
n

n
∑
i

(
Ni − N̂i

)2
=

√
1
n

n
∑
i

∆Ni
2

RMSEE =

√
1
n

n
∑
i

(
Ei − Êi

)2
=

√
1
n

n
∑
i

∆Ei
2

RMSED =

√
1
n

n
∑
i

(
Di − D̂i

)2
=

√
1
n

n
∑
i

∆Di
2

(A7)

RMSENED =

√
RMSEN

2 + RMSEE
2 + RMSED

2 =

√
1
n

n

∑
i

(
∆Ni

2 + ∆Ei
2 + ∆Di

2
)

(A8)

where Ni, Ei, and Di are the ground truth positioning output from Unreal Engine in NED
coordinates, while N̂i, Êi, and D̂i are the estimated NED position.
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