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Abstract: Spatial cognition plays a crucial role in academic achievement, particularly in science,
technology, engineering, and mathematics (STEM) domains. Immersive virtual environments (VRs)
have the growing potential to reduce cognitive load and improve spatial reasoning. However,
traditional methods struggle to assess the mental effort required for visuospatial processes due
to the difficulty in verbalizing actions and other limitations in self-reported evaluations. In this
neuroergonomics study, we aimed to capture the neural activity associated with cognitive workload
during visuospatial tasks and evaluate the impact of the visualization medium on visuospatial task
performance. We utilized functional near-infrared spectroscopy (fNIRS) wearable neuroimaging
to assess cognitive effort during spatial-reasoning-based problem-solving and compared a VR, a
computer screen, and a physical real-world task presentation. Our results reveal a higher neural
efficiency in the prefrontal cortex (PFC) during 3D geometry puzzles in VR settings compared to the
settings in the physical world and on the computer screen. VR appears to reduce the visuospatial
task load by facilitating spatial visualization and providing visual cues. This makes it a valuable tool
for spatial cognition training, especially for beginners. Additionally, our multimodal approach allows
for progressively increasing task complexity, maintaining a challenge throughout training. This study
underscores the potential of VR in developing spatial skills and highlights the value of comparing
brain data and human interaction across different training settings.

Keywords: geometry puzzle; tangram; spatial cognition; cognitive workload; virtual reality;
fNIRS; neuroergonomics

1. Introduction

Spatial cognition has been found to be strongly associated with academic achievement
in STEM (science, technology, engineering, and mathematics) fields [1–3]. The connec-
tion between spatial skills and math ability has been one of the most robust findings in
cognitive psychology [4]. Educational research contributions to understanding spatial
cognition have become increasingly important as educators and policymakers seek to de-
velop evidence-based methods and curricular materials to enhance teaching–learning [2,5].
Therefore, thinking about technological solutions to help learn challenging domains, such
as mathematical thinking or geometry concepts, is even more essential.

Visuospatial training is practical, durable, and transferable [6]. A comprehensive
meta-analysis of 217 studies revealed a significant finding: spatial skills can be effectively
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enhanced across all age groups through targeted training interventions [6]. Similarly, em-
pirical data indicate that enhancing visuospatial skills can significantly improve general
mathematical aptitude and specific domains such as geometry [7]. The evidence strongly
supports implementing formal programs to nurture and refine spatial abilities. However, it
is important to note that not all spatial cognition training is effective [8]. Therefore, it is
crucial to have a solid understanding of visuospatial protocols to ensure that students can
benefit from the practice. Investigating visuospatial processes, such as translation, symme-
try, and area, through conventional means (thinking aloud, post-tests) presents a significant
challenge in academic research since subjects often have difficulty in producing verbal
accounts for their actions [9]. In this sense, neuroscience studies have employed neuroimag-
ing techniques to investigate mental effort signs and elucidate the neural mechanisms that
underlie cognitive effort during spatial reasoning.

Functional magnetic resonance imaging (fMRI) is one of the established methods of
neuroimaging that can be valuable for understanding brain activity mapping
development [10–12] and for the investigation of visuospatial cognition [13,14]. For exam-
ple, an fMRI study demonstrated that subjects who underwent a three-month intervention
with Tetris game training showed decreased activation in the frontal cortex area [14]. In-
deed, neuroimaging studies have consistently shown that some brain regions, including
the superior parietal and the frontal cortices, were involved with many bilateral activation
regions during mathematical [15–17] and visuospatial tasks [18,19].

Neuroimaging studies applying fMRI have significantly impacted our understanding
of brain function. However, this technique has limitations, such as high operation costs,
limiting the participants’ movement, and the fact that it is very susceptible to motion
artifacts. All these together make fMRI challenging to use in more naturalistic experiments
outside of traditional labs, especially when working with children [20,21]. Alternatively,
one optical neuroimaging technique is known as functional near-infrared spectroscopy
(fNIRS) [22–25]. It measures a similar cortical hemodynamic signal as fMRI but with a
wearable and potentially mobile form factor, and it has the advantages of being a low-cost,
safe, minimally intrusive, and non-invasive approach [26]. This neuroimaging technique
has been applied in increasingly naturalistic paradigms [27,28] consistent with neuroer-
gonomics, the study of the brain in everyday life [29]. In particular, it has been utilized
in educational research, such as learning [25,27,28,30], problem-solving [31,32], and au-
thentic educational paradigms [24,33–35]. Furthermore, fNIRS has also been applied in
other naturalistic neuroscience studies with complex real-world tasks [21,36–41] and is
a valuable technological tool for investigating cognitive aspects in realistic educational
interactions [35,42].

A growing number of fNIRS studies have shown that the modulation of activity in the
frontal cortex reflects the cognitive effort under cognitive demands in some
conditions [28,31,43–47]. For example, a study demonstrated that the prefrontal acti-
vation intensity measured by fNIRS sheds insight into the level of mental effort, indicating
engagement with demanding tasks in a flight simulator [47]. Another study showed
through fNIRS that good problem-solvers increasingly had lower oxygenation levels in the
prefrontal cortex (PFC) than average problem-solvers during tangram puzzles [32]. The
findings suggest less of a dependence on the neural resources in the cortical regions re-
cruited during the subsequent visuospatial puzzles. Taken together, the decrease in cortical
activation indicates changes in neural networks due to the development of visuospatial
ability and learning throughout the training protocol. Furthermore, using fNIRS technology
has also improved the assessment of cognitive effort by calculating neural efficiency [48,49].
Such a method combines measurements of behavioral output and PFC activity to determine
mental effort in relation to performance [50,51]. In fact, neural efficiency provides valuable
insights into the brain’s activity during various cognitive tasks and has led to a deeper
understanding of cognitive processes [51], which can help in evaluating learning materials
and instructional designs.
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In addition to neuroimaging techniques, virtual reality (VR) is also considered a great
promising tool to improve research on spatial cognition. It brings realistic scenarios with
controlled stereoscopic displays that can enhance the understanding and learning of 3D
objects/environments [52]. It has been suggested that immersive virtual environment
training leads to a lower cognitive load and more efficient visual stimuli processing for
users than two-dimensional content [53]. For example, a study revealed that participants
performed spatial reasoning tasks, specifically paper-folding tasks, with greater accuracy
and speed in VR [53]. In addition, another study showed that participants performing
visuospatial reasoning tasks (e.g., mental rotation task, MRT) in immersive VR (which
displayed a 3D visualization) reached a better score and average time per question than
performing the same task with 2D stimuli (screen display), suggesting that the processing
and comprehension of 3D stimuli in VR environments are more effective than perceiving 2D
stimuli of 3D models [54]. Despite some positive results, VR in the learning context is still
being discussed, as virtual training could also result in high workloads for students, leading
to negative learning experiences [55]. Therefore, adapting the VR environment is necessary
for the user’s well-being and productivity. In this context, neuroscience could provide
helpful information on brain activation and visuospatial tasks. Together, VR technology
and neuroimaging techniques are valuable for assessing mental effort signs to evaluate
visuospatial reasoning tasks in distinct scenarios.

In this study, a comparison of a task presentation in VR, on a computer screen (CS), and
in physical real-world (RW) mediums was investigated to (1) compare the brain activity re-
lated to the cognitive workload and neural efficiency during easy and difficult visuospatial
tasks with and without VR settings and to (2) evaluate if VR-based visualizations have any
influence on enhancing visuospatial task performance. Here, we aimed to assess cognitive
effort by analyzing the brain’s hemodynamic activity in participants while they engaged in
solving geometry puzzles under three distinct conditions: virtual reality, computer screen,
and real-world settings.

2. Materials and Methods
2.1. Participants

Thirty healthy participants (fifteen females and fifteen males) included in these anal-
yses had a mean (SD) age of 24.3 (5.30) years. Each participant attended one session and
completed all three phases: VR settings, RW settings with solid puzzle parts, and CS, a
typical two-dimensional computer screen setup, at Drexel University’s Neuroergonomics
and Neuroengineering for Brain Health and Performance Research Lab at the CoNQuER
Collaborative. All participants provided written informed consent that was approved by
Drexel University’s Institutional Review Board and received monetary compensation for
their time. All participants involved in the study were found to meet the eligibility criteria
for right-handedness as per the Edinburgh Handedness Inventory. Additionally, they
exhibited correctable 20/20 vision, no history of brain injury or psychological disorder, and
were not under the influence of medication that could potentially impact brain function. We
adopted similar selection criteria to a previous study involving biomarker measurements
with fNIRS during virtual reality tasks [56]. We selected 18 as the minimum age to target
adults. We selected a maximum of 40 years old to eliminate primarily generational differ-
ences and potential age-related confounding factors in cognitive function. The invitation for
participants was sent to the Drexel University community, and we were careful to maintain
balance in our sample regarding characteristics such as age, gender, video game experience,
and handiness. To ensure a balanced sample, we utilized a background questionnaire.

2.2. VR Equipment

The hardware equipment used in the VR design was an Oculus Rift headset (Oculus
Rift VR, Meta Platforms Inc., Menlo Park, CA, USA) with a sensor to track the user’s hand
movements during the task. The VR equipment was connected to a laptop computer. The
software used for the immersive VR application was Cubism VR in its 1.6.1 version. It
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presented the puzzles during the VR and the CS phases, with all task events recorded,
including the start and end of each puzzle and the participants’ movements, allowing for
behavioral analysis and brain synchronization.

2.3. Behavioral Measurements

The behavioral responses were recorded using a video camera (Logitech HD C270,
Logitech Inc., Fremont, CA, USA) to evaluate the problem-solving process across the
mediums. The number of actions was defined by how many times the participant placed
the piece to solve the puzzle. The number of rotations was how often the participant rotated
the pieces during the problem-solving. The number of mistakes means how many times
the participant placed the piece in the wrong position to solve the puzzle, and the number
of give-ups indicates how many times the participant tried to place the piece but gave up
by stopping holding the piece to try another approach to solve the puzzle.

2.4. fNIRS Data Acquisition

We employed a wearable flat fNIRS sensor pad (Imager Model 1100 by fNIR Devices,
LLC—Potomac, MD, USA) that used near-infrared light to monitor the hemodynamics
(oxygenated and deoxygenated hemoglobin) in the prefrontal cortex [27]. The LED illumi-
nation sources emitted two wavelengths of near-infrared light (730 nm and 850 nm), and
the signals were recorded by the COBI Studio software (v1.5.0.55) at a sampling rate of
2 Hz with 10 photodetectors, resulting in 16 optodes (cortical regions, see Figure 1) being
monitored as described by [27]. The sensor locations for the cortical signals were obtained
from areas previously reported in the literature as brain regions related to cognitive effort
during visuospatial tasks [31,32].
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Figure 1. Wearable fNIRS sensor for the monitoring of brain activity during problem-solving under
the VR headset (left). Layout of the fNIRS sensor pad with 16 optodes in the anterior prefrontal
cortex (middle) and position over the forehead region with anatomical landmarks (right). The
red dots represent the light sources, while the blue dots indicate the light detectors used in fNIRS
measurements, and the measurement region was in between each light source and detector pair.

2.5. Visuospatial Task

We used tangram geometric puzzles based on protocols designed at Drexel University
that require visuospatial reasoning [30–32]. The three-dimensional puzzles were built into
a virtual editor (Cubism VR) that could be implemented within physical geometric puzzle
pieces constructed from solid wood building blocks (see Figure 2). Regarding the difficulty
level, it increased with the number of components, required movements, rotations, and
complexity of the target shape. Therefore, easy puzzles were flat with fewer pieces and
spread out with individual piece silhouettes that could be identified as a jigsaw, whereas
more challenging puzzles included pyramids, squares, and other compact shapes with
more folds and more pieces without a clue of how the pieces needed to be placed in the
larger area.
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Figure 2. Geometric puzzles presented in the real world, in virtual reality, and on computer screen.

Regarding the geometric puzzle, we used 3D puzzles built into a virtual editor that
could be performed in solid wood pieces. The puzzle task required the participants to
assemble the blocks into predefined geometric shapes, testing the participants’ spatial
thinking skills. The participants picked up the puzzle pieces and put them together to form
a predefined shape, which appeared as a transparent template. The puzzle pieces were
floated in front of the participants so they could pick them up with the controllers, view
them from all sides, and freely place them in a template space to fit the blocks until every
space was covered. At the difficult level, it increased the number of components, folds, the
size, and the complexity of the target shape. During each puzzle, the participants were
presented with pieces of the geometry puzzle and asked to build a geometric form. Then,
the participants solved the geometry challenges.

By ending each puzzle, the participants were asked about the effort required during
the task. After finishing the first phase of the session, the participants solved the same kind
of geometry puzzles but in a different medium (VR, CS, or RW environment) in the second
and third phases of the session (Figure 3).
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Figure 3. The visuospatial protocol was a three-phase session that utilized virtual reality, com-
puter screens, and real-world scenarios in counterbalanced order across participants to solve
geometry puzzles.

2.6. Experimental Setup

The task was performed in the Neuroergonomics and Neuroengineering for Brain
Health and Performance Research Laboratory of the School of Biomedical Engineering,
Science and Health Systems at Drexel University. Each subject participated in the task
individually in a session lasting approximately 60 min. We used a camera to record
the computer screen and the solid puzzles on the table. The participants were aware
that they were being recorded. We removed any identifiable information from the video
or transcriptions.

After receiving the information, the participants were allowed to practice the task
before starting the actual study session. The practice required all the shape manipulation
without problem-solving since each piece’s target location was identified. An fNIRS
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headband sensor pad was placed on the participants’ foreheads to continuously track
brain hemodynamics related to cognitive function. The participants were also fitted with
a VR headset for the virtual reality task over the sensor. Before the session, we asked the
participants about their background information, such as their video game experience, age,
and gender. Then, we explained the geometry puzzle task and procedure. During the
experiment, we used a camera directed at the puzzles (presented by a computer screen
or solid puzzle on the table) to record the problem-solving process and analyze each
participant’s behavior.

After setup, the participants were instructed and familiarized themselves with the
puzzles. The participants were asked to conduct several shape manipulations without
needing problem-solving to accustom themselves to the experiment settings. Once the
participants felt comfortable, we started the experimental session (VR, RW, or CS task)
and monitored the brain with an fNIRS device. We kept the task order balanced. The
participants were given geometry pieces during each puzzle and asked to build a specific
geometric form (Figure 1).

The participants were given three minutes to solve one “easy” puzzle and six more
minutes to solve one “difficult” puzzle. By concluding each puzzle, the subjects were asked
to answer a short self-report survey regarding their performance and mental effort. The
survey consisted of three items using a 0–10 Likert scale to evaluate subjective cognitive
effort after each puzzle (How difficult was the last game? How did you perform in the
last game? How much mental effort did you apply to reach that performance in the last
game?). The participants were given 30 s to respond to all the questions. The order of the
puzzles was one easy puzzle followed by one difficult puzzle until completing four puzzles
in each phase of the session. By ending the first part of the session, the participants started
the second and third phases of the session following the same procedure but in a different
setup (CS, RW, or VR environment) until they completed the three phases of the session.
Each phase had two easy and two difficult puzzles, resulting in twelve challenges during
the session.

2.7. Data Analysis

The raw light intensity signals were processed using a lowpass finite impulse response
(FIR) filter with a cutoff of 0.1 Hz to attenuate the physiological artifacts and high-frequency,
respiratory, and cardiac noises [57,58]. Then, we used the sliding-window motion artifact
rejection (SMAR) algorithm to remove motion artifacts and potential saturations [59]. Next,
the fNIRS data for each block were extracted using time synchronization markers for the
start and end of the tasks during the experiment. Then, the modified Beer–Lambert law
(MBLL) with a local baseline at the beginning of each task period was applied to convert
the optical signals of each wavelength (760 and 850 nm) to changes in the concentration
of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR), as well as a
summation of the two, resulting in total hemoglobin (HbT) and the difference in hemoglobin
(Oxy) as biomarkers. All biomarker concentration changes for each of the 16 optodes during
each condition block were calculated separately from the pre-processed light intensity data
via the MBLL for each block. For each condition block, the hemodynamic response of each
optode was averaged over time, and the final output of each optode was the average of the
biomarker. The false detection rate (FDR) was applied to control for type I errors [60,61],
and we rejected the null hypotheses for FDR q < 0.05 across the optodes.

The PFC activity differences, behavioral outcomes, and self-assessment survey were
compared statistically using linear mixed-effects models with repeated measures. We
measured PFC activity by averaging the HbO levels. The performance was evaluated based
on accuracy and the time that the participants spent solving the puzzle. For behavioral
measurements, we considered the number of actions, rotations, mistakes, and give-ups.
The model fixed terms were Medium + Difficulty + Medium*Difficulty, with a random
subject term. Medium refers to the task presentation environment, including the virtual
reality (VR), computer screen (CS), and real-world (RW) tasks. Difficulty levels included
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easy and hard. Post hoc comparisons were performed for all pairs of factor levels, and
multiple comparisons were corrected with the Bonferroni method. All figures used the
standard error of the mean (SEM).

A comprehensive metric was derived through the process of conducting the efficiency
analysis to establish a correlation between cognitive effort and achievement results [62].
This study described the outcome by the changes in the time spent to solve the puzzles,
while mental effort was assessed based on the changes in fNIRS-measured biomarkers.
Effort (average of the biomarker; HbO) and behavioral (task performance score based
on the time participants spent solving the puzzle) metrics were converted into Z-scored
measurements, and then efficiency was computed using the distance of the point from the
zero-efficiency line (i.e., where performance = effort) and assessed as dependent measure-
ments in statistical tests [51]. Therefore, we used neural efficiency as a metric to compare
neural activity performance.

3. Results
3.1. Self-Assessment Survey

Within the survey, three distinct items (as shown in Figure 4) were employed to assess
the participants’ perceptions of the difficulty level, performance, and mental effort required
for each puzzle. These assessments were conducted utilizing a Likert scale, wherein a score
of 0 indicated “extremely difficult”, “extremely poor”, and “extremely low”, while a score
of 10 signified “extremely easy”, “extremely well”, and “extremely high”, respectively. The
linear mixed-effect model revealed a significant effect on the participants’ perception of
difficulty [F(1, 325) = 27.661, p < 0.001] and medium [F(2, 325) = 3.378, p < 0.05], indicating
that the participants could differentiate between easy and difficult tasks across the different
conditions. There was no significant interaction between medium and task difficulty.
In addition, the perceived difficulty in VR significantly differed from that in the RW
(Bonferroni’s post hoc test, t(325) = −2.47, p < 0.05, Figure 4A). The perceived performance
in VR significantly differed from that in the RW (Bonferroni’s post hoc test, t(325) = 4.24,
p < 0.001) and CS (Bonferroni’s post hoc test, t(325) = 4.31, p < 0.001 in all cases, Figure 4B),
and perceived effort in VR significantly differed from that in the CS (Bonferroni’s post hoc
test, t(325) = −3.73, p < 0.001, Figure 4C) and RW (Bonferroni’s post hoc test, t(325) = −3.50,
p < 0.01, Figure 4C). The results indicate that the participants believed that solving problems
in the RW was more difficult than in VR. The survey also suggests that the performance
perceived by the participants when solving the geometric puzzles in VR was better and
required less mental effort compared to the other mediums. There was also a significant
effect on the participants’ perception of their effort in terms of difficulty [F(1, 325) = 16.861,
p = 0.001] and medium [F(2, 325) = 8.759, p < 0.001], indicating that the participants could
differentiate the amount of effort required between easy and difficult tasks across the
different mediums. There was no main effect of the interaction between medium and task
difficulty on perceived effort. Finally, there was a difference in the perceived performance
in terms of edium [F(2, 325) = 12.2003, p < 0.001], but no main effect in terms of difficulty and
their interaction.
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3.2. Performance and Behavioral Measures

The performance was evaluated based on the time spent solving the puzzle and
accuracy. The linear mixed-effect model using medium (VR, CS, and RW) as fixed fac-
tors revealed a significant effect of medium on the time required to solve the puzzles
[F(2, 58) = 25.4, p < 0.001] and accuracy [F(2, 58) = 15.2, p < 0.001]. In addition, the perfor-
mance in VR significantly differed from that in the CS (time spent: Bonferroni’s post hoc
test, t(58) = −6.76, p < 0.001, Figure 5A; accuracy: Bonferroni’s post hoc test, t(58) = 5.31,
p < 0.001, Figure 5B) and RW (time spent: Bonferroni’s post hoc test, t(58) = −5.31, p < 0.001,
Figure 5A; accuracy: Bonferroni’s post hoc test, t(58) = 3.95, p < 0.001, Figure 5B), indicating
that the participants could solve more geometry tasks and solve such puzzles faster in VR
than in the other mediums.
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According to the linear mixed-effect model, there was a significant effect of difficulty
on the number of actions [F(1, 325) = 62.16, p < 0.001], number of rotations [F(1, 354) = 52.38,
p < 0.001], number of mistakes [F(1, 325) = 60.50, p < 0.001], and number of give-ups
[F(1, 325) = 67.57, p < 0.001]. The linear mixed-effect model revealed a significant effect of
medium on the number of actions [F(2, 325) = 28.39, p < 0.001], number of
rotations [F(2, 354) = 47.18, p < 0.001], number of mistakes [F(2, 325) = 30.45, p < 0.001],
and number of give-ups [F(2, 325) = 21.14, p < 0.001]. There was also a main interac-
tion effect between medium and task difficulty on the number of actions [F(2, 325) = 4.89,
p < 0.01], number of rotations [F(2, 354) = 6.18, p < 0.01], number of mistakes [F(2, 325) = 6.16,
p < 0.01], and number of give up [F(2, 325) = 8.91, p < 0.001]. In addition, VR significantly
differed from the CS (Bonferroni’s post hoc test, t(325) = 3.53, p < 0.001 in the number of ac-
tions; t(325) = 3.03, p < 0.01 in the number of rotations; t(325) = 3.45, p < 0.01 in the number of
give-ups; and t(325) = 2.84, p < 0.05 in the number of mistakes, Figure 6A–D) and RW (Bon-
ferroni’s post hoc test, t(325) = −4.00, p < 0.001 in the number of actions; t(325) = −6.48,
p < 0.001 in the number of rotations; t(325) = −3.05, p < 0.01 in the number of give-
ups; t(325) = −4.88, p < 0.001 in the number of mistakes, Figure 6A–D). Finally, the RW
task significantly differed from the CS task (Bonferroni’s post hoc test, t(325) = −7.53,
p < 0.001 in the number of actions; t(325) = −9.51, p < 0.001 in number of rotations;
t(325) = −6.50, p < 0.001 in the number of give-ups; and t(325) = −7.71, p < 0.001 in number of
mistakes, Figure 6A–D).
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3.3. fNIRS Measures

A significant difference in the main factor of difficulty was found only in the right
medial PFC in optode 11 HbO [F(1, 297.5) = 9.05, p < 0.01] that survived the FDR correction
(Figure 7). The linear mixed-effect model revealed a significant effect of medium in the left
dorsolateral PFC in optode 3 [F(2, 310.2) = 4.3002, p < 0.05] and in the right medial prefrontal
cortex in optode 9 [F(2, 318.6) = 6.0004, p < 0.01] and optode 11 [F(2, 299.1) = 4.791, p < 0.01],
all FDR-corrected. In addition, these optodes, i.e., 3, 9, and 11, had post hoc significant
differences between the CS and RW (p < 0.01, Figure 8).
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3.4. Neural Efficiency Measures

The results in terms of neural efficiency (defined as combined neural activity per-
formance, as shown in [51]) concerning the difficulty level of the puzzles had significant
differences across all the PFC regions evaluated, including optode 1 [F(1, 260.5) = 47.07,
p < 0.001], optode 2 [F(1, 319.4) = 65.61, p < 0.001], optode 3 [F(1, 310.1) = 56.4, p < 0.001],
optode 4 [F(1, 291.6) = 65.09, p < 0.001], optode 5 [F(1, 307.5) = 68.931, p < 0.001], optode
6 [F(1, 274.7) = 52.78, p < 0.001], optode 7 [F(1, 303.7) = 72.24, p < 0.001], optode
8 [F(1, 278) = 53.63, p < 0.001], optode 9 [F(1, 318.8) = 76.39, p < 0.001], optode 10 [F(1, 309.6) = 49.82,
p < 0.001], optode 11 [F(1, 297.4) = 82.88, p < 0.001], optode 12 [F(1, 301.1) = 52.68, p < 0.001],
optode 13 [F(1, 304.9) = 62.21, p < 0.001], optode 14 [F(1, 312.5) = 61.46, p < 0.001], optode
15 [F(1, 266.8) = 41.71, p < 0.001], and optode 16 [F(1, 317.4) = 55.95, p < 0.001], as shown in the
Figure 9. As expected, the participants solving the easy puzzles showed a higher neural
efficiency in PFC activity compared to those solving the difficult geometric puzzles.

The results in terms of neural efficiency regarding medium had significant differ-
ences across the PFC regions, including optode 1 [F(2, 268.5) = 3.35, p < 0.05], optode
3 [F(2, 310.1) = 3.54, p < 0.05], optode 5 [F(2, 311) = 4.106, p < 0.05], optode 7 [F(2, 304.5) = 5.107,
p < 0.01], optode 9 [F(2, 318.8) = 4.55, p < 0.05], optode 11 [F(2, 299) = 3.26, p < 0.05], optode
13 [F(2, 308.5) = 3.52, p < 0.05], and optode 16 [F(2, 317.6) = 3.34, p < 0.05]. Post hoc analysis
showed significant differences between the VR and RW settings in optodes 7 (p < 0.01), 3, 5,
9, 11, and 13 (p < 0.05) and between the VR and CS settings in optodes 1 and 16 (p < 0.05),
as depicted in Figure 10. There was also a main effect of the interaction between medium
and task difficulty in optode 10 [F(2, 309.4) = 4.95, p < 0.01] and optode 11 [F(2, 297.7) = 4.44,
p < 0.05], which were in the more medial brain area of the right PFC. The results indicate
that the participants the solving puzzles in the VR settings showed a higher neural effi-
ciency in terms of PFC activity compared to those solving the puzzles in the other mediums.
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4. Discussion

In this study, we deployed neuroergonomics techniques to elucidate the neural under-
pinnings of cognitive effort in visuospatial reasoning. To our knowledge, this is the first
study to compare brain activity and behavioral performance in immersive virtual reality,
physical reality, and a typical computer-screen-based presentation of the same task. This
comparison leveraged the same visuospatial tasks and geometric puzzles performed across
differing mediums, offering a new lens through which we evaluated the efficacy of VR tech-
nology as an empirically grounded instrument for enhancing spatial abilities. By capturing
the nuances of human–computer interaction with these tasks in each environment, we offer
substantial evidence for the potential of VR in cognitive training paradigms, paving the
way for future educational methodologies.

In the study protocol, we introduced easy and difficult task conditions for each
medium. As expected, we observed a significant difference in perceived difficulty be-
tween solving the easy and difficult geometry puzzles in the self-assessment survey results,
indicating the participants’ ability to differentiate between easy and difficult tasks across
the conditions. Such a difference seemed to be clearer in the RW settings in comparison to
the VR settings. As expected, fNIRS-based prefrontal brain activity showed a significant
difference in the difficulty level in the right medial PFC activity, suggesting that difficult
puzzles require more mental effort. This is consistent with a large number of past neu-
roimaging studies that have indicated that the hemodynamic response in the PFC is related
to mental workload in visuospatial task performance [27,32,47,63]. For instance, an fNIRS
study showed that subjects in a flight simulation experiment demonstrated heightened
hemodynamic activity linked to workload within the anterior PFC area [39], which closely
resembled the findings of our neural measures. Another neuroimaging investigation re-
vealed that participants with experience in the Warship Commander Task had relatively
lower PFC oxygenation (e.g., less neural activity) at low-to-moderate levels of task load,
followed by increased PFC oxygenation during high task loads [64]. Likewise, our fNIRS
measures results also indicate that the participants solving the easy puzzles showed a
higher neural efficiency in terms of PFC activity compared to those solving the difficult
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geometric puzzles. These findings show that the level of difficulty we established for each
puzzle was in line with the level of complexity assessed by the participants. Furthermore,
the data on the brain’s prefrontal region activity corroborate the subjective survey data
since the significant difference between hemodynamic activity in the right medial area of
the PFC also suggests more cognitive effort in the difficult visuospatial task.

Regarding the medium comparison, the study’s self-assessment survey results suggest
a significant difference in the participants’ perceived difficulty between problem-solving in
the RW and VR environments. Furthermore, the survey results indicate that the participants
reported a higher level of performance and lower mental effort when solving the geometry
puzzles in VR compared to in the other mediums. This finding is consistent with our
analysis indicating that the employment of VR technology also appears to be a more
efficient and prompter medium for participants to solve geometry puzzles than other
modalities. The time to solve the puzzles in VR was shorter and the accuracy was higher
compared to in the CS and RW environments. A similar study used EEG to measure
cognitive load index via alpha and theta oscillations in the frontal and parietal regions,
showing that cognitive load was higher when participants engaged in a paper-folding task
presented in a 2D projection than in stereoscopic 3D displays [53]. In addition, another
study showed that VR-based 3D mental rotation tests resulted in higher scores and faster
response times than on-screen 2D stimuli [54], suggesting that perceiving objects in 3D can
help alleviate the cognitive challenge of mental rotation tasks. These findings are consistent
with our analyses showing that the neural efficiency of the PFC activity was higher during
solving the geometry puzzles in the VR environment than in the RW settings.

In fact, VR’s characteristics have been considered helpful in several fields of interven-
tion, from applications in psychology [65,66] to medical treatments [67,68]. Following a
similar idea from medical interventions, VR also has the potential to enhance teaching by
immersing students in virtual environments. Nicholson et al. [69] showed the educational
effectiveness of a 3D anatomical model presented in VR. In this randomized controlled
work, students were able to visualize and interact with an inner ear model in contrast
with students without access to VR-based technology. Then, both groups answered an
anatomy quiz, and their performance was compared. The findings showed that the inter-
vention group’s mean score was significantly better than that of the control group [69]. In
addition, many studies have suggested that the hemodynamic activity in the prefrontal
cortex region can serve as a reliable indicator during visuospatial tasks, including flight
simulators [39,47], spatial navigation [31], tangram puzzles [28,32], and mental rotation
tasks [63], which is consistent with our findings on the fNIRS and spatial cognition. VR and
fNIRS form a powerful combination that enhances our understanding of spatial cognition.

The analysis of PFC activity for mental effort is a valuable approach to evaluating the
efficacy of learning materials, which is particularly useful for comparing various instruc-
tional designs [70,71]. Similarly, neural efficiency can also reveal instructional effectiveness
in that high-difficulty task performance with low effort indicates high instructional effi-
ciency, while low-difficulty task performance with high effort suggests low instructional
efficiency [49]. Notably, the neural efficiency measures in the PFC brain region exhibited
regular patterns across the puzzle difficulty levels and all mediums compared in this study.
This implies that VR was the medium that relieved the task load, especially for the more
cognitively demanding geometry puzzles. One crucial facet of VR lies in its capacity to
offer users augmented feedback, referred to as visual cues, through visual, auditory, or
even kinesthetic means that supplement the natural feedback [72–74]. This added infor-
mation provided by VR is essential in the process of acquiring knowledge by offering
supplementary cues that support the user’s comprehension.

The behavioral data aligned with the information gathered from the subjective survey
and fNIRS measurements. For instance, the participants made more actions, rotations,
errors, and withdrawals while trying to solve puzzles in the RW, as it was the most
challenging medium. The participants also spent more time in the RW attempting to solve
the problems, probably leading to a lower neural efficiency. Although interaction is vital
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to the learning process, excessive attempts to solve problems related to a high difficulty
level can exhaust learners and make them give up. This is especially true for beginners. A
study using fNIRS showed that novices had higher oxygenation levels at moderate task
loads, and such levels dropped significantly at higher task loads, along with performance,
indicating disengagement from the task [64]. Our study’s findings suggest that using VR
alleviates the visuospatial task load, probably due to facilitating spatial visualization and
visual cues. In contrast, the CS as a medium for solving geometry puzzles resulted in lesser
interaction between the participants and the task, whereas using the RW led to greater
interaction, particularly in the case of more challenging puzzles. It is possible that VR can
aid in solving geometrical problems due to its ability to provide visual cues. This, in turn,
facilitates the inspection and evaluation of possible solutions for visuospatial problems.

Although the CS setting also employs visual cues to solve the geometry puzzle, the
challenge of accurately perceiving the three-dimensional properties of geometric figures,
such as depth perception, may hinder one’s performance. In addition to depth perception
limitations, viewing 3D pieces on 2D screens might require an extra visuospatial trans-
formation to coordinate the participants’ movements in 2D settings, as demonstrated in
other studies [75,76].

Immersive virtual environments have the ability to simulate real-life activities, which
can motivate learners [77]. In contrast, desktop virtual environments have limited inter-
action, as the visual experience is limited to a 2D screen. The higher level of immersion,
realism, and interaction in VR environments allows for better adaptation to the sensory
needs of learners in real time [78], which is a possible explanation for the better perfor-
mance in the VR than in CS settings. In fact, using VR-based paradigms provides a higher
immersion level than 2D screens, as supported by various studies [79–82]. Interactions
with virtual objects in VR-based settings significantly differ from those in CS settings. For
example, the lack of realistic interaction and low immersion could increase cognitive effort
during training, negatively impacting learning [76,79]. Present desktop-based 3D stimuli
may limit the transferability of newly acquired skills to everyday activities and decrease
user motivation to perform 3D tasks on a 2D screen medium.

Data on mental effort and neural efficiency can help in assessing appropriate stimuli in
learning and intervention activities. Constructivism-based learning theories have suggested
that activities must be challenging to arouse the student’s will to overcome difficulties
and find solutions by building new knowledge throughout the learning process [83–85].
When the task is too difficult, the student may feel unmotivated. On the other hand, if
the task is too easy, the student tends to feel bored [86,87]. An instance of utilizing data
from neurotechnology was showcased through our demonstration of how brain activity
data obtained from fNIRS can be used to evaluate how visuospatial tasks require cognitive
effort in distinct mediums. Regarding brain imaging data in the educational context,
measuring cognitive effort could be useful in evaluating interventions, the instructional
efficiency of learning materials, and teaching materials to enhance students’ learning
experiences [70,71]. By combining biomarkers of workload with behavioral measures, we
can make better decisions about how to optimize instructional strategies and improve
students’ learning experiences.

VR could be an educational tool to assist students struggling to learn challenging
topics, such as those with higher levels of mathematics anxiety who may feel that the
anticipation of math is painful [88]. The challenge for instructional designers is that mean-
ingful learning can require heavy cognitive processing, but learners’ cognitive resources
are limited [89]. Thus, multimedia instruction should minimize unnecessary cognitive
load [89,90]. Considering our findings on VR, it is relevant for teachers and instructors to
recognize how the proposed activities can interfere with students’ mental effort during
learning and problem-solving. VR offers the opportunity for an interactive learning expe-
rience that engages students and helps them understand the concepts they are studying.
Educational practice design is essential to ensure that students are not just passively con-
suming VR content as entertainment. In addition, the technology provides data that can
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map a student’s performance, enabling teachers to identify areas for improvement and
provide personalized instruction guided by objective information.

In light of this discussion, our study suggests that applying the learning activities with
the tools of neurosciences could support teaching and learning by applying neurotechnol-
ogy to unravel students’ mental effort during educational assignments, including geometric
domains and visuospatial tasks. Such methods could help evaluate which visuospatial
training program would benefit students in terms of developing spatial cognition.

Brain data can be an adjunct in assessing learning and whether an academic activity
has an adequate load of difficulty and can even adapt the training with that information for
optimal outcomes. For example, a recent study compared learners who received training
in flight simulators that were adapted based on their behavioral performance and fNIRS
measures combined (called the neuroadaptive group) with those who received traditional
training. During the visuospatial task, the neuroadaptive group showed greater efficiency,
improved performance, and consistent brain activity patterns of hemodynamic-derived
workload in the PFC. The results of this study suggest that personalized neuroadaptive
training with fNIRS can enhance learning [39]. In addition to cognitive workload, emo-
tional arousal has been studied with immersive VR with EEG recordings [91,92] and can
provide an affective state during VR use for future learning settings. Additionally, VR
programs can provide a quantitative measure of session outcomes, individualize training
programs, and alter the progression of a training session based on the user’s personal
performance [93]. In light of this, VR and fNIRS could be helpful for developing effective
interventions. Notably, fNIRS measurements have a lower spatial resolution when com-
pared to fMRI and are limited to a depth of a few centimeters [94]. However, registering
to anatomical landmarks and using normalized atlases can improve the inter-participant
reliability of fNIRS measures [95]. In addition, many studies have suggested that the hemo-
dynamic activity in the prefrontal cortex region can serve as a reliable indicator during
visuospatial tasks, including flight simulators [39,47], spatial navigation [31], tangram
puzzles [28,32], and mental rotation tasks [63], which is consistent with our findings on
the fNIRS and spatial cognition. VR and fNIRS form a powerful combination that enhances
our understanding of spatial cognition.

Our findings suggest that VR applications can facilitate mental imagery by inducing
optimal instructions or visual cues for mental imagery or rotations, which may reduce
cognitive effort during spatial reasoning. It should be noted that our results do not suggest
that performing visuospatial tasks in RW or CS settings is insufficient for developing spatial
cognition. This technique is still valid and can be utilized to elevate the difficulty level of the
tasks, particularly for experts or individuals who can solve puzzles without visual aids. A
potential application of our findings around developing visuospatial skills is that VR would
be a helpful tool to assist in spatial cognition training and spatially introducing geometry
puzzles to beginners. In addition, it would be possible to progressively increase the task’s
challenge level by using RW puzzles as training progresses after the person demonstrates
mastery in VR problem-solving. This approach would be a method to maintain a level of
progressive challenge throughout spatial cognition training. Assessing brain activity in
real-world scenarios holds great significance in the field of neuroergonomics [27,45]. Neu-
roergonomic approaches provide perspectives for enhancing the efficacy and configuration
of interrelations between humans and systems focusing on everyday life situations [96–98].
Investigations into assessing cognitive workload serve as a driving force behind research
on neuroergonomic professional training in critical settings [27], such as surgeons operating
in a VR environment (see [99,100] for review), pilots, and air traffic controllers [39,101].
Similarly, we applied the neuroergonomics method to provide insights into the relationship
between brain function and behavioral outcomes. Developing systems that adapt user
interfaces or interventions based on the continuous display of the users’ mental states via
neurofeedback techniques could be facilitated through further investigations [26,29]. Also,
it is possible to measure the brain data of patients using VR as a rehabilitation tool [102–105].
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As a limitation, this study included only one session. It would be interesting to con-
duct an experiment investigating the training effect on mental effort and performance. In
order to fully understand the potential benefits of incorporating VR and spatial cognition
into education, conducting a study with a group of students is crucial. Through a longitu-
dinal study, we could gain insight into the adaptation over time. Furthermore, the study
participants included a small sample of healthy adults. In order to enhance the conclu-
siveness and generalizability of the findings, further investigations should incorporate
a larger sample size and extend the exploration to a broader population. Future studies
could apply the methodologies described here to investigate the impact of the medium
in pediatric populations. It is also important to monitor the development of the student’s
ability to solve geometric problems during their training sessions, both with and without
VR. This would allow us to better understand any changes in the cortical regions activated
during visuospatial tests. Furthermore, we can evaluate the effectiveness of the VR training
program across other domains, such as MRT and mathematical problem-solving, and could
potentially offer this training to students who may be struggling with STEM subjects to
assess its impact on academic performance. Finally, the main goal of this study was to
compare brain activity and behavioral performance in immersive virtual reality, physical
reality, and a typical computer screen-based presentation of the same task. Further studies
should investigate the relationship between gender, age, or game familiarity with fNIRS
data, performance, or a self-report questionnaire. These are all vital questions that warrant
further exploration in future research.

5. Conclusions

To our knowledge, this neuroergonomic study is the first of its kind to compare sub-
jective effort, neural activity, and performance in visuospatial tasks across three different
mediums: VR, computer screen, and the physical real world. The insights derived from this
research shed light on the impact of different task visualization technologies on cognitive
load and technology usability, potentially influencing the development of visuospatial skills.
Our findings not only contribute to the understanding of the effects of different mediums
but also unveil the promising potential of fNIRS in advancing methodologies within VR
applications and science-based tools for visuospatial skill development. The implications
of our research suggest the opportunity to enhance visuospatial training programs through
immersive virtual environments. This study reveals that VR is not only a more effective
platform for engaging with geometry puzzles but also enhances precision compared to
traditional computer screens and real-world presentations. The innovative use of fNIRS
to monitor brain activity indicates that the prefrontal cortex operates with greater neural
efficiency during VR-mediated visuospatial tasks, emphasizing VR’s ability to streamline
cognitive processing and enhance mental imagery. These observations collectively sug-
gest the adoption of VR technologies as a useful tool in the realm of cognitive training,
particularly for tasks requiring spatial reasoning.
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