
Citation: Liu, Y.; Song, Y.; Duan, F.;

Liu, Z. Suppression of Railway

Catenary Galloping Based on

Structural Parameters’ Optimization.

Sensors 2024, 24, 976. https://

doi.org/10.3390/s24030976

Academic Editor: Enrico Meli

Received: 15 November 2023

Revised: 22 January 2024

Accepted: 29 January 2024

Published: 2 February 2024

Corrected: 28 February 2024

Correction Statement: This article

has been republished with a minor

change. The change does not affect

the scientific content of the article and

further details are available within the

backmatter of the website version of

this article.

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Suppression of Railway Catenary Galloping Based on Structural
Parameters’ Optimization
Yuhui Liu 1,2, Yang Song 1,3,4,* , Fuchuan Duan 1 and Zhigang Liu 1

1 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
liuyuhui0715@163.com (Y.L.); duanfc_cd@outlook.com (F.D.); liuzg_cd@126.com (Z.L.)

2 China State Railway Group Company, Ltd., Beijing 100089, China
3 State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
4 SWJTU-Leeds Joint School, Southwest Jiaotong University, Chengdu 610031, China
* Correspondence: y.song_ac@hotmail.com

Abstract: Railway catenary galloping, induced by aerodynamic instability, poses a significant threat
by disrupting the electric current connection through sliding contact with the contact wire. This
disruption leads to prolonged rail service interruptions and damage to the catenary’s suspension
components. This paper delves into the exploration of optimizing the catenary system’s structure to
alleviate galloping responses, addressing crucial parameters such as span length, stagger dropper
distribution, and tension levels. Employing a finite element model, the study conducts simulations
to analyze the dynamic response of catenary galloping, manipulating structural parameters within
specified ranges. To ensure accurate and comprehensive exploration, the Sobol sequence is utilized
to generate low-discrepancy, quasi-random, and super-uniform distribution sequences for the high-
dimensional parameter inputs. Subsequent to the simulation phase, a genetic algorithm based
on neural networks is employed to identify optimal parameter settings for suppressing catenary
galloping, taking into account various constraints. The results gleaned from this investigation
affirm that adjusting structural parameters can effectively diminish the galloping amplitude of
the railway catenary. The most impactful strategy involves augmenting tension and reducing
span length. Moreover, even when tension and span length are fixed, adjusting other parameters
demonstrates efficacy in reducing galloping amplitudes. The adjustment of messenger-wire tension,
dropper distribution, and stagger can achieve a 22.69% reduction in the maximum vertical galloping
amplitude. Notably, maintaining a moderate stagger value and a short steady arm–dropper distance
is recommended to achieve the minimum galloping amplitude. This research contributes valuable
insights into the optimization of railway catenary systems, offering practical solutions to mitigate
galloping-related challenges and enhance overall system reliability.

Keywords: railway; catenary; galloping; structure optimization; genetic algorithm

1. Introduction

In electric railway systems, the catenary structure running alongside the tracks func-
tions as a means to energize the electric train. Power is conveyed to the train by means of
sliding contact with a pantograph affixed to the roof of the vehicle [1]. This arrangement,
depicted in Figure 1, involves the catenary’s contact wire serving a dual role: facilitating
the pantograph’s mechanical pathway and conducting the electrical current. The efficacy
of the current collection predominantly hinges on the mechanical interaction between the
contact wire and the pantograph collectors. However, this interaction quality is normally
challenged by a number of environmental factors; among them, the wind load is one of the
most significant due to the high flexibility and long-span structure of the catenary.
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Figure 1. Schematics of pantograph-catenary system. 
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1.1. Problem Description

The impact of wind load on the catenary can be categorized into two distinct types.
The initial one is referred to as buffeting, a form of forced vibration [2]. Elevated buffeting
amplitude can lead to a decline in the quality of contact between the pantograph and the
catenary [3]. The second type is self-induced vibration triggered by aerodynamic instability,
known as galloping [4]. In comparison to buffeting, galloping boasts significantly greater
vibration amplitude [5]. When galloping occurs, the pantograph’s ability to establish an
electric current connection through sliding contact with the contact line is severely hindered,
resulting in prolonged rail service disruptions. Moreover, galloping negatively impacts the
catenary by causing damage to its components. Examples from China Railway Corporation
depict the substantial galloping of the Luoyang-Xiangyang railway’s OCL in 2011, with an
amplitude reaching 0.5 m, leading to hours of traffic disruption. Another instance occurred
in 2003 on a segment of the Beijing-Guangzhou railway, causing considerable harm to
catenary suspension components, including 31 steady arms, and 211 droppers fractured.
These real-world instances underscore the substantial potential of catenary galloping to
jeopardize the smooth operation of electric railways. Some previous works, like [6,7], have
already pointed out that the galloping is caused by the abnormal profile of the contact wire,
which may lead to aerodynamic instability. Currently, there are no effective measures to
suppress galloping. Traditional measures, like including dampers and the optimization of
contact-wire profiles are not likely to be implemented in catenary systems, as these measures
may hinder the pantographs’ passage. The most economical and straightforward measure
is to optimize the catenary’s structure in the design phase. Therefore, our understanding of
the catenary structural parameters’ effect on galloping behavior should be clarified, and
the optimization of catenary structural parameters deserves further discussion.

1.2. Literature Review

As a significant subdivision within railway dynamics [8,9], the examination of cate-
nary dynamics primarily concentrates on the interaction between the pantograph and
the catenary. This interaction holds substantial significance in diminishing pantograph
arcing, enhancing dynamic performance [10], and ensuring effective current collection
quality [11]. Employing field tests represents the most direct approach to replicating authen-
tic pantograph–catenary interaction behaviors [12,13], though this approach often entails
considerable financial expenses. Alternatively, the numerical model of the catenary proves
to be the most efficient method for exploring catenary dynamics [14], refining structural pa-
rameters [15], and evaluating control strategies [16,17] to enhance interaction performance.
However, its accuracy hinges on validation against measurement data. To encompass
the intricate operational environment of the catenary system, the pantograph–catenary
model aptly integrates vehicle-track perturbations [18]. To incorporate catenary errors
into current collection quality assessments, appropriate models have been developed for
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contact-wire irregularities [19] and geometry deviations [20]. Their impacts on contact force
are quantified through both deterministic [21] and stochastic analyses [22].

Regarding the influence of wind load, the preceding research predominantly focuses
on catenary buffeting. For example, in [23,24], distinct approaches are employed to generate
spatial wind fields from empirical wind speed spectra, subsequently deriving aerodynamic
loads that act upon contact lines and affect the catenary model. An analysis of cate-
nary buffeting responses ensues, alongside the quantification of their influence on the
pantograph–catenary contact force. In [25], an aero-elastic model of the catenary undergoes
wind tunnel testing, where buffeting responses are initially analyzed using experimental
data. In [26], numerical simulations reproduce catenary buffeting, the accuracy of which
is corroborated experimentally. As for catenary galloping, limited studies pertain to this
subject matter. Only Scanlon et al. [6] construct a simplified single-degree-of-freedom
catenary model and endeavor to decrease the likelihood of catenary galloping by applying
mechanical damping. A parallel effort is replicated in [27] to explore the instability range
of a contact line on a bridge. Song et al. [28] undertake a preliminary investigation of
contact-line wear due to aerodynamics using computational fluid dynamics (CFD) and
explore potential galloping amplitudes.

With the development of artificial intelligence, neural network and deep learning
approaches have been widely used in structural response analysis [29–31]. Previous studies
have demonstrated that neural network-based optimization [32–35] and control strate-
gies [36,37] have a promising potential to improve performance.

Through the literature review, it is seen that most of the previous research studies the
pantograph–catenary interaction, which is not relevant to the catenary’s galloping. Only
two works [5,28] investigate the aerodynamic instability and preliminarily simulate the
galloping behavior. However, the optimization of the catenary’s structural parameters to
suppress the galloping has not been undertaken. Thus, it is the motivation of this work to
investigate the potential of structural parameters’ optimization in reducing the galloping
amplitude of the catenary.

1.3. Contribution of This Paper

The prior research underscores the necessity of delving deeper into the aerodynamic
instability and galloping of the contact wire, as it is directly related to the operational safety
of electrified railway systems subjected to hard wind load. The least economic measure is
to make the best use of the potential of the catenary’s structure optimization to suppress
the galloping amplitude. This paper attempts to explore the possibility of optimizing
the catenary’s structure, including the span length, stagger dropper distribution, and
tensions, to reduce the galloping response. Based on a finite element model, the dynamic
response of catenary galloping is simulated. The structural parameters of the catenary
are changed within a specific prescribed range. The Sobol sequence is implemented to
obtain low-discrepancy, quasi-random, and super-uniform distribution sequences for the
high-dimensional input of parameters. Then, a surrogate model is built to describe the
relationship between the maximum wind deviation of the contact wire and the input
parameters. A genetic algorithm is implemented to obtain the optimal parameter settings
for suppressing catenary galloping with different constraints.

2. Modeling of Catenary Galloping

The catenary system is composed of various intricate components, but when con-
sidering its dynamic behaviour subjected to wind load, five key components should be
considered. These components are: the contact wire, the messenger wire, the dropper,
the stitch wire, and the steady arm, as visually depicted in Figure 2. The primary role
of the contact wire is to carry the electrical current intended for collection by the panto-
graph. The messenger wire and droppers serve the purpose of suspending the contact
wire, maintaining it at its designated height. Stitch wires are commonly integrated into
certain catenary systems to mitigate elasticity irregularities. To accurately account for the
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geometric nonlinearity of the messenger, contact, and stitch wires, we employ a nonlinear
finite element approach, which has been widely used within various engineering back-
grounds [38–41]. The finite element method is a better representative in describing the
flexibility of the catenary when simulating the galloping behaviour than multibody dy-
namics. For the modeling of the dropper, we utilize an ANCF (Absolute Nodal Coordinate
Formulation) cable element, characterized by nonlinear stiffness, in order to account for
different operational conditions involving tension and compression. Conversely, the steady
arm is represented using a linear truss element, which possesses the capability to pivot
around the support point. Additionally, we consider the claws on the clamps as lumped
masses within our analysis.
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Figure 2. The catenary model with ANCF beam and cable elements.

In this research, we have chosen to discretize the contact, messenger, and stitch wires
using the ANCF beam element, which provides 12 degrees of freedom (DOFs). For each
individual element, the corresponding vector is defined as follows:

e =

[
xi yi zi

∂xi
∂χ

∂yi
∂χ

∂zi
∂χ

xj yj zj
∂xj

∂χ

∂yj

∂χ

∂zj

∂χ

]T

(1)

in which χ is the local coordinate from 0 to the element length L0. The derivation of
generalized internal elastic force is based on the differentiation of the stain energy, which
can be seen as the summation of the contribution from the bending deformation and axial
strain deformation. The generalized elastic forces can be written as follows:

Qe =
1
2

∫ L0

0
(EA

∂

∂e
ε2

l + EI
∂

∂e
κ2)dχ (2)

in which E is Young’s modulus, A is the section area, I is the moment inertial of the wire, ε l
is the longitudinal strain defined by Green–Lagrange strain tensor, κ is the curvature of the
beam center line, and r is the global position vector. The solution of Equation (2) typically
results in highly nonlinear elastic forces, which have complex mathematical expressions.
However, it is feasible to perform a simplification based on the continuum mechanics
assumption [42], which can help to simplify Equation (2) and yield the secant stiffness
matrix Ke as follows:

Qe = Kee (3)
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The tangent stiffness matrices KT and KL can be obtained by employing the partial
of Equation (3) with e and L0 as follows. Here, KL and ∆L0 are only used in the shape-
finding procedure.

∆F =
∂Q
∂e

∆e +
∂Q
∂L0

∆L0 = KT∆e + KL∆L0 (4)

A parallel derivation can be applied to obtain the tangent stiffness matrices for the
ANCF cable element. It is important to emphasize that when the dropper operates in a slack
condition, the axial stiffness effectively reduces to zero. The aggregation of these stiffness
matrices from individual elements leads to the formulation of the global incremental
equilibrium equation for the entire catenary, as presented below:

∆FG = KG
T ∆UC + KG

L ∆L0 (5)

where we denote the global unbalanced force vector as ∆FG, while KG
T and KG

L represent
the global stiffness matrices corresponding to the incremental nodal displacement vector
∆UC and the incremental unstrained length vector ∆L0, respectively. To meet the specific
design requirements of the catenary [43], we introduce additional constraint conditions
aimed at constraining undesired movements. Upon establishing the initial configuration
of the catenary, the global stiffness matrix KG

T can be assembled to reflect the equilibrium
state of the catenary. This matrix dynamically changes as the catenary deforms in response
to wind loads. When coupled with a coherent mass matrix MG

T and damping matrix CG
T ,

the equation of motion for the catenary, subjected to wind-induced excitation represented
by the vector FG

T (t), can be expressed as follows:

MG
T

..
UC(t) + CG

T
.

UC(t) + KG
T (t)UC(t) = FG

T (t) (6)

Equation (6) can be solved by a time-integration method to obtain the dynamic re-
sponse of the catenary at each time instant t.

As illustrated in Figure 3, the aerodynamic forces acting on the cross-section of the
contact wire can be categorized into two components: lift (FL) and drag (FD). Figure 3
provides a visual representation of a contact wire cross-section exposed to a wind load
represented by U with an angle of attack α0. The drag force FD aligns itself with the
direction of the wind, while the lift force FL acts perpendicular to the wind direction U. To
derive the aerodynamic forces exerted on the contact wire, we establish three coordinate
systems. The first one, denoted yw − o − zw, is determined by the initial angle of attack α0.
The second, labeled ywr − o − zwr, is determined by the effective angle of attack αr = α0 + β,
which accounts for the dynamic wind angle resulting from the contact wire’s motion within
the fluid. The third coordinate system, designated yg − o − zg, is aligned with the global
reference framework of the catenary model. In the ywr − o − zwr coordinate system, the lift
FL and drag FD can be mathematically expressed as follows, as derived from reference [4]:

FDr = 0.5ρairU2
r DLCD(αr) (7a)

FLr = 0.5ρairU2
r DLCL(αr) (7b)

in which CD(αr) and CL(αr) represent the drag and lift coefficients at the actual angle of
attack ar. The relative wind velocity Ur is defined as follows:

Ur =

√
(U − .

xp)
2
+ (

.
xh)

2 (8)

in which
.
xp and

.
xh are the horizontal and vertical velocities of the contact wire, respectively.

The dynamic wind angle β induced by the movement of the contact wire within the fluid
can be expressed by

β = −arctan(
.
xh/(U − .

xp)) (9)
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In yw − o − zw, the drag FD and lift FL can be expressed by

FD = FDr cos(β)− FLr sin(β) (10a)

FL = FDr sin(β) + FLr cos(β) (10b)

Then, the aerodynamic forces used in the finite element model are achieved through a
simple coordinate transformation.

3. Preliminary Analysis of Catenary Galloping Response

To accurately simulate galloping, a crucial initial step involves selecting appropriate
aerodynamic coefficients that align with the conditions conducive to galloping. Based on
insights gleaned from wind tunnel experiments, it becomes evident that aerodynamic insta-
bility is likely to occur at a significant wear level and specific angles of attack. In alignment
with findings from [5], this study opts for a 9◦ angle of attack and a 20% wear of the contact
wire. These defined parameters serve as the foundation for the subsequent numerical
simulation of catenary galloping, aiming to unravel the impact of catenary geometry on
the galloping response. The construction of a 10-span catenary model, representative of a
typical conventional railway, employs the parameters outlined in Table 1. Figure 4 visually
encapsulates the initial configuration of the central four spans of the catenary. The simu-
lation procedure adopted in Figure 5 is used to implement the simulation of the catenary
galloping. A self-programmed code package is used in the simulation, which has been
developed by the authors’ research group over several years [44]. The analytical framework
adopts the track reference frame, with the contact wire positioned at a height of 5.3 m
relative to the track surface. The pivotal mid-span point of the contact wire emerges as the
primary focus for analysis, providing a quantitative measure of the deviation from its initial
configuration. The ensuing investigation unfolds through the lens of vertical and lateral
displacement, as depicted in Figure 6a,b, respectively. These results illuminate the dynamic
interplay between catenary geometry parameters and the ensuing galloping response,
thereby contributing valuable insights to the understanding of this intricate phenomenon.

Table 1. Main parameters of OCL.

OCL Geometrical Property
Encumbrance: 1.6 m; Interval of droppers: 10 m; Span: 50 m; Number of droppers: 5

Material property

Contact line Line density: 1.082 kg/m; Cross-section area: 120 mm2;
Tensile rigidity: 106 N/m; Tension: 15 kN

Messenger line Line density: 1.068 kg/m; Cross-section area: 120 mm2;
Tensile rigidity: 106 N/m; Tension: 15 kN

Dropper Line density: 0.14 kg/m; Tensile rigidity: 105 N/m



Sensors 2024, 24, 976 7 of 18

Sensors 2024, 24, x FOR PEER REVIEW 7 of 19 
 

 

The simulation procedure adopted in Figure 5 is used to implement the simulation of the 

catenary galloping. A self-programmed code package is used in the simulation, which has 

been developed by the authors’ research group over several years [44]. The analytical 

framework adopts the track reference frame, with the contact wire positioned at a height 

of 5.3 m relative to the track surface. The pivotal mid-span point of the contact wire 

emerges as the primary focus for analysis, providing a quantitative measure of the devia-

tion from its initial configuration. The ensuing investigation unfolds through the lens of 

vertical and lateral displacement, as depicted in Figure 6a,b, respectively. These results 

illuminate the dynamic interplay between catenary geometry parameters and the ensuing 

galloping response, thereby contributing valuable insights to the understanding of this 

intricate phenomenon. 

Table 1. Main parameters of OCL. 

OCL Geometrical Property 

Encumbrance: 1.6 m; Interval of droppers: 10 m; Span: 50 m; Number of droppers: 5 

Material property 

Contact line Line density: 1.082 kg/m; Cross-section area: 120 mm2; Tensile rigidity: 106 N/m; Tension: 15 kN 

Messenger line Line density: 1.068 kg/m; Cross-section area: 120 mm2; Tensile rigidity: 106 N/m; Tension: 15 kN 

Dropper Line density: 0.14 kg/m; Tensile rigidity: 105 N/m 

 

Figure 4. Initial configuration of central fours spans of the OCL. 

Z
 [

m
]

Figure 4. Initial configuration of central fours spans of the OCL.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 19 
 

 

No

Formulate aerodynamic force vector 
based on velocities of each node

Initialise the time step t=0

Formulate the stiffness matrix and mass 
matrix of catenary

Solve the equilibrium state of the catenary

Impute simulation parameters

Update global displacement vector 

Update the nodal force vector of 
each element 

Formulate the element stiffness matrix of 
each element of catenary system

Formulate the global stiffness matrix and 
the resistance force vector 

Calculate the global incremental 
displacement vector

Max(               )<toleranceC ( )tU

Yes

Update the time step t = t + Δt

Update the global displacement, velocity 
and acceleration vectors

t < T

No

end

Update the displacement, velocity 
and acceleration vectors

Yes

Save the response vector at time 
step t

 

Figure 5. Flow chart for simulating catenary galloping response. 

 
(a) 

0 20 40 60 80 100 120

Time [s]

5.2

5.25

5.3

5.35

5.4

5.45

5.5

V
er

ti
ca

l 
vi

b
ra

ti
on

 [
m

]

Figure 5. Flow chart for simulating catenary galloping response.
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Figure 6. Time history of contact-wire displacement at the mid-span point in vertical (a) and lateral
(b) displacement.

The findings indicate that, following a 60 s simulation, the galloping response stabilizes.
Notably, the vertical vibration exhibits greater intensity compared to its lateral counterpart.
In the vertical direction, the maximum amplitude surpasses 0.2 m, while the maximum
lateral amplitude peaks at approximately 0.05 m. The most substantial deviation observed
in the contact-wire point from its initial position amounts to 0.248 m. This particular
scenario, assessed with the original parameters, serves as a benchmark for evaluating the
effectiveness of the optimization strategy. It provides a foundational reference point against
which the outcomes of the optimization approach can be measured.

4. Effect of Geometry Parameters on Catenary Galloping Response

Given the intricate nature of the catenary structure, it encompasses various structural
parameters such as span length, tension in both messenger and contact wires, dropper
interval, dropper number, and stagger value. The simulation of catenary galloping, char-
acterized by significant nonlinearity, raises concerns about simulation efficiency when
exploring the impact of these structural parameters on the galloping response. The tremen-
dous computational effort in the finite element simulation makes it impossible to connect
the finite element model with the algorithm directly. A surrogate model has to be developed
to replace the previous finite element model. In our simulation, each case takes about 6 h to
simulate a 60 s galloping response. In the optimization, the algorithm needs to run over ten
thousand cases, which is almost an unachieved target. Therefore, the implementation of an
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efficient sampling method becomes imperative to ensure a more comprehensive coverage
of the high-dimensional sample space. In this study, we employ a well-established Sobol se-
quence to extract samples from specific ranges of structural parameters associated with the
catenary. Six distinct types of structural parameters are considered, namely messenger-wire
tension, contact-wire tension, span length, stagger value, dropper-to-steady-arm interval,
and dropper number. Each variable is subject to constraints defined in accordance with the
design specifications:

10 kN < Messenger-wire tension < 20 kN

10 kN < Contact-wire tension < 20 kN

45 < Span length < 60 m

0.1 < Stagger value < 0.3 m

4 < Dropper number < 8

4.5 m ≤ Steady-arm-to-dropper interval ≤ 7 m

4.1. Sobol Sequence

The biggest challenge in optimizing the catenary structure for reducing the galloping
amplitude is the considerate computational effort. It is almost impossible to connect the
finite element model with the optimization algorithm directly. We have to rely on the
neural network that serves as a surrogate model to replace the finite element model in
the optimization. The neural network should be trained with a good dataset that can
represent the overall characteristics of the finite element model. Here, the Sobol sequence
is a deterministic, low-discrepancy sequence of points used in numerical simulations,
particularly in quasi-Monte Carlo methods for high-dimensional integration and sampling
problems. It is designed to provide a more-even coverage of the sample space compared
to purely random sequences, making it especially useful for reducing variance in Monte
Carlo simulations. The Sobol sequence is constructed using a set of primitive polynomials
and bit-wise operations. The key idea is to generate points that cover the sample space
systematically, ensuring that each dimension is equally represented. The points are typically
generated in the unit hypercube ([0, 1]d), where ‘d’ is the dimensionality of the problem.
The Sobol sequence is defined recursively using the following equations:

For each dimension i, we initialized the Sobol sequence with:

Xi(0) = 0.5 (11)

For each dimension i and for each term j, we computed the Sobol point as follows:

Xi(j) = Xi(j − 1)⊕
(
Vj <<

(
1 − cj

))
(12)

Here:
Xi(j) is the Sobol point for dimension i at term j [45]. ⊕ denotes bitwise XOR (ex-

clusive or), which is a logical operator and has a negation that corresponds to the logical
biconditional. In the case of two inputs, XOR evaluates to true only when the inputs differ
(one is true, and the other is false). When dealing with multiple inputs, XOR is true if and
only if the count of true inputs is odd [46]. Vj is a direction vector obtained from primitive
polynomials. c(j) is the position of the rightmost zero bit in j.

The key to Sobol sequences is the use of these direction vectors and bitwise operations
to ensure that the points are well-distributed across the hypercube. Therefore, Sobol se-
quences are highly effective in reducing the variance of Monte Carlo simulations, especially
for high-dimensional problems, compared to random sequences like pseudo-random num-
bers. They are widely used in applications such as finance, physics, and computer graphics,
where accurate numerical integration and sampling are essential. Using the Sobol sequence
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method with a sampling number of 2000, the samplings of the structural parameter are
presented in Figure 7. It is seen that with the help of the Sobol sequence, each parameter is
evenly distributed within the specific range.
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Figure 7. Sobol sequences for each parameter. (a) messenger-wire tension, (b) contact-wire tension,
(c) span length, (d) stagger value, (e) dropper number and (f) steady arm–dropper interval.

4.2. Simulation Results with Random Parameters

In the numerical simulation, the damping ratio is assumed to be constant as the
measurement data collected in [47] proves that the change of structural parameters does not
significantly affect the damping ratio. Through 2000 numerical simulations, the resulting
galloping responses can be obtained. The displacement on the mid-span point is adopted
as the analysis object. The maximum deviations with respect to the initial position are
adopted as the main indices to evaluate the intensity of the galloping. The maximum
vertical, lateral and the overall deviations of the mid-span point on the contact wire
evaluated with 2000 cases are presented in Figure 8a–c, respectively. It is seen that the
structural parameters’ effect on the galloping response is noticeable. The overall deviation
ranges from 0.2 m to 0.5 m. The worst performance appears in case 341, while the best one
appears in case 1126. The structural parameters for the worst and best cases are presented
as follows:

• Worst Case (Case 341):
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Messenger-wire tension: 11,660.16 N; Contact-wire tension: 10,097.66 N;
Span length: 58.51 m; Stagger value: 0.1762 m;
Dropper number: 6; Steady arm–dropper interval: 5.97.

• Best Case (Case 1126):

Messenger-wire tension: 19,736.33 N; Contact-wire tension: 16,552.73 N;
Span length: 45.19 m; Stagger value: 0.2299 m;
Dropper number: 5; Steady arm–dropper interval: 5.54.
The aforementioned parameters reveal a notable trend: a shorter span length and

higher tension are generally advisable for mitigating galloping. This observation aligns
with our intuitive understanding that a smaller span length and increased rigidity enhance
wind-resistance capabilities. While these factors contribute significantly, there remains
potential for mitigating the adverse effects of galloping through adjustments in other
parameters. In the upcoming section, we delve into this untapped potential through the
application of an optimization method, seeking to further explore avenues for enhancing
the system’s resilience against galloping.

5. Optimization Based on Neural Networks

In this study, a neural network optimization algorithm designed for tackling nonlinear
least-squares problems is employed to optimize the parameters of the catenary, with the
aim of minimizing the contact-wire deviation induced by galloping. The optimization
process unfolds in two key steps. Firstly, a surrogate model for catenary galloping is
established through an artificial neural network, utilizing the database acquired in the
preceding section. Subsequently, a genetic algorithm, as outlined by [48], is integrated into
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the optimization framework. Here, the genetic algorithm can be replaced by any classic
optimization approach, such as particle swarm [49]. The relationship that is expected
to be established is between the maximum galloping displacement (which is an index)
and the main structural parameters of the catenary. The target of this work is not very
challenging as the galloping time history is not taken as the prediction object, as reported
in [50]. This genetic algorithm is geared towards minimizing the sum of squares of a
vector-valued objective function. To accomplish this, a standard Back-Propagation Neural
Network (BPNN) is employed—a multi-layer feed-forward network comprising multiple
neurons. The BPNN algorithm iteratively minimizes the error between the network’s
output and the expected output by adjusting the weights and thresholds. The choice
of a BPNN is motivated by its demonstrated superiority in accuracy and generalization
capabilities compared to traditional multivariate regression functions used in Response
Surface Methodology (RSM). In our investigation, the Bayesian regularization backprop-
agation serves as the training function for the neural network. This function leverages
the Levenberg–Marquardt optimization method to update the weight and bias values of
the network [51]. Throughout the training process, these weights and biases are adjusted
to minimize the network error. The network’s performance is evaluated using the mean
square error (MSE), with a predefined target value set at 4 × 10−7 for MSE. The maximum
number of training epochs is capped at 100, and the learning rate is established at 0.1. The
neural network architecture, as depicted in Figure 9, features 150 BP neurons in the hidden
layer. The selection of the number of neurons in the hidden layer is contingent upon the
problem’s complexity; insufficient nodes may compromise fitting ability, while an excess
may lead to overfitting. In this instance, a deliberate choice of 150 BP neurons is made to
strike a balance between model complexity and effectiveness.
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Figure 9. Neural network architecture.

The neural network architecture is presented in Figure 9. The neural network serves as
a virtual internal objective function, equivalent to the objective function defined to reduce
the maximum wind deviation, while the genetic algorithm is employed to minimize the
output of the neural network. It is noteworthy that the optimum solution obtained by the
genetic algorithm for the neural network is tantamount to the optimum solution for the
objective function, given the equivalence between the neural network and the objective
function. Diverging from conventional optimization procedures [52], the simulation data
aren’t directly utilized as inputs for the genetic algorithm. Instead, an initial set of training
data is simulated for the purpose of training the neural network. Subsequently, the trained
neural network functions as the objective function in the genetic algorithm optimization
process. The optimal solution identified by the genetic algorithm is cross-verified with
numerical simulation data. If convergence criteria are not met, additional data are simulated
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to further train the neural network. This neural network optimization approach has proven
to be more efficient in yielding optimal results compared to traditional genetic algorithms,
as demonstrated in previous studies [53].

Normally, the span length and the contact-wire tension for a catenary are determined
before the optimization is performed. The former depends on the rail network’s commercial
demand, while the latter is determined by the limitations of wave speed and material
property [54]. Here, we present two cases, as follows, based on practical engineering
experience. To save the economic cost of the construction, a long span length is normally
preferred [1]. Therefore, the span length and contact-wire tension are restricted according
to the design data, as follows:

Contact-wire tension: 15 kN; Span length: 50 m.
With the above constraints, other parameters, including the messenger wire, stagger

value, dropper number, and dropper–steady arm interval are taken as the variables that we
sought to optimize. The objective function is to minimize the maximum deviation of the
contact wire against its initial position. Thus, the optimization problem reads:

Objective: min max
(
devc

(
Dsd, Ndd, Dstag, Tmw

))
Design constraints: Tcw = 15,000 N; Ls = 50 m.
Then, the genetic algorithm is implemented to solve the optimization problem. Figure 10

shows the comparison between the original and optimized results. The optimized param-
eters are Tmw = 20, 000 N, Dstag = 0.144 m, Ndd = 5 and Dsd = 4.499 m. The maximum
deviation of the contact-wire mid-span point with respect to its initial position is taken as the
analysis index. It is seen that the reduction in vertical displacement is more significant than
the lateral displacement. In the lateral direction, the maximum deviation is reduced from
0.164 m to 0.151 m—7.93%. In the vertical direction, the maximum deviation is reduced
from 0.216 m to 0.167 m—22.69%. As the increase in the messenger-wire tension always
has a positive effect in suppressing the galloping response, the optimized messenger-wire
tension reaches the upper bound of the specified range. In order to explore the potential of
adjusting other parameters in reducing the galloping response, the messenger-wire tension
is also restricted in the following case.
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Figure 10. Comparison of galloping behaviors between the original and optimized results for case 1.
(a) presents the lateral displacement; (b) presents the vertical displacement.

Contact-wire tension: 15 kN; Messenger-wire tension: 15 kN; Span length: 50 m;
With the above constraints, the optimization problem reads:
Objective: min max

(
devc

(
Dsd, Ndd, Dstag

))
Design constraints: Tcw = 15,000 N; Ls = 50 m; Tmw = 15,000 N.
Then the genetic algorithm is implemented to solve the optimization problem. Figure 11

shows the comparison between the original and optimized results. The optimized param-
eters are Dstag = 0.196 m, Ndd = 5 and Dsd = 4.499 m. It is seen that even though the
messenger-wire and contact-wire tensions are restricted, the adjustment of stagger value,
dropper number, and dropper–steady arm distance still has the potential to reduce wind
deviation. There is no significant reduction in the maximum lateral deviation, while the
maximum vertical deviation is reduced from 0.216 m to 0.195 m—9.72%. The optimized
dropper number and the steady arm–dropper distance are the same as in the previous case.
It is concluded that a shorter steady arm–dropper distance is preferred for reducing the
galloping response.

It is demonstrated from the above analyses that the most important parameters af-
fecting the galloping response are the span length and the tension level. In particular, a
reduction in the span length and an increase in the contact-wire tension can significantly
decrease the galloping amplitude. The two case studies demonstrate that the messenger-
wire tension also has significant effects on suppressing galloping. However, the other two
parameters (stagger and dropper distribution) have very limited effect in reducing the
galloping amplitude, as demonstrated in the second case study. However, the increase
in tension will aggravate the stress in the messenger and contact wires. The reduction in
span length will boost the construction cost. That is why, in the case study, we constrain
the contact-wire tension and span length to avoid the extra cost caused by the optimal
parameter settings. Therefore, the optimization results in the two case studies cannot
significantly increase the cost. Regarding the difficulties in operability, we agree that the
optimal results are a bit academic and are difficult to accurately achieve in reality due to the
construction tolerance. Specifically, it is difficult to achieve an accurate dropper distribution.
The temperature variation can cause a geometry deviation, as reported in [21]. Therefore,
it is difficult to maintain a constant dropper distribution in reality. Apart from structural
optimization, some other measures may be considered for galloping suppression. Firstly,
optimizing the contact-wire profile emerges as a promising approach. The alteration of
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the contact-wire cross-section profile stands out as the primary factor contributing to the
catenary’s galloping. Through the optimization of this profile, we anticipate mitigating
or even preventing the occurrence of catenary galloping. Secondly, introducing damping
components represents another viable strategy. The galloping of the catenary is essentially a
self-excited vibration triggered by negative damping. Incorporating damping components
into the system can counteract this negative damping, thereby enhancing the stability of
the catenary system.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 19 
 

 

 

(b) 

Figure 10. Comparison of galloping behaviors between the original and optimized results for case 

1. (a) presents the lateral displacement; (b) presents the vertical displacement. 

 

(a) 

 

(b) 

Figure 11. Comparison of galloping behaviors between the original and optimized results for case 

2. (a) presents the lateral displacement; (b) presents the vertical displacement. 

It is demonstrated from the above analyses that the most important parameters af-

fecting the galloping response are the span length and the tension level. In particular, a 

reduction in the span length and an increase in the contact-wire tension can significantly 

decrease the galloping amplitude. The two case studies demonstrate that the messenger-

wire tension also has significant effects on suppressing galloping. However, the other two 

V
er

ti
ca

l d
is

p
la

ce
m

en
t [

m
]

L
at

er
al

 d
is

p
la

ce
m

en
t [

m
]

V
er

ti
ca

l d
is

p
la

ce
m

en
t [

m
]

Figure 11. Comparison of galloping behaviors between the original and optimized results for case 2.
(a) presents the lateral displacement; (b) presents the vertical displacement.



Sensors 2024, 24, 976 16 of 18

6. Conclusions

This paper investigates the potential for optimizing the structure of the catenary system
to mitigate galloping responses. The optimization parameters include span length, stagger
dropper distribution, and tension levels. Utilizing a finite element model, the dynamic
response of catenary galloping is simulated, and structural parameters are varied within de-
fined ranges. To generate low-discrepancy, quasi-random, and super-uniform-distribution
sequences for high-dimensional parameter inputs, the Sobol sequence is employed.

Subsequently, a genetic algorithm based on neural networks is applied to identify opti-
mal parameter settings for suppressing catenary galloping, considering various constraints.
The findings suggest that adjusting structural parameters can indeed reduce the galloping
amplitude of the railway catenary. The most effective approach involves increasing tension
and decreasing span length. Even with a fixed tension and span length, adjusting other
parameters proves effective in reducing galloping amplitudes. Specifically, maintaining
a moderate stagger value and a short steady arm–dropper distance is recommended for
achieving the minimum galloping amplitude.

Author Contributions: Conceptualization, F.D. and Z.L.; Methodology, Y.L. and Y.S.; Software, Y.L.;
Formal analysis, Y.L.; Data curation, Y.L.; Writing—original draft, Y.L.; Writing—review & editing,
Y.L., Y.S. and F.D.; Supervision, Y.S.; Funding acquisition, Y.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(5210120217, 52102478), the China Postdoctoral Science Foundation (2022M720108), and the open
project of the State Key Laboratory of Traction Power (No, TPL2211).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Yuhui Liu was employed by the company China State Railway Group
Company, Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Kiessling, F.; Puschmann, R.; Schmieder, A.; Schneider, E. Contact Lines for Electric Railways, 3rd ed.; John Wiley & Sons: Hoboken,

NJ, USA, 2018.
2. Scanlan, R.H. The action of flexible bridges under wind, II: Buffeting theory. J. Sound. Vib. 1978, 60, 201–211. [CrossRef]
3. Pombo, J.; Ambrosio, J. Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed

trains. Comput. Struct. 2013, 124, 88–101. [CrossRef]
4. Novak, M. Galloping oscillations of prismatic structures. ASCE J. Eng. Mech. Div. 1972, 98, 27–46. [CrossRef]
5. Duan, F.; Song, Y.; Gao, S.; Liu, Y.; Chu, W.; Lu, X.; Liu, Z. Study on Aerodynamic Instability and Galloping Response of Rail

Overhead Contact Line Based on Wind Tunnel Tests. IEEE Trans. Veh. Technol. 2023. [CrossRef]
6. Stickland, M.T.; Scanlon, T.J.; Craighead, I.A.; Fernandez, J. An investigation into the mechanical damping characteristics of

catenary contact wires and their. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit. 2001, 217, 63–72. [CrossRef]
7. Scanion, T.J.; Stickland, M.T.; Oldroyd, A.B. An investigation into the attenuation of wind speed by the use of windbreaks in the

vicinity of overhead wires. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit. 2000, 214, 173–182. [CrossRef]
8. Zhang, L.; Wang, Z.; Wang, Q.; Mo, J.; Feng, J.; Wang, K. The effect of wheel polygonal wear on temperature and vibration

characteristics of a high-speed train braking system. Mech. Syst. Signal Process 2023, 186, 109864. [CrossRef]
9. Ye, Y.; Zhu, B.; Huang, P.; Peng, B. OORNet: A deep learning model for on-board condition monitoring and fault diagnosis of

out-of-round wheels of high-speed trains. Measurement 2022, 199, 111268. [CrossRef]
10. Zhang, W.; Zou, D.; Tan, M.; Zhou, N.; Li, R.; Mei, G. Review of pantograph and catenary interaction. Front. Mech. Eng. 2018, 13,

311–322. [CrossRef]
11. Pombo, J.; Antunes, P.; Ambrósio, J. A study on multiple pantograph operations for high-speed catenary contact. In Proceedings

of the Eleventh International Conference on Computational Structures Technology, Dubrovnik, Croatia, 4–7 September 2012;
Topping, B.H.V., Ed.; Civil-Comp Press: Stirlingshire, UK, 2012; Volume 99, p. 139. [CrossRef]

12. Song, Y.; Rønnquist, A.; Jiang, T.; Nåvik, P. Railway pantograph-catenary interaction performance in an overlap section: Modelling,
validation and analysis. J. Sound. Vib. 2023, 548, 117506. [CrossRef]

https://doi.org/10.1016/S0022-460X(78)80029-7
https://doi.org/10.1016/j.compstruc.2013.01.015
https://doi.org/10.1061/JMCEA3.0001575
https://doi.org/10.1109/TVT.2023.3243024
https://doi.org/10.1243/095440903765762814
https://doi.org/10.1243/0954409001531298
https://doi.org/10.1016/j.ymssp.2022.109864
https://doi.org/10.1016/j.measurement.2022.111268
https://doi.org/10.1007/s11465-018-0494-x
https://doi.org/10.4203/ccp.99.139
https://doi.org/10.1016/j.jsv.2022.117506


Sensors 2024, 24, 976 17 of 18

13. Filograno, M.L.; Corredera, P.; González-Herráez, M. Field testing of a low-cost, self-referenced all-fibre polarimetric current
sensor for the monitoring of current in the high-speed railway catenary. Opt. Sens. Detect. II 2012, 8439, 475–482. [CrossRef]

14. Bruni, S.; Bucca, G.; Carnevale, M.; Collina, A.; Facchinetti, A. Pantograph–catenary interaction: Recent achievements and future
research challenges. Int. J. Rail Transp. 2018, 6, 57–82. [CrossRef]

15. Su, K.; Zhang, J.; Zhang, J.; Yan, T.; Mei, G. Optimisation of current collection quality of high-speed pantograph-catenary system
using the combination of artificial neural network and genetic algorithm. Veh. Syst. Dyn. 2022, 61, 260–285. [CrossRef]

16. Pappalardo, C.M.; Patel, M.D.; Tinsley, B.; Shabana, A.A. Contact force control In multibody pantograph/catenary systems. Proc.
Inst. Mech. Eng. Part K J. Multi.-Body Dyn. 2016, 230, 307–328. [CrossRef]

17. Karakose, E.; Gencoglu, M.T. Adaptive fuzzy control approach for dynamic pantograph-catenary interaction. In Proceedings of
the 15th International Conference on MECHATRONICS, Prague, Czech Republic, 5–7 December 2012; pp. 1–5.

18. Song, Y.; Wang, Z.; Liu, Z.; Wang, R. A spatial coupling model to study dynamic performance of pantograph-catenary with
vehicle-track excitation. Mech. Syst. Signal Process 2021, 151, 107336. [CrossRef]

19. Zhang, W.; Mei, G.; Zeng, J. A study of pantograph/catenary system dynamics with influence of presag and irregularity of
contact wire. Veh. Syst. Dyn. 2003, 37, 593–604. [CrossRef]

20. Song, Y.; Duan, F.; Wu, F.; Liu, Z.; Gao, S. Assessment of the Current Collection Quality of Pantograph-Catenary with Contact
Line Height Variability in Electric Railways. IEEE Trans. Transp. Electrif. 2021, 8, 788–798. [CrossRef]

21. Van, O.V.; Massat, J.P.; Laurent, C.; Balmes, E. Introduction of variability into pantograph-catenary dynamic simulations. Veh.
Syst. Dyn. 2014, 52, 1254–1269. [CrossRef]

22. Song, Y.; Liu, Z.; Ronnquist, A.; Navik, P.; Liu, Z. Contact wire irregularity stochastics and effect on high-speed railway
pantograph-catenary interactions. IEEE Trans. Instrum. Meas. 2020, 69, 8196–8206. [CrossRef]

23. Pombo, J.; Ambrosio, J.; Pereira, M.; Rauter, F.; Collina, A.; Facchinetti, A. Influence of the aerodynamic forces on the pantograph-
catenary system for high-speed trains. Veh. Syst. Dyn. 2009, 47, 1327–1347. [CrossRef]

24. Luo, Q.; Mei, G.; Chen, G.; Zhang, W. Study of pantograph-catenary system dynamic in crosswind environments. Veh. Syst.
Dyn. 2023. [CrossRef]

25. Xie, Q.; Zhi, X. Wind tunnel test of an aeroelastic model of a catenary system for a high-speed railway in China. J. Wind. Eng. Ind.
Aerodyn. 2019, 184, 23–33. [CrossRef]

26. Song, Y.; Zhang, M.; Øiseth, O.; Rønnquist, A. Wind deflection analysis of railway catenary under crosswind based on nonlinear
finite element model and wind tunnel test. Mech. Mach. Theory 2022, 168, 104608. [CrossRef]

27. Avila-Sanchez, S.; Lopez-Garcia, O.; Cuerva, A.; Meseguer, J. Assesment of the transverse galloping stability of a railway overhead
located above a railway bridge. Int. J. Mech. Sci. 2017, 131–132, 649–662. [CrossRef]

28. Song, Y.; Liu, Z.; Wang, H.; Zhang, J.; Lu, X.; Duan, F. Analysis of the galloping behaviour of an electrified railway overhead
contact line using the non-linear finite element method. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit. 2018, 232, 2339–2352.
[CrossRef]

29. Zhang, L.; Cheng, L.; Li, H.; Gao, J.; Yu, C.; Domel, R.; Yang, Y.; Tang, S.; Liu, W.K. Hierarchical deep-learning neural networks:
Finite elements and beyond. Comput. Mech. 2021, 67, 207–230. [CrossRef]

30. Bolandi, H.; Li, X.; Salem, T.; Boddeti, V.N.; Lajnef, N. Bridging finite element and deep learning: High-resolution stress
distribution prediction in structural components. Front. Struct. Civil. Eng. 2022, 16, 1365–1377. [CrossRef]

31. Xu, Z.; Wang, H.; Xing, C.; Tao, T.; Mao, J.; Liu, Y. Physics guided wavelet convolutional neural network for wind-induced
vibration modeling with application to structural dynamic reliability analysis. Eng. Struct. 2023, 297, 117027. [CrossRef]

32. Wang, Y.; Yang, B. Optimal PV array reconfiguration under partial shading condition through dynamic leader based collective
intelligence. Prot. Control. Mod. Power Syst. 2023, 8, 40. [CrossRef]

33. Qiu, Y.; Li, Q.; Ai, Y.; Chen, W.; Benbouzid, M.; Liu, S.; Gao, F. Two-stage distributionally robust optimization-based coordinated
scheduling of integrated energy system with electricity-hydrogen hybrid energy storage. Prot. Control. Mod. Power Syst. 2023,
8, 33. [CrossRef]

34. Wu, F.; Xie, X.; Ye, W. Rail Internal Defect Detection Method Based on Enhanced Network Structure and Module Design Using
Ultrasonic Images. Chin. J. Mech. Eng. 2023, 36, 151. [CrossRef]

35. Zhu, T.; Ding, H.; Wang, C.; Liu, Y.; Xiao, S.; Yang, G.; Yang, B. Parameters Calibration of the GISSMO Failure Model for
SUS301L-MT. Chin. J. Mech. Eng. 2023, 36, 20. [CrossRef]

36. Sun, Y.; Xu, J.; Chen, C.; Hu, W. Reinforcement learning-based optimal tracking control for levitation system of maglev vehicle
with input time delay. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. Available online: https://ieeexplore.ieee.org/abstract/
document/9693414/ (accessed on 17 October 2023). [CrossRef]

37. Sun, Y.; Xu, J.; Lin, G.; Ji, W.; Wang, L. RBF neural network-based supervisor control for maglev vehicles on an elastic track with
network time delay. IEEE Trans. Ind. Inform. 2020, 18, 509–519. Available online: https://ieeexplore.ieee.org/abstract/document/
9229504/ (accessed on 17 October 2023). [CrossRef]

38. Kuang, Y.; Wang, S.; Peng, Z.; Fan, F.; Xie, J. Research and analysis of electrothermally actuated heating rates of smart concrete
beam embedded with Shape Memory Alloy. J. Railw. Sci. Eng. 2023, 20, 1858–1870.

39. GU, Z.; JIANG, R.; LIU, D.; SUN, H. Optimization design of the control arm of CFRP–aluminum foam sandwich structure. Chin.
J. Eng. 2023, 45, 446–453.

https://doi.org/10.1117/12.922794
https://doi.org/10.1080/23248378.2017.1400156
https://doi.org/10.1080/00423114.2022.2045029
https://doi.org/10.1177/1464419315604756
https://doi.org/10.1016/j.ymssp.2020.107336
https://doi.org/10.1080/00423114.2002.11666265
https://doi.org/10.1109/TTE.2021.3090477
https://doi.org/10.1080/00423114.2014.922199
https://doi.org/10.1109/TIM.2020.2987457
https://doi.org/10.1080/00423110802613402
https://doi.org/10.1080/00423114.2023.2199456
https://doi.org/10.1016/j.jweia.2018.11.008
https://doi.org/10.1016/j.mechmachtheory.2021.104608
https://doi.org/10.1016/j.ijmecsci.2017.07.024
https://doi.org/10.1177/0954409718769751
https://doi.org/10.1007/s00466-020-01928-9
https://doi.org/10.1007/s11709-022-0882-5
https://doi.org/10.1016/j.engstruct.2023.117027
https://doi.org/10.1186/s41601-023-00315-9
https://doi.org/10.1186/s41601-023-00308-8
https://doi.org/10.1186/s10033-023-00980-9
https://doi.org/10.1186/s10033-023-00844-2
https://ieeexplore.ieee.org/abstract/document/9693414/
https://ieeexplore.ieee.org/abstract/document/9693414/
https://doi.org/10.1109/TIM.2022.3142059
https://ieeexplore.ieee.org/abstract/document/9229504/
https://ieeexplore.ieee.org/abstract/document/9229504/
https://doi.org/10.1109/TII.2020.3032235


Sensors 2024, 24, 976 18 of 18

40. Zhao, L.; Yyan, Y.; Xing, L.; Bao, Y. Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field.
Chin. J. Eng. 2023, 45, 64–71.

41. Dai, G.; Chen, Y. Research on nonlinear additional force algorithm of continuously welded rails on integral bridges. J. Railw. Sci.
Eng. 2023, 20, 1304–1315.
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