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Abstract: Wireless Sensor Networks (WSNs) have emerged as an efficient solution for numerous
real-time applications, attributable to their compactness, cost-effectiveness, and ease of deployment.
The rapid advancement of 5G technology and mobile edge computing (MEC) in recent years has
catalyzed the transition towards large-scale deployment of WSN devices. However, the resulting
data proliferation and the dynamics of communication environments introduce new challenges for
WSN communication: (1) ensuring robust communication in adverse environments and (2) effectively
alleviating bandwidth pressure from massive data transmission. In response to the aforementioned
challenges, this paper proposes a semantic communication solution. Specifically, considering the
limited computational and storage resources of WSN devices, we propose a flexible Attention-based
Adaptive Coding (AAC) module. This module integrates window and channel attention mechanisms,
dynamically adjusts semantic information in response to the current channel state, and facilitates
adaptation of a single model across various Signal-to-Noise Ratio (SNR) environments. Furthermore,
to validate the effectiveness of this approach, the paper introduces an end-to-end Joint Source
Channel Coding (JSCC) scheme for image semantic communication, employing the AAC module.
Experimental results demonstrate that the proposed scheme surpasses existing deep JSCC schemes
across datasets of varying resolutions; furthermore, they validate the efficacy of the proposed AAC
module, which is capable of dynamically adjusting critical information according to the current
channel state. This enables the model to be trained over a range of SNRs and obtain better results.

Keywords: mobile edge computing; wireless sensor networks; semantic communications; attention
mechanism; joint source channel coding; deep neural network

1. Introduction

Wireless Sensor Networks (WSNs) [1,2] have emerged as highly effective solutions for a
multitude of real-time applications owing to their compactness, cost-effectiveness, and ease
of deployment. In recent years, the rapid development of 5G technology and mobile edge
computing (MEC) [3,4] has facilitated the gradual transition of WSN devices towards large-
scale deployment [5]. For instance, the deployment of numerous sensor nodes in urban
areas enables real-time monitoring of environmental conditions, thereby offering crucial
insights for urban planning and management. However, the resulting proliferation of data
and the complexity of evolving communication environments introduce new challenges
for WSN communications: (1) ensuring robust communication in poor Signal-to-Noise
Ratio (SNR) conditions; (2) effectively alleviating bandwidth pressure amidst massive data
transmission, particularly in high-density WSN scenarios.

Current WSN communication strategies employ traditional separated source channel
coding methods, prioritizing accuracy and high fidelity at the physical layer. This often
necessitates transmitting complete raw data, irrespective of content relevance, resulting in
inefficiencies. Furthermore, this conventional approach is susceptible to the “cliff effect”,
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leading to communication failures in challenging conditions. This makes it difficult to fulfill
high-precision task requirements in low SNR environments, a situation exacerbated in
high-density WSNs. Deep Learning (DL)-based semantic communication offers a novel ap-
proach by employing Joint Source Channel Coding (JSCC) through Deep Neural Networks
(DNNs) [6,7], focusing on transmitting semantic information rather than all data, thereby
demonstrating potential in reducing data volume and enhancing communication reliability.

Recent preliminary research in the field of semantic communication has demonstrated
its potential to effectively address the two aforementioned challenges in WSNs. Bourt-
soulatze et al. [8] developed a JSCC scheme utilizing convolutional neural networks for
wireless image semantic communication (ISC) that outperformed advanced separate source
channel coding methods (JPEG+LDPC, JPEG2000+LDPC), particularly in low SNR envi-
ronments. They also discovered that deep JSCC is immune to the “cliff effect”. To mitigate
channel distortion from noise, certain approaches [6,7,9] have adopted generalized divisive
normalization (GDN) and incorporated feedback mechanisms to enhance performance.
However, these methods are limited to training at a fixed SNR and exhibit suboptimal per-
formance in varying SNR conditions. Consequently, ref. [10] introduced a design featuring
a single JSCC-encoder paired with multiple JSCC-decoders, where the decoder selection is
contingent on the channel SNR. This design facilitates optimal model performance across a
spectrum of SNRs, albeit at the expense of significant computational and storage demands,
hindering its large-scale applicability in WSN devices. Therefore, the development of a
single model adaptable to a wide range of SNRs is essential.

The advent of attentional mechanisms, particularly their successful application in
visual tasks, offers a novel direction to tackle the aforementioned challenges. This ap-
proach [11] enhances feature learning in pivotal regions by emulating attention allocation
processes observed in biological vision, concurrently suppressing the interference from
non-essential information. Current research [12–16] indicates that while non-local attention
adaptively adjusts feature representation and enhances model performance, it concurrently
incurs considerable computational overhead. Conversely, the window attention mecha-
nism [17] offers an efficient alternative, applying attention within a confined scope, thereby
diminishing the model’s computational demands. Nevertheless, how to design a single
model that can adapt to a wide range of SNR conditions remains an open research question,
which will be explored in depth in this paper.

In this paper, we aim to address the problem of poor performance of a single model
in semantic communication under different SNR conditions. Specifically, we propose an
Attention-based Adaptive Coding (AAC) module for semantic communication and design a
novel JSCC scheme based on this. The principal contributions of this paper are summarized
as follows:

• We propose a flexible AAC module. Considering the resource-limited nature of WSN
devices, it is able to capture the correlation between spatial neighboring elements
to dynamically weight key local semantic information without sacrificing too many
computational resources and is able to dynamically adjust the model output based on
the current channel state information, which is capable of adapting/training a single
model for a wide range of SNRs.

• We propose a novel JSCC model based on AAC modules and CNNs for ISC. Exper-
imental results show that our model is more robust than the baseline model when
compared to the current state-of-the-art methods, even in the case of channel mismatch.

Figure 1 presents a detailed overview of an ISC system, comprising a transmitter and
a receiver. The transmitter extracts semantic information from the input image using the
semantic encoder. To guarantee the validity of the information, it is forwarded to the chan-
nel encoder prior to transmission. The encoded information is sent via wireless channels
after power normalization, such as additive white Gaussian noise (AWGN) channels or
fading channels to the receiver. Upon receiving the information, the receiver processes it se-
quentially through the channel decoder and the semantic decoder to reconstruct the image.
In this paper, DNNs are employed to collaboratively design a semantic encoder/decoder
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and channel encoder/decoder for the ISC system. Furthermore, the wireless channel is
conceptualized as a non-updatable layer, facilitating end-to-end optimization from the
transmitter to the receiver.

Wireless
Channel

Transmitter

( )

Semantic 
Encoder( )

Channel 
Encoder( )

Channel 
Decoder(

Semantic
Decoder( )

Receiver

Figure 1. System model.

2. System Model

Specifically, the input image of the transmitter is denoted as I ∈ RH×W×C, where
R signifies the set of real numbers, while H, W, and C represent the height, width, and
color channels of the image, respectively. During the transmission stage, I is sequentially
mapped by the semantic encoder S and the channel encoder C into an L-dimensional
complex vector x ∈ CL, where C denotes the set of complex numbers. In this context,
S efficiently extracts semantic information from I, while C dynamically enhances this
information in response to the current channel state (e.g., SNR), mitigating the adverse
effects of the wireless channel. It should be noted that in this paper, we assume both
communicating sides have the knowledge of the wireless channel’s SNR, denoted as µ. The
bandwidth compression ratio, labeled as R, can be calculated as R = L

HWC ∈ (0, 1), where a
smaller R indicates more compression. The above encoding process can be mathematically
expressed as x = C(S(I), µ).

The wireless channel transmits the vector x, resulting in an output vector denoted as
y, i.e.,

y =

{
x + z, for AWGN channel,
hx + z, for fading channel,

(1)

where h ∈ C represents the channel gain, which is assumed to be a circularly symmetric
complex Gaussian random variable with zero mean and unit variance, i.e., h ∼ CN (0, 1),
and z ∼ CN (0, σ2

n) is the complex Gaussian noise with zero mean and variance σ2
n. Based

on (1), µ can be calculated as

µ =

10 log10

(
P
σ2

n

)
, for AWGN channel,

10 log10

(
P|h|2

σ2
n

)
, for fading channel,

(2)

where P is the transmit power of the transmitter. During the receiving stage, the receiver is
equipped with a semantic decoder and a channel decoder, which are labeled as S−1 and
C−1, respectively. Using the knowledge of µ, S−1 and C−1 decode y to a reconstructed
image, denoted as Î ∈ RH×W×C. Such a process can be mathematically expressed as
Î = S−1(C−1(y, µ)).

Based on the above formulations, we define the overall DNNs as N ≜ {S , C, C−1,S−1}.
In this paper, we would like to train N to achieve a JSCC scheme for the ISC system. To
evaluate the performance of the proposed JSCC scheme, we adopt the following two
distortion metrics. The first is the PSNR metric [18] (in dB), defined as

PSNR(I, Î) = log10

(
A2

|| I − Î||22

)
, (3)
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where A is the maximum possible value for a given pixel and ∥ · ∥2 is the l2-norm operator.
The other is the SSIM metric [19], defined as

SSIM(I, Î) =

(
2µIµÎ + v1

µ2
I + µ2

Î
+ v1

)(
2σIσÎ + v2

σ2
I + σ2

Î
+ v2

)
, (4)

where v1 and v2 are coefficients for numeric stability, and µI (resp. µÎ) and σ2
I (resp. σ2

Î
) are

the mean and variance of I (resp. Î), respectively.

3. The Proposed JSCC Scheme

This section is dedicated to the development of the JSCC scheme for the ISC system.
The comprehensive neural network architecture, represented by N , is illustrated in Figure 2.
Initially, the semantic encoder neural network S , along with its corresponding decoder S−1,
is designed to extract and subsequently recover semantic information from the original
image I. Subsequently, the channel encoder C and its decoder C−1 are developed to
mitigate the adverse effects typical of wireless channels. Benchmarking system performance
necessitates the power normalization of encoded data before their transmission through
the wireless channel. Ultimately, the comprehensive neural network N is realized through
the integration of neural networks S , S−1, C, and C−1.
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Figure 2. The neural network structure of the proposed JSCC scheme.

3.1. The Design of S and S−1

For the effective extraction of image semantic information, Convolutional Neural
Networks (CNNs) are utilized in the design of S and S−1. As depicted in Figure 2, S
comprises M Semantic Information Extraction (SIE) layers, denoted as SSIE. Each SSIE layer
encompasses a 2D convolutional layer, a Generalized Division Normalization (GDN) layer,
and an activation function. The local perceptual capabilities of the convolutional layer
enable the efficient extraction and recovery of semantic information such as colors, textures,
shapes, and image contents. The nonlinear manipulation afforded by the GDN layer facili-
tates the extraction of more complex semantic information from the input image, ensuring
spatially adaptive normalization. This aspect is pivotal in reducing spatial redundancy
and more effectively capturing the image’s spatial structural information. The sequential
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layering of the SIE modules effectively extracts the image’s semantic information. The
semantic information output by the semantic encoder, denoted as FM

S , can be represented as

FM
S = SSIEM(F

M−1
S ), (5)

when M = 1, F1
S = SSIE1(I). Analogous to S , S−1 comprises M Semantic Information

Reconstruction (SIR) layers, denoted as S−1
SIR. Each S−1

SIR layer consists of a 2D deconvolution,
an Inverse Generalized Division Normalization (IGDN) layer, and an activation function.
S−1 and S−1

SIR represent the inverse processes of S and SSIE, respectively. In our design, the
configuration of SSIE and S−1

SIR layers is symmetrical. The process of semantic decoding is
formulated as

Fm
S−1 = S−1

SIRm
(Fm+1

S−1 ), m = 1, 2, . . . , M. (6)

Here, Fm
S−1 denotes the output from the m-th Semantic Information Reconstruction (SIR)

layer within S−1, with the output from the final SIR layer being the reconstructed image I.
When m = M, the output FM

S−1 equates to S−1
SIRM

(ŷ).

3.2. The Design of C and C−1

The channel encoder C comprises an AAC block and a 2D convolutional layer (labeled
as Ccnv). Similarly, the channel decoder C−1 comprises an AAC block and a 2D decon-
volution layer (labeled as C−1

cnv). Here, AAC is able to dynamically adjust the semantic
information of the model output (resp. reconstruction) according to the current channel
state to improve the quality of coding (resp. decoding), and Ccnv (resp. C−1

cnv) is used to
adjust the transmitted (resp. received) information according to the bandwidth compres-
sion ratio. The AACs within C and C−1 possess identical structures yet differ in their
parameters. The architectural configuration of the AAC block is depicted in Figure 3a. This
block comprises two components—semantic enhancement and semantic adjustment—both
of which will be elucidated in detail.

WAB

ACC

S
D

M

𝜇

C
o

n
v
2

D

C
o

n
v
2

D

𝐅𝑖𝑛

C
o

n
v
2

D

RB RB

RB RB RB

C
o

n
v
2

D

C
o

n
v
2

D

C
o

n
v
2

D

(a) The structure of AAC module. 

(b) Residual Block. 

𝛼: 1 × 1

𝛽: 1 × 1

𝛾: 1 × 1

Normalization

(c) Attention computing unit. 

𝜉
𝐅

𝒞ACC
RB1

RB 𝐅𝑜𝑢𝑡

ത𝐅

𝐙

𝐘

𝑍𝑖
𝑞
=

𝑊𝑍 σ∀𝑗𝑊𝛾𝑋𝑖
𝑞
𝑒
𝑊𝛼𝑊𝛽𝑋

𝑇𝑋

σ∀𝑗 𝑒
𝑊𝛼𝑊𝛽𝑋

𝑇𝑋
+ 𝑋𝑖

𝑞

𝒞cnv1

𝒞cnv2Semantic enhancement 

Semantic adjustment

𝒞cnv3

𝒞cnv1
RB 𝒞cnv2

RB 𝒞cnv3
RB

Figure 3. AAC module.

Semantic enhancement: The semantic enhancement component consists of a Win-
dow Attention Block (WAB) and multiple Residual Blocks (RBs). In our architecture, the
WAB is initially employed to empower the neural network to prioritize elements crucial
to the current task, achieved by weighting key areas within the input feature map. This
approach allows the neural network to focus its resources on processing specific regions of
the image, like particular textures or edges, in more detail rather than treating the entire
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image uniformly. Such a mechanism enhances feature representation, particularly in scenes
characterized by rich content or varied detail. Subsequently, the RBs assist the neural net-
work in focusing on regions requiring improvement, as they are optimized for addressing
reconstruction discrepancies during training. The detailed process is described below.

First of all, the input information of the AAC block, which is marked as Fin, passes
through three RBs of the same structure, generating statistical information F. As shown in
Figure 3b, each RB consists of three convolutional layers (labeled as CRB

cnv1
, CRB

cnv2
, and CRB

cnv3
),

which help to improve the stability of GDN. The connection of multiple RBs can enhance
the features of the input image to combat channel noise. At the same time, to generate the
weight factor ξ, a WAB, three RBs, and a convolutional layer denoted as Ccnv1 are utilized.
WAB is used to focus on high-contrast regions. Specifically, the feature map of the image
is divided into windows of Q × Q in a non-overlapping way; then, it uses multi-head
attention with a head number of t to compute the attention map in each window separately,
where the attention computation unit is shown in Figure 3c. Suppose Yq

i and Yq
j are the

pixels in the i-th row and j-th column of the q-th window. The i-th row output of the q-th
window, which is labeled as Zq

i , can be formulated as

Zq
i =

Wz ∑∀j WγYq
i eWαWβYTY

∑∀j eWαWβYTY
+ Yq

i , (7)

where Wα and Wβ are cross-channel transforms, and Wγ and Wz are weight matrices. In
order to improve the learning ability of the model, three RBs are used after WAB; then, a
convolutional layer, followed by a Sigmoid function, is used, generating factor ξ ∈ [0, 1].
Finally, by weighting and residual operations, F̂ ∈ RHs×Ws×Cs is obtained, which has clearer
semantic information. Here, Ws, Hs, and Cs denote the semantically enhanced feature map
width, height, and number of feature channels, respectively. The process can be expressed
as F̂ = Fin + ξF.

Semantic adjustment: In order to effectively reduce the detrimental effects of the
channel on the model and to improve the robustness (i.e., communication reliability) of the
model in terms of the SNR over the range, we improve the channel attention mechanism
to be able to dynamically adjust the more attended information based on the channel
state information (i.e., SNR) of the changing wireless channel. Specifically, the sum of
standard deviation and mean SDM(·) is first used to capture the global information within
F̂. Compared with the global average pooling operation, SDM(·) is able to better preserve
information about relevant structures, textures, and edges, which are highly beneficial for
enhancing image details (related to SSIM). For input vector F̂ = [F̂1, . . . , F̂k, . . . , F̂Cs ], the
output of the k-th feature channel (defined as zk) after SDM(·) can be expressed as

zk = SDM(F̂k) =
1

HsWs

Hs

∑
λ=1

Ws

∑
ν=1

F̂λ,ν
k +

√√√√ 1
HsWs

Hs

∑
λ=1

Ws

∑
ν=1

(F̂λ,ν
k − 1

HsWs

Hs

∑
λ=1

Ws

∑
ν=1

F̂λ,ν
k )2. (8)

After that, the obtained global information is connected with µ along the feature
channel dimension, and two convolutional layers (denoted as Ccnv2 and Ccnv3 ) are used to
predict the weighting factors; finally, the adjusted output is obtained by weighting F̂, which
can be expressed as

Fout = F̂Ccnv3(Ccnv2(Concat(z1, . . . , zk, . . . , zCs , µ))). (9)

Here, Concat(·) denotes the concatenation operation, Ccnv2 uses the ReLu activation func-
tion to learn the nonlinear relationship, and Ccnv3 uses the Sigmoid activation function to
ensure that the weight factor is between 0 and 1.
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3.3. The Training Algorithm

We employ mean square error (MSE) to measure the difference between the original
image I and the reconstructed image Î. Therefore, the loss function is given by

L =
1
N

N

∑
i=1

d
(
I, Î
)
. (10)

Here, N is the number of samples, d(I, Î) = 1
n∥I − Î∥2 is the mean squared-error distortion,

and n represents the total number of pixels in the image. Despite the presence of noise
and interference, the entire DNNs N can effectively learn and recover the transmitted
information by minimizing the loss function (10).

Algorithm 1 describes the training process for the neural network N . The first step
involves initializing the neural network parameters for N . Following this, the image
I is input into the semantic encoder S , which produces its semantic information FM

S .
Subsequently, the channel encoder C and the power normalization operation transform
FM

S into x, which will be transmitted through the wireless channel. Upon receiving the
compressed information y from the wireless channel, the channel decoder C−1 outputs the
information ŷ. Based on this, the semantic decoding neural network S−1 reconstructs the
transmitted image Î. Finally, we employ the Adam optimizer [20] to update the parameters
of N .

Algorithm 1 Training Algorithm for N
Input: The original image I and SNR µ.
Output: The neural network N .
1: Initialize the parameters in N .
2: Transmitter:

Perform semantic encoding process: S(I) → FM
S .

Perform channel encoding and power normalization process: C(FM
S , µ) → x.

3: Transmit x over the wireless channel to obtain y in (1).
4: Receiver:

Perform channel decoding process: C−1(y, µ) → ŷ.
Perform semantic decoding process: S−1(ŷ) → Î.

5: Compute the loss function in (10).
6: Train the neural network {S , C, C−1,S−1} using Adam optimizer.

4. Simulation Results

In this section, we will give the specific parameter settings. Following that, we will
assess the performance of the proposed JSCC scheme, as well as representative baselines,
through the examination of simulation results.

4.1. Simulation Settings

N consists of four SIE and four SIR blocks (i.e., M = 4). Table 1 details the structural
parameters of N—input, output, k_size, stride, and Activation, denoted as input dimensions,
output dimensions, convolution kernel sizes, step sizes, and activation functions, respec-
tively. As an additional note, the size of U is determined by the bandwidth compression
ratio calculation [8], and the parameter settings are the same for all RBs in C and C−1.
The proposed JSCC scheme along with two benchmark JSCC schemes [9,21], designated
as CA-Deep-JSCC, Deep-JSCC, and N-Deep-JSCC, respectively, were trained and tested
across varying bandwidth compression ratios ( 1

6 and 1
12 ), employing datasets of different

resolutions (CIFAR-10 [22], ImageNet2012 [23], and Kodak [24]). PSNR and SSIM were
used as evaluation criteria to react to the reconstructed image quality (i.e., communica-
tion reliability). All experiments were conducted on a PC with an Intel Core i7-10700
CPU@2.90 GHz and an NVIDIA RTX A4000 GPU.
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Table 1. The parameters of N .

Module Layer Input Output K_Size Stride Activation

S(S−1)

SSIE1 (S−1
SIR1

) 3(256) 256(3) 9(9) 2(2) PReLU(PReLU)

SSIE2 (S−1
SIR2

) 256(256) 256(256) 5(5) 2(2) PReLU(PReLU)

SSIE3 (S−1
SIR3

) 256(256) 256(256) 5(5) 1(1) PReLU(PReLU)

SSIE4 (S−1
SIR4

) 256(256) 256(256) 5(5) 1(1) PReLU(PReLU)

C(C−1)

Ccnv(C−1
cnv) 256(U ) U (256) 3 1 PReLU(PReLU)

AAC

CRB
cnv1

256 128 1 1 GELU

CRB
cnv2

128 128 3 1 GELU

CRB
cnv3

128 256 1 1 None

Ccnv1 256 256 1 1 Sigmoid

Ccnv2 257 256 1 1 ReLU

Ccnv3 256 256 1 1 Sigmoid

WAB Q = 4, t = 8

4.2. Performance Evaluation

CIFAR-10 Performance Evaluation: We use the CIFAR-10 dataset for training and
testing, which contains 50,000 training images and 10,000 test images, and the image sizes
are all 32 × 32. We set the batch_size to 128; the learning rate to 10−4; and use the Adam
optimizer to train the models with SNRs of 1, 7, and 12, respectively, under bandwidth
compression ratios of 1/6 and 1/12 for the model. Figure 4 shows the PSNR performance
of CA-Deep-JSCC, Deep-JSCC, and N-Deep-JSCC for R = 1

6 and R = 1
12 , where CA-Deep-

JSCC is represented by the solid line and baselines by the dashed line. The red solid line
shows the results of training on SNRs ranging from 0 to 10 intervals of 2. These results
can be summarized as follows. Firstly, the PSNR of all schemes generally increases with
the rising test SNR, attributable to the enhanced image reconstruction quality concurrent
with signal quality improvement. Secondly, across all training instances with identical
SNR and R values, the PSNR of the CA-Deep-JSCC scheme consistently exceeds that of
the two baseline models, notably in the low SNR range. This finding indicates greater
robustness of CA-Deep-JSCC under varied channel conditions. This is attributed to the fact
that the proposed AAC module employs a window focusing mechanism, which enhances
the semantic information that is focused on more. Furthermore, all schemes generally
exhibit higher PSNR values at a compression ratio of R = 1

6 compared to R = 1
12 , implying

that higher compression ratios (or higher bandwidths) facilitate the transmission of more
information through the channel, thereby improving image reconstruction quality. Finally,
when trained within the SNR [0, 10] dB range, the proposed JSCC scheme demonstrates
outstanding performance across all tested SNR levels. The superior performance is ascribed
to the proposed AAC module’s capability to dynamically adjust semantic features in sync
with real-time SNR, enabling CA-Deep-JSCC to be specifically trained within a certain SNR
range, thereby markedly bolstering its robustness across different SNR scenarios.
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Figure 4. Model performance on CIFAR-10. Each curve of Deep-JSCC and N-Deep-JSCC was
trained at a specific SNR. The curves of CA-Deep-JSCC were trained at 1 dB, 7 dB, and 12 dB
with 0–10 intervals of 2 SNR. (a) Reconstruction distortion of Deep-JSCC, N-Deep-JSCC, and CA-
Deep-JSCC on CIFAR-10, R = 1

6 . (b) Reconstruction distortion of Deep-JSCC, N-Deep-JSCC, and
CA-Deep-JSCC on CIFAR-10, R = 1

12 .

Kodak Performance Evaluation: To ensure the validity of higher resolution image
data, we use the ImageNet2012 training set to train the model and evaluate it on Kodak,
where the Kodak dataset contains 24 images of 512 × 768. The ImageNet2012 training set
contains 1.3 million images of various resolutions; we filter the images whose size is larger
than 128 × 128 (about 1.25 million images), which are then cropped to a patch of 128 × 128;
set the batch_size to 128 and the learning rate to 10−4; and use the Adam optimizer for
training. Similar to CIFAR-10, we train both models at R = 1

6 and R = 1
12 , respectively, with

fixed SNRs of 1, 7, and 12, and train CA-Deep-JSCC on a range of SNRs of 2 at intervals of
0 to 10. Figure 5 shows the reconstruction quality of both images on Kodak. First, the CA-
Deep-JSCC scheme demonstrates a higher PSNR than the Deep-JSCC and N-Deep-JSCC
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schemes at nearly all SNR points under both bandwidth compression ratios, suggesting
that the proposed scheme may be more effective in feature extraction and information
transfer. Secondly, with a training SNR range of [0, 10] dB, the proposed JSCC scheme
exhibits the best performance at all test SNR points, which verifies the effectiveness of the
AAC module on images of different resolutions. Finally, compared to the performance
on the CIFAR-10 dataset, the model trained on the ImageNet2012 dataset demonstrates
a higher PSNR on the Kodak dataset. This enhanced performance can be attributed to
the following: (1) the diversity and complexity of the ImageNet2012 dataset, enabling the
model to learn a broader feature representation; (2) the larger feature map size providing
the model with more detailed information, which is important in ISC.
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Figure 5. Model performance on Kodak. Each curve of Deep-JSCC and N-Deep-JSCC was trained at a
specific SNR. The curves of CA-Deep-JSCC were trained at 1 dB, 7 dB, and 12 dB with 0–10 intervals
of 2 SNR. (a) Reconstruction distortion of Deep-JSCC, N-Deep-JSCC, and CA-Deep-JSCC on Kodak,
R = 1

6 . (b) Reconstruction distortion of Deep-JSCC, N-Deep-JSCC, and CA-Deep-JSCC on Kodak,
R = 1

12 .
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To facilitate an intuitive visual comparison, a comparative analysis is presented be-
tween the CA-Deep-JSCC model, the Deep-JSCC model, and the N-Deep-JSCC model using
sample images from the Kodak dataset in Figure 6. It can be observed that the quality of
the reconstructed images of both the schemes improves as the SNR increases, which is
quantified by the increase in PSNR and SSIM. The CA-Deep-JSCC scheme exhibits higher
values of PSNR and SSIM in all SNR conditions, which indicates its superiority in the task
of semantic communication of images.

Original Image

CA-Deep-JSCC
Train_SNR =
[0, 10]dB

SNR = 1dB

PSNR: 29.18 dB,
SSIM: 0.9043

SNR = 7dB

PSNR: 31.47 dB,
SSIM: 0.9404

SNR = 12dB

PSNR: 34.86 dB,
SSIM: 0.9736

Deep-JSCC
Train_SNR =

7 dB

PSNR: 24.23 dB,
SSIM: 0.7785

PSNR: 30.38 dB,
SSIM: 0.9247

PSNR: 31.77 dB,
SSIM: 0.9442

N-Deep-JSCC
Train_SNR =

7 dB

PSNR: 22.50 dB,
SSIM: 0.7179

PSNR: 31.34 dB,
SSIM: 0.9382

PSNR: 34.09 dB,
SSIM: 0.9676

Figure 6. Visual comparison of three models (SNR = 1 dB, 7 dB, and 12 dB) for sample images of
Kodak dataset under R = 1

12 .

5. Conclusions

This paper addresses the challenge of robustness in WSN communication through
semantic communication solutions. We propose an AAC module for flexible integration
into the ISC system, comprising a semantic enhancement component, utilizing the window
attention mechanism, and a semantic adjustment component based on the channel attention
mechanism. This module dynamically adjusts the focus on regions and semantic contents
in response to the current channel state. Subsequently, in order to prove the effectiveness
of AAC, a novel DNNs model, integrating CNN and AAC, is designed for ISC. Extensive
simulations demonstrate that our proposed JSCC scheme surpasses existing state-of-the-art
schemes in performance and can be trained across a range of SNRs, thereby enabling
a single model to adapt to various SNR scenarios. This research advances the practical
application of ISC schemes within the realm of WSN communication. Future research
endeavors will focus on extending the JSCC scheme’s design to additional modalities—
including text, audio, and video—and explore semantic-level data transfer mechanisms as
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well as model lightening techniques within WSNs with the objective of implementing a
holistic semantic communication framework in WSNs.
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