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Abstract: In the field of unmanned systems, the combination of artificial intelligence with self-
operating functionalities is becoming increasingly important. This study introduces a new method for
autonomously detecting humans in indoor environments using unmanned aerial vehicles, utilizing
the advanced techniques of a deep learning framework commonly known as “You Only Look Once”
(YOLO). The key contribution of this research is the development of a new model (YOLO-IHD),
specifically designed for human detection in indoor using drones. This model is created using a
unique dataset gathered from aerial vehicle footage in various indoor environments. It significantly
improves the accuracy of detecting people in these complex environments. The model achieves a
notable advancement in autonomous monitoring and search-and-rescue operations, highlighting its
importance for tasks that require precise human detection. The improved performance of the new
model is due to its optimized convolutional layers and an attention mechanism that process complex
visual data from indoor environments. This results in more dependable operation in critical situations
like disaster response and indoor rescue missions. Moreover, when combined with an accelerating
processing library, the model shows enhanced real-time detection capabilities and operates effectively
in a real-world environment with a custom designed indoor drone. This research lays the groundwork
for future enhancements designed to significantly increase the model’s accuracy and the reliability of
indoor human detection in real-time drone applications.
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1. Introduction

In the rapidly advancing field of unmanned aerial vehicle (UAV) technology, object
detection remains a pivotal challenge, especially in the context of indoor environments.
Indoor scenarios pose unique difficulties for UAVs, including constrained spaces, varied
lighting conditions, and complex backgrounds, making effective human detection a task of
critical importance. While current advancements in deep learning have provided substan-
tial progress in this domain, there is a significant need to tailor these technologies to suit
the intricacies of indoor surveillance and navigation.

In recent years, the integration of unmanned aerial vehicles (UAVs) in surveillance
and monitoring tasks has catalyzed the evolution of human detection systems. While
vision-based systems, using algorithms like deep learning models, have been the corner-
stone of UAV-based human detection, alternative approaches are emerging, addressing the
limitations of purely visual techniques. Radar-spectrogram analysis, for instance, utilizes
deep learning models to interpret micro-Doppler signatures of targets, presenting a novel
method for identifying human activities from UAVs in real-time scenarios [1]. Alternatively,
recent studies in sensors are increasingly leveraging a variety of sensor modalities to en-
hance detection accuracy, particularly in challenging environments like indoor or obscured
environments. Thermal imaging and ultrawideband (UWB) sensing technologies offer
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significant advancements in detecting humans, even in conditions where visual systems
cannot succeed. UWB sensing, specifically, has shown remarkable capabilities in distin-
guishing between drone and human movements in confined indoor spaces, demonstrating
the effectiveness of multi-modal sensing strategies in UAV-based surveillance [2]. These
advancements in integrating diverse data sources, such as air quality monitoring and heat
source detection, not only improve detection precision but also pave the way for UAV
applications in more complex and dynamic environments. The use of these alternative
technologies underscores a significant shift in UAV surveillance methodology, broadening
the spectrum of applications and offering more robust solutions for real-time human de-
tection in various operational scenarios. In addition to vision-based systems, alternative
approaches for real-time human detection are leveraging various data sources such as
air quality monitoring and heat source detection. Thermal imaging-based systems have
become crucial in smart video surveillance for moving human detection in thermal videos,
even in low-light or cluttered backgrounds. This technology captures heat generated from
humans, offering a vital solution for safety and security by minimizing crime and tres-
passing through enhanced identification and monitoring [3]. Furthermore, the integration
of Internet of Things (IoT) sensor grids in households with multiple heating systems has
opened new avenues for air contaminant migration monitoring. This approach offers con-
tinuous monitoring with data transfer to the cloud, enabling the near-real-time detection of
unscheduled or unauthorized access to specific areas. The utilization of such technology in
UAVs could transform surveillance capabilities, allowing for the dynamic measurement
of contaminants and providing real-time access control. This novel application of IoT, in
line with the Industry 4.0 concept, allows for extensive data analysis over longer periods,
enabling predictions of occupant behavior or the need for ventilation in specific rooms or
areas, thus enhancing the capabilities of UAVs in complex surveillance scenarios [4].

Small-object detection, a crucial aspect of UAV image processing, aims to identify
objects that are small, complex, and challenging to distinguish by color. Traditional de-
tection methods, which depend on manually designed features, encounter significant
challenges in UAV-based applications. These challenges include sensitivity to varying
lighting conditions, angles, and obstructions, and difficulties in processing complex back-
grounds. While effective in simpler environments, these methods often lead to false
positives and missed detections in more intricate scenarios [5–7]. Conversely, the advent of
deep learning, especially convolutional neural networks (CNNs), has markedly improved
the detection of small-scale objects in UAV imagery, addressing many limitations inherent
in traditional techniques [8,9].

In deep learning for UAV small-object detection, the algorithms are primarily divided
into two categories: two-stage and single-stage detectors. Two-stage detectors, including al-
gorithms like R-CNN [10], Faster R-CNN [11], Mask R-CNN [12], and Cascade R-CNN [13],
are recognized for their higher accuracy. They are particularly effective in detecting small
objects against complex backgrounds, employing a process that initially generates proposal
regions and subsequently performs classification and regression on these regions. However,
this method is computationally intensive, leading to slower processing speeds. In contrast,
single-stage detectors such as the YOLO series [14], SSD [15], RetinaNet [16], and Center-
Net [17] are known for their rapid processing speeds and real-time performance capabilities.
However, these models tend to have lower accuracy in detecting small targets within com-
plex backgrounds, which can result in false positives or missed detections. The trade-offs
between these two approaches underscore the ongoing challenges and developments in
UAV image processing, emphasizing the need for a balance between accuracy, speed,
and computational efficiency. Han et al. [18] introduced the DRFBNet300, a lightweight
single-stage method achieving high accuracy and real-time performance in UAV imagery.
Additionally, Zhang et al. [19] proposed the DAGN, a YOLOv3 based model, which im-
proved detection accuracy while maintaining real-time detection capabilities. These studies
show the advancements and ongoing research in UAV-based object detection systems.
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While the performance of general object detectors has been commendable, their appli-
cation in indoor human detection using drones necessitates addressing specific challenges
unique to this context. Unlike outdoor, indoor environments are characterized by varying
lighting conditions, potential obstructions like furniture, and confined spaces, all of which
can severely affect the quality of detection. In the realm of indoor drone operations, objects
are often captured from diverse perspectives and at varying distances. This variability
can be more pronounced indoors due to the limited space and the drone’s proximity to
objects. As a result, performing object detection at a consistent scale becomes challeng-
ing, often leading to significant errors and missed detections. This is especially critical in
scenarios where human detection is paramount, such as search-and-rescue operations or
security surveillance.

Moreover, indoor scenes frequently contain densely packed elements and small-scale
features. Humans might be partially or heavily occluded by furniture or other indoor
structures, making the distinct features necessary for accurate detection less discernible.
These challenges are compounded by the tendency of drone images to lose detail due to
down sampling during detection. In indoor environment, this can mean the critical loss of
features necessary for identifying and distinguishing humans, especially in crowded or
complex scenes.

Considering these factors, current detection methods often struggle with precisely
detecting humans in the indoor drone’s line of sight. Due to these reasons, this study aims
to develop a human detection model that detects in real-time on an onboard computer
equipped within a drone, demonstrating resilience to indoor environmental conditions.

This paper focuses on adapting and enhancing the YOLOv7 architecture, a state-
of-the-art object detection model, to better suit indoor scenarios. YOLOv7’s exceptional
balance of speed and accuracy makes it a suitable candidate for real-time applications;
however, its standard implementation is primarily oriented towards outdoor or generic
settings. Recognizing this, our research aims to modify and optimize YOLOv7-tiny, creating
a variant specifically tuned for the challenges of indoor UAV operations. This involves
customizing the model to better handle the diverse range of indoor conditions and to
improve its efficiency in accurately detecting humans in such environments.

The proposed methodology of this research is twofold. First, we adapt the YOLOv7-
tiny model through a long process of retraining and fine-tuning, using a dataset specifically
curated for indoor UAV scenarios. This dataset comprises a diverse range of UAV perspec-
tive images and indoor human environments, encompassing various lighting conditions,
room sizes, and clutter levels to ensure comprehensive learning. Second, we introduce
modifications to the YOLOv7-tiny architecture to enhance its ability to detect humans in
indoor settings. These modifications include optimizing the model’s convolutional layers,
integrating enhanced spatial pyramid pooling (SPP), and implementing a more robust
activation function to improve network performance to reduce false positives and improve
detection accuracy in confined spaces.

The main contributions of this paper are as follows:

1. The development of YOLO-IHD, an adaptation of the YOLOv7 architecture specifi-
cally tailored for indoor UAV-based human detection, which significantly enhances
detection accuracy in complex indoor environments.

2. The proposed model of this paper outperforms the pre-trained YOLOv7-tiny model
in terms of average precision, with a 42.51% increase in mAP@0.5 on the IHD dataset,
and a 33.05% increase on the VisDrone dataset. This advancement is critical for
applications demanding high precision in human detection from drones.

3. The lack of a dataset for indoor human detection by drones led to the creation of
the IHD dataset. This new dataset presents a wide range of human images from di-
verse indoor perspectives, combined with existing, widely utilized datasets, resulting
in a unique and comprehensive resource tailored to models specializing in indoor
human detection.
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4. The optimization of the convolutional layers and attention mechanism in YOLO-IHD,
which adeptly process complex visual data from indoor environments, ensuring
higher reliability in scenarios such as disaster response and indoor rescue missions.

This paper is structured so as to first provide a detailed overview of related work in
indoor drone-based human detection and the evolution of YOLO models. Subsequently,
we deep-dive into the methodology, elaborating on the model modifications and customiza-
tions, and dataset preparation and training processes. This is followed by a comprehensive
presentation of our experimental setup, results, and comparative analysis with existing
models. Finally, this paper concludes by discussing the implications of our findings for
indoor UAV applications and suggesting directions for future research.

2. Related Work
2.1. Deep Learning-Based Detection Methods

Deep learning-based detectors can be broadly categorized into two types: two-stage
and one-stage detectors. Within the domain of one-stage detectors, the Single Shot Multibox
Detector (SSD) [20] and You Only Look Once (YOLO) have been developed to address
the balance between accuracy and processing time. Notably, YOLO is acknowledged for
effectively managing performance in terms of both accuracy and processing time.

The CNN-based detectors, comprising RCNN [21], Fast RCNN [22], and Faster
RCNN [11], belong to the two-stage category, showcasing superior accuracy compared
to various other detection algorithms. Nevertheless, these methods are associated with a
downside of heightened computational costs, resulting in extended processing durations.

2.2. Two-Stage Detectors

In multi-stage detectors, one model is used to extract regions of objects, and the other
one is used to classify and further detect the location of the object. R-CNN, which stands for
region-based convolutional neural network, is an algorithm designed for object detection
and comprises multiple versions. In the initial iteration of R-CNN, a technique called
selective search is employed for region proposal, identifying potential areas containing
objects. These identified regions undergo resizing and processing through a pre-trained
convolutional neural network (CNN) to extract features. Support vector machine (SVM)
classifiers are then trained for each object category, and a regression model for bounding
boxes refines the localization. Fast R-CNN builds upon this improvement by introducing
RoI (region of interest) pooling, eliminating the necessity for region warping. This advance-
ment allows for end-to-end training, making the entire system jointly trainable. Faster
R-CNN takes efficiency a step further by incorporating a region proposal network (RPN)
into the model. This integration removes the dependence on external region proposal
methods, enabling end-to-end training and resulting in a unified framework.

2.3. One-Stage Detectors

One-stage detection focus on predicting bounding boxes directly; there is no inter-
mediate task such as region proposals which must be performed in order to produce an
output. Therefore, a simpler and faster model architecture is obtained.

Single Shot Multibox Detector (SSD) is an object detection algorithm designed for the
efficient and accurate detection of objects in images. Unlike traditional two-stage detectors,
SSD is a one-stage detector, aiming to balance speed and accuracy using the concept of
“multibox”. Multiboxes incorporate multiple bounding boxes with different aspect ratios
and scales for each location in the feature map. Default or anchor boxes at various positions
in the feature maps act as initial points for predicting both object bounding boxes and
class scores. The model employs a feature pyramid network (FPN) to extract features at
multiple scales, thereby improving its capability to detect objects of varying sizes. The
prediction of object scores and bounding box coordinates occurs directly from multiple
feature maps at different scales within a single forward pass. SSD’s loss function combines
classification loss (utilizing softmax) and regression loss (employing smooth L1 loss) to
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facilitate accurate model training for localization. SSD offers advantages such as the ability
to conduct object detection in a single forward pass, handling objects with diverse sizes
and shapes through default boxes, and efficient training by simultaneously optimizing
classification and localization tasks. It is well suited for real-time applications, including
video processing. Nevertheless, SSD involves trade-offs, including potential accuracy
compromises compared to more thorough two-stage detectors, and difficulties in detecting
small objects, particularly in the presence of larger objects in the same image [23].

The YOLO (You Only Look Once) algorithm represents a significant leap in computer
vision for real-time object detection. Unlike conventional approaches, YOLO conducts de-
tection in a single pass through the neural network by dividing the input image into a grid.
Each grid cell predicts bounding boxes and class probabilities, allowing the identification
of multiple objects within the same cell. The predictions involve simultaneous determi-
nation of both direct bounding box coordinates and associated class probabilities. YOLO
incorporates multiple scales to enhance object detection efficiency, accommodating objects
of various sizes. Following predictions, non-maximum suppression is applied to enhance
the precision of the final set of detected objects by removing redundant bounding boxes.

YOLO receives acclaim for its ability to operate in real-time, making it well suited
for applications such as video analysis and autonomous vehicles. Its unified framework
removes the need for separate region proposal networks, contributing to overall efficiency.
YOLO manages to strike a balance between accuracy and speed, making it adaptable for
diverse applications. However, YOLO may encounter difficulties in accurately identifying
small objects due to the limitations of a single-grid cell. Additionally, there might be a
trade-off in localization accuracy compared to two-stage detectors, particularly for objects
with intricate shapes. In summary, YOLO has gained prominence for its efficient and
effective real-time object detection capabilities across a wide range of applications.

2.4. YOLOv7

YOLOv7 [24] represents a significant advancement in the field of real-time object
detection, known for its impressive speed and accuracy. Its development is attributed
to the collaborative efforts of Wong Kin Yiu and Alexey AB, who have made substantial
contributions to the YOLO family of models. YOLOv7 was designed to set new benchmarks
in object detection by predicting bounding boxes more accurately and quickly compared to
its predecessors and peers. One of the key elements of YOLOv7 is its efficient layer aggre-
gation, which focuses on the convolutional layers in the backbone. This efficiency is critical
for fast inference speeds. The model builds on the concept of cross stage partial networks,
which was instrumental in making YOLOv4 [25] and YOLOv5 [26] more efficient. The final
layer aggregation in YOLOv7, known as E-ELAN (extended–efficient layer aggregation
network), is an extended version of the ELAN computational block. This design optimizes
both the gradient path length and the stacking number of computational blocks, leading to
a network that learns more diverse features effectively. Model scaling is another crucial
aspect of YOLOv7. The model considers the depth and width of the network, scaling
these attributes in concert while concatenating layers. This compound scaling approach
ensures optimal architecture while scaling the model for different sizes, making it adapt-
able for various applications that require different levels of accuracy and inference speeds.
Re-parameterization techniques in YOLOv7 involve averaging a set of model weights to
create a more robust model. This approach focuses on module-level re-parameterization,
where different parts of the network have their own re-parameterization strategies based
on gradient flow propagation paths. The YOLOv7 network also features an innovative
auxiliary head concept, referred to as the lead head and coarse-to-fine lead head. The
auxiliary head is supervised in addition to the lead head during training, with the former
learning coarser and the latter finer details. This deep supervision enables the model to
capture more nuanced features and improves overall detection performance. In terms of
results, YOLOv7 surpasses previous object detectors in both speed and accuracy, showing
significant improvement over a range of 5 FPS to 160 FPS. The model demonstrates its
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superiority by outperforming earlier YOLO versions and other baseline models in mean
average precision (mAP) across various model sizes.

2.5. YOLOv7-Tiny Model

YOLOv7-tiny is an adaptation of the more complex YOLOv7 model, tailored specifi-
cally for edge GPUs, which are known for their limited computational resources. In order
to make it suitable for such environments, YOLOv7-tiny employs a streamlined architec-
ture, as shown in Figure 1, while maintaining the core components of the YOLOv7 model:
the backbone, neck, and head. The backbone of YOLOv7-tiny uses ELAN-T, a simpler
version of the extended–efficient layer aggregation network (E-ELAN) found in the full
YOLOv7 model. This change includes the removal of the convolution operation in MPConv,
relying solely on pooling for down sampling. Despite these reductions, the optimized
spatial pyramid pooling (SPP) structure is retained, ensuring that rich feature maps are
still provided to the neck layer. This balance between simplification and feature richness
is crucial for maintaining effective detection capabilities within the constraints of edge
devices. In the neck, YOLOv7-tiny continues to use the PANet structure, a design choice
that facilitates efficient feature aggregation from different levels of the backbone. This helps
in preserving important information necessary for accurate object detection. At the head
of the network, YOLOv7-tiny opts for standard convolution to adjust channel numbers
instead of using the more complex REPConv. This modification is part of the model’s
strategy to reduce computational load and memory requirements. While YOLOv7-tiny has
decreased accuracy compared to its full-sized counterpart, it offers significant advantages
in terms of speed and model size, making it well suited for applications where resources are
limited and real-time performance is essential. This balance of speed, weight, and accuracy
makes YOLOv7-tiny an appealing option for edge computing applications in real-time
object detection.
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2.6. Real-Time Detection

This section encapsulates the state of the art in real-time object detection using indoor
drones, examining the technological advancements, the challenges faced, and the future
directions of real-time UAV systems. By analyzing recent studies and developments, it
aims to offer a comprehensive understanding of how indoor drones are being equipped to
perform real-time object detection, their current capabilities, and the potential they hold for
future applications. The list of studies is shown in Table 1.

Table 1. List of real-time UAV studies and their capabilities.

Sources Study Area Advantages Disadvantages Real-Time UAV

[27–30] Indoor UAV Navigation Systems
Detailed insights into

various indoor positioning
and navigation systems.

Focuses less on real-time
data processing and

computational constraints
of smaller drones like
those equipped with

companion computer.

No

[31–34] Machine Learning in Drone
Vision Systems

Demonstrates successful
integration of vision
algorithms in drone

systems.

Overlooks challenges in
running complex models
on low resource hardware

and outdoor
environments.

Partial

[35–44] Obstacle Avoidance and Human
Detection in UAVs

Offers valuable insights
into UAV-based obstacle

avoidance, crucial for
navigating indoor spaces.

Extends to human
detection techniques
applicable to indoor

environments, with a
focus on accuracy and
real-time processing.
Emphasizes sensor

integration for enhanced
detection capabilities.

Related studies do not
directly address human
detection using YOLOv7

on resource-limited
hardware. In addition,

there is a lack of
real-world testing in
diverse and dynamic
indoor environments.

Yes

[45–48] UAV Performance Analysis

Accuracy and
responsiveness analysis of

UAV performance,
including detection.

Rarely discuss challenges
of running models like

human detection in
real-time on

resource-limited
hardware.

Lack of in-depth analysis
of trade-offs between

model complexity and
real-time processing

capabilities.

2.7. Techniques for Drone Positioning and Attitude

The effectiveness of unmanned aerial vehicles (UAVs) in indoor human detection is
significantly influenced by their ability to accurately determine their position and attitude
within complex indoor environments. Precise positioning and attitude data are essential
for creating a reliable dataset and enabling the fine-grained perception of human activities.
These challenges are exacerbated in indoor settings due to the lack of GPS signals and the
presence of obstacles affecting UAV navigation and stability. In response, innovative meth-
ods have been developed specifically for indoor UAV applications. Cao et al. [49] have en-
hanced indoor positioning accuracy using a WiFi RTT algorithm, capable of compensating
for LOS and identifying NLOS conditions, crucial for UAV stability in indoor environments.
Concurrently, Bi et al. [50] introduced a low-cost UAV detection method through WiFi traffic
analysis combined with machine learning, offering a novel approach for UAV monitoring in
complex environments. Complementing these, Liang et al. [51] proposed an attitude estima-
tion method for quadrotor UAVs based on the quaternion unscented Kalman filter (QUKF),
enhancing navigational precision. Furthermore, Cheng et al. [52] addressed GPS-denied
environments by proposing a dynamic autonomous docking scheme for UAVs and UGVs,
facilitating effective navigation and operation in constrained settings. Integrating these
methods into UAV-based human detection systems significantly enhances the reliability
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and accuracy of data collection. Precise indoor positioning, coupled with effective attitude
estimation, enables UAVs to accurately navigate and capture data in challenging indoor
environments, proving vital for applications in surveillance, search-and-rescue operations,
and detailed human activity monitoring.

Integrating light detection and ranging (LiDAR) and visual odometry for indoor
drones has shown significant advancements in improving positioning and attitude deter-
mination in GPS-denied environments. Bautista et al. [53] developed a system combining
a vision-based photogrammetric position sensor and visual inertial odometry for pre-
cise quadcopter landing, while Wang et al. [54] demonstrated a 74.61% improvement in
positioning accuracy using a LiDAR-aided integrated navigation system. Additionally,
Qiu et al. [55] introduced a LiDAR-inertial navigation system that effectively addresses
the challenges in feature extraction within spatial grid structures, enhancing pose estima-
tion accuracy in GNSS-denied settings. These studies collectively highlight the progress
and potential of sensor integration in unmanned aerial vehicles for reliable and precise
indoor navigation.

Upon a thorough examination of the indoor drone navigation and positioning tech-
niques previously discussed, this study has determined that the most suitable approach
for implementation is the combination of LiDAR and visual odometry. This decision is
underpinned by the distinct advantages of each technology: LiDAR’s exceptional accuracy
in distance measurement and obstacle detection, and visual odometry’s capability in precise
position tracking through visual techniques.

Related to this method, for indoor flights and data collection phases, it has been
resolved that employing LiDAR for its robust obstacle detection capabilities will greatly
enhance the safety and efficiency of the drone’s navigation in complex indoor environments.
Concurrently, the integration of visual odometry will provide a reliable method for real-
time positioning, ensuring a high degree of accuracy in the drone’s trajectory and spatial
orientation. This combination approach not only mitigates the individual limitations of
each system but also capitalizes on their combined strengths to offer a comprehensive
solution for indoor drone position and attitude.

2.8. Security Aspects in UAV Communication Systems

The evolution of drone technology has expanded the capabilities and applications of
unmanned aerial vehicles (UAVs), but it also introduces significant security challenges,
particularly in communication systems. Drones, especially in complex environments like
indoor human detection, require secure and reliable communication channels to function
effectively. One of the fundamental concerns is the vulnerability of these channels to
various cyber threats. The research by Krichen et al. [56] highlights the susceptibility of
drone communications to attacks such as man-in-the-middle, denial-of-service, and data
interception. These vulnerabilities can have dire consequences, especially when drones
are used in sensitive areas or for critical missions. The authors emphasize the necessity of
robust security protocols and propose countermeasures like blockchain technology and
machine learning techniques to enhance drone communication security.

The security of drone communication systems is not just limited to preventing unau-
thorized access or data breaches. It extends to ensuring the integrity and confidentiality
of the transmitted data. Ronaldo et al. [57] discuss the implementation of a Forward Pre-
diction Scheduling-based Stream Control Transmission Protocol (FPS-SCTP) in drones,
which offers an enhanced real-time data transmission capability while ensuring robust
security through encryption mechanisms like AES and digital signatures with ECDSA. This
approach is particularly beneficial in environments where drones are used for delivery
services or situations requiring immediate data transmission with high security.

Moreover, Ko et al. [58] address the pressing need for secure UAV-to-UAV communi-
cation, emphasizing the importance of protocols that provide non-repudiation and perfect
forward secrecy, especially in military settings. They propose a security protocol with two
sub-protocols to secure communication between UAVs and between a UAV and a ground
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control station, achieving essential security requirements such as confidentiality, integrity,
mutual authentication, non-repudiation, and resilience against various attacks, including
DoS and man-in-the-middle attacks.

In conclusion, the security of drone communication systems is crucial in ensuring their
effective and safe operation. Advanced encryption techniques and innovative protocols like
FPS-SCTP are essential in safeguarding these systems against a wide range of cyber threats,
thus enhancing the overall reliability and functionality of drones in various applications.

2.9. Ethical and Privacy Considerations in Indoor Surveillance by Autonomous Drones

In this study, the introduction of the proposed model, aimed at real-time human detec-
tion in indoor environments using autonomous drones, is presented. The focus extends
beyond technical enhancements, encompassing the broader implications of its application
in the context of ethical, privacy, and societal impacts. The importance of balancing techno-
logical advancement with the preservation of human rights is underscored, highlighting the
need to take into account ethical considerations, privacy concerns, regulatory compliance,
and public engagement in the deployment of such surveillance technologies.

The integration of drones for surveillance, particularly in indoor settings, raises signif-
icant ethical considerations. The primary concern revolves around the balance between
enhancing security and respecting individual privacy rights. It is imperative to ensure
that such technology is employed responsibly, adhering to legal and ethical standards.
Moreover, the deployment of surveillance drones necessitates compliance with local and in-
ternational privacy regulations. This includes securing necessary permissions and consents,
especially when operating in private indoor spaces. These steps are crucial to maintain
public trust and the legitimacy of using drones for security purposes [59].

Privacy implications of indoor drone surveillance are a paramount concern. Effective
measures, such as data anonymization and secure data storage protocols, must be imple-
mented to safeguard individual privacy. Additionally, transparency in the operational use
of drones is essential. Clear policies should be established outlining who has access to the
data, their intended use, and accountability mechanisms. Engaging the public through
education about the technology’s benefits, limitations, and the measures taken to uphold
privacy and ethical standards is also vital for gaining public acceptance and trust [60].

Continuing with the theme of ethical considerations and privacy implications, another
important aspect to consider is the impact of autonomous surveillance drones on societal
norms and expectations of privacy. The use of drones for human detection in indoor
environments challenges traditional notions of privacy, necessitating a reevaluation of what
constitutes reasonable expectations in the age of advanced surveillance technologies. It
is crucial to engage in an ongoing dialogue with stakeholders, including policymakers,
technologists, and the public, to establish norms and guidelines that respect individual
rights while leveraging the benefits of drone technology. This dialogue should aim to create
a consensus on the acceptable use of such technologies, ensuring that their deployment
does not infringe on fundamental privacy rights and civil liberties [61,62].

3. Methodology

This section outlines the comprehensive approach taken to adapt and enhance the
YOLOv7-tiny model for improved human detection in indoor UAV scenarios. The method-
ology is structured into four main components and each component is designed to address
specific challenges associated with indoor environments. These are as follows:

1. Adding a Small-Object Detection Layer: The first step in the methodology focuses on
enhancing the model’s ability to detect small objects, a common challenge in object
detection tasks. This involves integrating a specialized layer dedicated to small-object
detection. The addition of this layer aims to address the limitations of standard
convolutional layers in capturing the finer details of smaller objects, which are often
lost due to spatial pooling and lower resolution feature maps. The layer will operate at
a higher resolution, enabling the model to better identify and classify smaller objects
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that are crucial in diverse detection scenarios, particularly in environments where
such objects are of specific interest.

2. Implementing CSPSPPF (cross stage partial spatial pyramid pooling—fast): The sec-
ond component of the methodology is the integration of the CSPSPPF module, a
novel variation of the traditional spatial pyramid pooling framework. This module
combines the benefits of cross stage partial (CSP) architecture and spatial pyramid
pooling (SPP), further optimized for speed. The CSP structure reduces computational
redundancy and improves the efficiency of feature map utilization, while the SPP
component ensures robust multi-scale feature aggregation. The ‘Fast’ aspect of CSP-
SPPF indicates a streamlined approach, focusing on maintaining high processing
speeds, making the model suitable for real-time applications where both accuracy
and efficiency are critical.

3. Adopting the Mish Activation Function: The final aspect of the methodology involves
the implementation of the Mish activation function within the network. Mish is
known for its smooth, non-monotonic behavior, which has been shown to facilitate
better gradient flow compared to traditional activation functions like ReLU. This can
lead to improved learning dynamics, allowing the network to capture more complex
patterns and nuances in the data. The use of Mish is particularly beneficial in deep
learning models, as it can enhance the model’s overall accuracy and generalization
capabilities, making it more effective in diverse and challenging object detection tasks.

4. Data Augmentation for Indoor Scenarios: The fourth step in the methodology empha-
sizes data augmentation specifically tailored for indoor environments. This involves
simulating a range of indoor conditions, such as variable lighting, occlusions, and di-
verse interior layouts to create a more comprehensive training dataset. Techniques like
adjusting brightness and contrast, applying blur to mimic motion or focus variations,
and artificially altering backgrounds help in preparing the model for the complexi-
ties of indoor detection. This augmentation not only aids in enhancing the model’s
robustness against overfitting but also ensures better generalization when deployed
in real-world indoor settings.

The network structure of YOLO-IHD is shown in Figure 2, with the improvements
highlighted in red striped squares.

3.1. Small-Object Detection Layer

Small objects contain fewer pixels and less information compared to larger objects.
Therefore, higher resolution feature maps are more effective in preserving the details of
small objects. YOLOv7-tiny typically uses feature maps at resolutions of 20 × 20, 40 × 40,
and 80 × 80. In the proposed model for indoor human detection using drones, the challenge
of detecting small objects is addressed by modifying the detection head. While the YOLOv7-
tiny model demonstrates proficiency in various applications, its performance in detecting
smaller objects is suppressed by the convolution-based feature extraction mechanism. As
the network depth increases, the feature map resolution decreases, leading to potential
inaccuracies in small target detection. The original YOLOv7-tiny model comprises three
detection heads with resolutions of 20 × 20, 40 × 40, and 80 × 80. A new small-object
detection layer is added to the base model. This layer, comparable to the P2 layer in baseline
model, has a resolution of 160 × 160, allowing for more detailed features and enabling the
detection of smaller targets in complex indoor environments. This layer was integrated
into the YOLOv7-tiny model to enhance its ability of detecting human figures in the varied
and often cluttered backgrounds typical of indoor environments. This addition not only
improved the model’s detection performance for smaller targets but also maintained its
accuracy for larger ones. The incorporation of the P2 layer detection head, with its high-
resolution feature map, proved especially effective in addressing the challenges posed
by scale variance and complex indoor scenarios, such as low illumination and shadow
occlusion, which are often encountered indoors. With the addition of the small-object
detection layer, the model’s detection architecture now includes heads with resolutions of:
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20 × 20, 40 × 40, 80 × 80, and the newly added 160 × 160. This expansion in the detection
heads significantly enhances the model’s capacity to accurately identify objects across a
broader range of sizes, particularly improving its efficacy in detecting smaller objects in
indoor environments.
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3.2. Spatial Pyramid Pooling (SPP)

The YOLOv7-tiny neural network model integrates the spatial pyramid pooling
(SPP) [63] module, which executes pooling operations at various scales. SPP, positioned
after the final convolutional layer and shown in Figure 2, aggregates contextual information
from diverse regions of the image. This implementation generates multiple representations
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of feature maps, each utilizing distinct window sizes and strides, to accommodate the
varying scales within an image. This multi-scale pooling approach is especially beneficial
for the proposed model where the size of human figures can drastically differ within the
same scene. For example, in a room scenario, a person nearer to the UAV may appear larger,
while someone further away might be smaller. SPP enables the model to effectively capture
features relevant to both scenarios, thereby enhancing human detection capabilities at
varying distances from the camera. In the YOLOv7-tiny architecture, the SPP module is ad-
vanced into the cross stage partial spatial pyramid pooling (CSPSPP) [24]. An evolution of
the traditional SPP, CSPSPP incorporates a CSP structure and offers improved performance
for the proposed dataset. While CSPSPP significantly enhances feature representation, it
also increases the number of parameters and computational load.

Conversely, SPPF (SPP-Fast) [64] optimizes efficiency by replacing the parallel pooling
operations in SPP with a serial arrangement. It employs consecutive 5 × 5 pooling layers,
where two such layers are equivalent to a single 9 × 9 pooling layer and three to a 13 ×
13 layer. This serial methodology not only maintains the effectiveness of parallel pooling
but also increases processing efficiency and detection accuracy. This study adopts SPPF to
enhance model accuracy and the efficiency of feature fusion in the YOLOv7-tiny model.
Due to its reduced computational load, this approach is well suited for real-time detection
models on edge devices. The adaptation of CSPSPPF in this context is illustrated in Figure 2.

3.3. Activation Function

The adoption of Mish [65] as the activation function in the proposed lightweight
model, characterized by a limited number of parameters and calculations, is a strategic
decision to enhance the model’s performance without increasing deployment costs. Unlike
LeakyReLU [66], which struggles to establish a consistent link between positive and nega-
tive input values, Mish offers a more seamless transition, thus facilitating fewer but more
effective feature extraction operations. This shift to Mish ensures a smooth gradient flow
and a broader range of neuron activation states, crucial for complex pattern detection and
classification. It also addresses the risk of inactive neurons better than LeakyReLU, making
the learning process more dynamic across the network. Consequently, with Mish, the
model not only learns and performs better but also does so with improved efficiency and
generalization, as evidenced by empirical studies. These advantages are achieved without
compromising on computational efficiency, thus maintaining the lightweight nature of the
model. The equations governing Mish and LeakyReLU shown as Equations (1) and (2).

LeakyReLU(x) =

{
x x > 0
αx x ≤ 0

(1)

Mish(x) = x · tanh(ln(1 + ex)) (2)

In Figure 3, the curve of the Mish function for x within the range of [−5, 5] is showcased,
illustrating key features of this activation function. As x increases along the positive x-
axis, the Mish function rises continuously, effectively avoiding the saturation issues often
associated with capped functions. This unbounded increase aids in maintaining a robust
gradient flow, crucial for the learning process in neural networks. Conversely, as x moves
along the negative x-axis, the output of the Mish function gradually tends toward zero but
does not exhibit the abrupt zero boundary characteristic of the ReLU function. This gradual
approach to zero allows Mish to maintain a smoother gradient flow, especially for slightly
negative values, enhancing the network’s ability to learn from a wider range of input data
without the limitations imposed by the hard zero cut-off found in ReLU. This feature of the
Mish function makes it a valuable asset in deep learning models, contributing to improved
learning dynamics and overall network performance.
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3.4. Data Augmentation

In this study, the emphasis on enhancing the dataset’s quality and diversity through
targeted data augmentation techniques is critical for the model’s performance. By em-
ploying adjustments in brightness and contrast, along with the strategic application of
blur effects, the aim is to create a dataset that better represents the variability and chal-
lenges of real-world scenarios. These augmentations are critical in training models for
indoor detection detections. They address unique indoor challenges like varying light-
ing conditions, complex background clutter, and diverse spatial layouts. Brightness and
contrast adjustments help in simulating different lighting scenarios, an essential aspect
of indoor environments. The other technique used for augmentation is blur effects. It
is particularly useful in simulate the effect of motion or focus variations that the UAV
camera might encounter. These data augmentation techniques enrich the dataset, making it
more reflective of real-world indoor conditions. This upgraded dataset ensures that the
model can generalize better across various indoor environments, significantly enhancing
its performance in detecting humans under different conditions. Data augmentation, as an
intelligent approach, is crucial for the development of a robust, adaptable, and accurate
indoor human detection system for UAV applications. An augmentation example for the
IHD dataset is shown in Figure 4. The details of the datasets and their usages are discussed
later in the Section 4.
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4. Experiments and Evaluation
4.1. Datasets and Preprocess

This study encountered many complex environments for indoor object detection,
specifically for human detection. Some of complex cases are low-light conditions, blurry
input (source camera), close-up objects, very far objects, different human postures, and
mixed human conditions. To overcome these scenarios, the focus was placed on the quality
of the dataset. For this reason, in the training set, four datasets were used in combination.
For distant objects, the VisDrone dataset [67] was used, for medium-sized objects, the
UAV123 dataset [68] was used, for indoor human objects, the UAVHuman dataset [69] was
used, and for some complex environments like low-light, blurry scenes, different positions
of human, and different indoor clutter a specially collected dataset was used. To prepare
the datasets for training, their annotations were converted to YOLO’s label txt format
(Figure 5) and split into train, validation, and test directories. In each directory, there were
‘images’ and ‘labels’ subdirectories for training. Table 2 represents the distribution of the
datasets, including a special mixed dataset (IHD dataset) designed for optimal training in
complex environments.
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Table 2. The dataset distribution used in this study is as follows.

Dataset Class Train Validate Test Total

VisDrone 10 6471 548 3190 10,209
UAVHuman 1 (Human) 2450 350 850 3650

UAV123 1 (Human) 21,756 3567 9356 34,679
Own

Collection 1 (Human) 1647 205 426 2278

IHD Dataset 1 (Human) 9405 1533 1787 12,725

4.1.1. VisDrone Dataset

The VisDrone dataset, developed for drone-based image analysis, stands out for its
extensive collection of images and video sequences captured from various types of drones.
This dataset is particularly significant for the development and evaluation of object de-
tection on aerial vehicles due to its diverse range of urban and rural landscapes, different
weather conditions, and a wide variety of objects and scenarios. The VisDrone dataset
includes challenges like small-object detection, a high density of objects, and complex back-
ground variations, making it a robust testing ground for a model’s detection capabilities.
The dataset’s high variability in object sizes and its emphasis on aerial perspectives provide
a unique opportunity for enhancing the model’s accuracy and efficiency in drone-based
surveillance and monitoring applications. In Figure 6, the converted and prepared test
set of the VisDrone dataset directory is shown. The dataset comprises ten object classes,
including pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus, and
motor. The dataset’s key contribution for this study is the collection of small-sized human
objects captured from a distant aerial perspective.
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4.1.2. UAVHuman Dataset

UAVHuman is a comprehensive dataset focusing on human detection and activity
recognition from aerial perspectives. This dataset is critical for the advancement of indoor
human detection applications related to indoor scenes, human-based actions, and human
surveillance. UAVHuman encompasses a wide range of human activities and postures
captured under different environmental conditions, offering a rich source for training and
testing human detection algorithms. The dataset’s diversity in the scale, orientation, and
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density of human subjects presents a significant challenge for prediction models to maintain
high accuracy and reliability, especially in complex and dynamic scenarios. Incorporating
UAVHuman into training significantly enhances the model’s ability to accurately detect and
track humans from aerial viewpoints, which is essential for effective drone-based human
surveillance. In this dataset specifically, “ActionRecognition” video sets are used and
processed for training. These videos captured from various indoor conditions and different
human poses. Not only RGB videos but also Fisheye videos are used for enhancing the
dataset. The key contribution of the dataset for this study is providing large-sized human
objects from an indoor aerial view.

4.1.3. UAV123 Dataset

The UAV123 dataset, specifically designed for object tracking from aerial platforms,
provides a unique dimension to human model development. This dataset includes a variety
of scenarios where objects are captured in different environmental conditions, altitudes, and
speeds. The relevance of the UAV123 dataset to human detection lies in its rich collection
of dynamic sequences, which are instrumental in improving the model’s tracking accuracy
and robustness in real-world applications. The challenges presented by UAV123, including
rapid object movement, varying scales, and occlusions, are crucial for the development of
an effective human detection model. Training and evaluating on the UAV123 dataset not
only enhance model’s performance in object tracking tasks but also ensures its adaptability
and effectiveness in diverse aerial surveillance contexts. The key contribution of the dataset
for this study is providing medium-sized human objects from an aerial view.

4.1.4. Authors’ Own Dataset

State-of-the-art datasets for aerial object detection primarily focus on strong, generic
scenarios. However, when it comes to specific aspects like low-light environments, different
altitudes, and blurry indoor conditions, these datasets may not suffice for the optimal
training and detection performance of indoor human detection models. For this reason,
this study utilizes a combination of three existing datasets and the authors’ own specially
collected dataset. This specially collected dataset has been put together from various
complex public indoor areas, including caves, stadiums, shopping malls, warehouses, and
offices. The primary goal is to enrich the authors’ own dataset with diverse scenes, thereby
training the proposed model to handle extreme real-world indoor scenarios effectively.
Additionally, the dataset includes frames with blurred images to simulate the real-time
vibrations experienced by drones in motion. Many real-time applications struggle with
blurry pixels and poor-quality resolutions in object detection. One of the most challenging
aspects in human detection is discerning the posture of the human body. To address this
challenge, images capturing different human postures and angles in indoor conditions have
been included. Figure 7 displays specific views and an indoor collection from the dataset.

The construction of the authors’ own dataset, as shown in Table 3, reflects an inclusive
design, focusing on training an indoor human detection model for effective adaptation
across a broad spectrum of real-life indoor scenarios. It includes 2278 images, categorized
by area, sample count, object distance (far, normal, or close), and lighting conditions
(bright, normal, or dark). The dataset consists of various scenes from working offices, malls,
warehouses, caves, stadiums, garages, and auditoriums. The Working Office category
includes 373 images and focuses on an emphasis on ‘normal’ and ‘close’ distances, which
are crucial for systems requiring precision in confined spaces. Lighting conditions are well
distributed, providing data for systems to learn from at different times of the working
day. In the Shopping Mall category, which includes 622 images, the dataset captures a
broad range of distances, featuring ‘far’ and ‘normal’ categories that align with the vast
spatial layouts of such environments. The lack of images under ‘dark’ lighting conditions
indicates a focus on the more prevalent lighting scenarios encountered in real-life shopping
malls. The Warehouse category includes 459 images, with a significant portion representing
‘far’ distances and ‘dark’ lighting, highlighting the challenging visibility conditions in
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such indoor areas. This can be instrumental for indoor scenarios to operate effectively in
environments with low light. The Cave category, featuring 85 images from caves, focuses on
‘normal’ and ‘close’ distances, predominantly under ‘dark’ and ‘bright’ lighting conditions.
This can be important for models that need to learn in environments with unpredictable
lighting and shadows. In cave scenarios, the lighting conditions are typically dark or
bright due to the projector lighting used inside. The Stadium category includes 108 images,
predominantly featuring ‘bright’ lighting conditions, which reflect the typically well-lit
scenarios associated with stadiums. The distribution of images across various distances
suggests a varied range of subject positionings, from the camera to objects on the field.
Garages, featuring 509 images, provide a crucial setting for identify humans in ‘normal’ to
‘dark’ lighting and across all distances. This is particularly important for ‘far’ and ‘normal’
distances, which are essential in security and surveillance applications. In the Auditorium
category, 122 images focus on ‘bright’ and ‘normal’ lighting conditions, likely reflecting the
controlled lighting scenarios typical during indoor events. The emphasis in this category is
on crowded events in well-lit environments, spanning various distances.
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Figure 7. Collection of authors’ own dataset. Pictures from blurred low-light indoor garage, cluttered
warehouse, higher view shopping mall, different light conditions auditorium, concert hall, and
work office.

Each scenario in the dataset is carefully chosen to reflect the complexity of indoor
environments where drones must detect humans. The diversity in lighting and spacing
ensures that the model trained on this dataset can generalize across a wide range of
indoor settings, making the dataset a valuable asset for the development of sophisticated
surveillance systems.
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Table 3. Areas and environmental conditions in the data collection phase of the authors’ own dataset.
The ‘Object Distance’ column indicates the sample count for the object distance in each area, and the
‘Lighting Condition’ column provides details of the lighting environments corresponding to the total
count for each area.

Area Sample Count
Object Distance Lighting Condition

Far Normal Close Bright Normal Dark

Office 373 - 170 203 100 221 52
Shopping Mall 622 377 245 - 163 459 -

Warehouse 459 265 194 - - 157 302
Cave 85 - 50 35 45 - 40

Stadium 108 56 30 22 88 20 -
Garage 509 249 158 102 - 211 298

Auditorium 122 98 24 - 63 47 12
Total 2278 1045 871 362 459 1115 704

4.1.5. IHD Dataset

The IHD dataset, built for indoor human detection from a UAV perspective, integrates
four diverse datasets: VisDrone, UAVHuman, UAV123, and the specially collected authors’
own dataset. Its distribution comprises approximately 40% VisDrone, 20% UAV123, 28%
UAVHuman, and 12% from the authors’ own collection. This blend is designed to cover
a broad spectrum of UAV-based indoor human detection scenarios. The IHD dataset
contains a total of 12,725 images. These images are divided into three parts for model
training: 73% (9405 images) for the training set, 12% (1533 images) for the validation set,
and 14% (1787 images) for the test set. In the process of merging data from various datasets,
only those images that contained human classes were specifically included. This selective
approach furnished us with a comprehensive view of human objects, covering a range of
sizes from small to large, and showcasing various poses. Additionally, by combining data
captured at different altitudes, a more effective representation of various indoor conditions
was achieved.

In the preparation of the IHD dataset, various human object sizes and lighting conditions
were considered, as shown in Table 4. The VisDrone dataset, containing 7482 images of
human-class objects in day and night conditions, was used as a valuable source for small
objects. Some images with unclear positions or poor quality were filtered out, resulting in 5090
images for the IHD dataset. The UAVHuman dataset was mostly used, with only 87 images
filtered out due to poor quality. In the UAV123 dataset, 2545 images were selected out of
34,679 due to repetitive scenes and similar lighting conditions. Additionally, some data from
the authors’ own dataset, such as shopping malls and offices with normal lighting and sizes,
were filtered out because similar data were available in pretrained weight. The same filtering
was applied to warehouse data with normal lighting and sizes. In total, 1527 images were
used from the original 2278 images of the authors’ own dataset to ensure dataset quality and
eliminate redundancy.

Table 4. IHD dataset distribution across various environmental and lighting features.

Dataset Object Size Environment Lighting Sample Size

VisDrone Small Outdoor Day and Night 5090
UAVHuman Large Indoor Normal–Dark 3563

UAV123 Medium Outdoor Day Light (Normal–Shadow) 2545
Authors’ Own

Collection Various Sizes Indoor Bright–Normal–Dark 1527

IHD Dataset Mixed Size Indoor/Outdoor All Conditions 12,725
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4.2. Evaluation Metrics

In the experiments to evaluate performance metrics, AP (average precision), F1 score,
and accuracy were used. Accuracy is calculated as the ratio of true positives (TP) and true
negatives (TN) to the total number of samples identified, as shown in Equation (3). Here,
TP refers to correctly predicted positive instances, and TN refers to correctly predicted
negative instances. It is important to note that false positives (FP) are instances incorrectly
predicted as positive, and false negatives (FN) are actual positives that are incorrectly
predicted as negative.

Accuracy =
TP + TN

TP + FN + FP + TN
(3)

Precision and recall are two fundamental metrics used to evaluate the performance
of classification models, especially in contexts where the balance between true positive
and false positive predictions is crucial. Precision, as shown in Equation (4), measures the
accuracy of the positive predictions made by the model. It is the ratio of true positives (TP)
to the sum of true positives and false positives (FP). High precision indicates that the model
is reliable in its positive predictions. Recall, as shown in Equation (5), on the other hand,
measures the model’s ability to detect true positives from all actual positive instances. It is
calculated as the ratio of true positives to the sum of true positives and false negatives (FN).
High recall signifies that the model is effective in capturing a high proportion of actual
positive cases. Both metrics are crucial for understanding a model’s effectiveness, with
precision being more focused on the correctness of positive predictions, and recall on the
completeness of capturing positive cases.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Average precision (AP), as shown in Equation (6), measures the model’s ability to
classify objects correctly and rank them based on the confidence of predictions, often
summarized as mean Average precision (mAP) across multiple classes. The F1 score, as
shown Equation (7), serving as the harmonic mean of precision and recall, provides a
single metric that balances both the false positives and false negatives, crucial in scenarios
where each type of error has significant implications or in the presence of imbalanced
datasets. Intersection over Union (IoU), as shown in Equation (8), quantifies the accuracy
of object localization by computing the ratio of the overlap area to the union area between
predicted (BD) and ground truth bounding boxes (BGT). Together, these metrics offer
a comprehensive evaluation of an object detection model’s capabilities, spanning both
classification accuracy and the precision of object localization, allowing for a nuanced
understanding and comparison of different models in the field.

AP =
∫ 1

0
p(r)dr (6)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

IoU =
| BD ∩ BGT |
|BD ∪ BGT |

(8)

In evaluating the model’s efficiency for real-time applications, the focus was on two
critical performance metrics: GFLOPS (giga-floating-point operations per second) and FPS
(frames per second). GFLOPS provided a measure of the computational power, indicating
how many billion floating-point operations the model could handle per second, while
FPS is the model’s ability to process and render frames in a timely manner. These metrics
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provided a thorough insight into the model’s efficiency, highlighting its ability to meet
high-speed computational demands and performance in real-time environments.

4.3. Training Parameters and Environment

In this study, the proposed model was trained and evaluated on both the VisDrone and
IHD datasets. The number of epochs and the batch size were set to 200 and 16, respectively.
The SGD optimizer was used for training and the initial learning rate was set to 0.01. The
training environment for the experiments was as follows: Intel(R) Xeon(R) Gold 6258R
CPU@2.70 GHz, 512 GB of RAM, NVIDIA Tesla V100 32 GB XM2 GPU, CUDA version 11.8,
Pytorch 2.0.1 + cu118, and TorchVision 0.15.2 + cu118.

Before training the model, it is crucial to define evaluation metrics and initialize train-
ing parameters. For this purpose, the chosen parameters were mean average precision
at Intersection over Union (IoU) 0.5 (mAP0.5), precision, recall, frames per second (fps),
model parameter count, and giga-floating-point operations per second (GFLOPS), with
specific settings detailed in Table 5. Setting hyperparameters is vital for effecting model
performance and the success of algorithmic improvements. In enhancing the YOLOv7-
tiny model, maintaining consistent hyperparameter settings is essential. This consistency
ensures the effectiveness of model improvements and enables accurate performance com-
parisons before and after enhancements. Modifying hyperparameters while enhancing the
algorithm might affect the ability to determine if performance variations are a result of the
algorithm’s inherent improvements or are due to changes in the hyperparameters. Thus, to
ensure a transparent and accurate evaluation of the advancements, this paper maintains a
steady set of hyperparameters.

Table 5. Model training parameters.

Parameter Value

Initial Learning Rate 0.01
Epochs 200

Batch Size 16
Optimizer SGD

Weight Decay 0.0005
Momentum 0.937

4.4. Results
4.4.1. Ablation Study

In order to verify the effectivity of YOLO-IHD, ablation studies were conducted.
To ensure accuracy and performance, all experiments were conducted using the same
parameters and environments. Adaptive non-maximum suppression (Adaptive NMS) [70]
dynamically adjusts the overlap threshold for object detections, improving accuracy in
crowded scenes by reducing false negatives. It balances precision and false alarms by
varying the threshold based on object density, making it particularly useful for detecting
closely spaced objects. The Adaptive NMS (non-maximum suppression) algorithm is
employed to manage redundant detection frames, with the NMS threshold value set at
0.5. When the Intersection over Union (IoU) values of two detection boxes fall below 0.5,
any unnecessary detection boxes are efficiently suppressed following the standard NMS
algorithm.

As shown in Table 6, the incremental contributions of different modifications to the
baseline YOLOv7-tiny model were systematically dissected and analyzed. The baseline
YOLOv7-tiny model achieved an mAP@0.5 of 35.20%, with precision, recall, and F1 score
metrics providing a foundational understanding of its performance. The first adaptation,
labeled A1, introduced a small-object detection layer to the baseline model. This enhance-
ment resulted in a notable improvement across all metrics, with mAP@0.5 increasing to
47.23% and corresponding increases in precision, recall, and F1 score, reflecting the model’s
enhanced capability to recognize smaller objects. Building on A1, adaptation A2 integrated
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the cross stage partial spatial pyramid pooling fast (CSPSPPF) technique. This further
elevated performance, with mAP@0.5 reaching 50.05%. The CSPSPPF method significantly
boosted the model’s feature extraction and fusion capabilities, as evidenced by the increased
precision and recall values. Adaptation A3 extended A2 by incorporating augmented data,
simulating a variety of indoor conditions to improve the model’s robustness and general-
ization. This extension led to a substantial leap in performance, with mAP@0.5 surging to
70.95%. The inclusion of diverse training examples translated to marked improvements
in model precision, recall, and F1 score. The culmination of these adaptations resulted in
the YOLO-IHD model, which additionally employed the Mish activation function. YOLO-
IHD achieved the highest mAP@0.5 of 77.71% in the experiments, along with the highest
precision, recall, and F1 score, underscoring the effectiveness of the Mish function in en-
hancing model learning dynamics and overall performance. This ablation study clearly
demonstrates the individual and collective benefits of each methodological enhancement,
culminating in a robust YOLO-IHD model that sets a new standard for performance in the
evaluated tasks. In summary, YOLO-IHD is composed of an added small-object detection
layer, the CSPSPPF module, extensive data augmentation, and the Mish activation function.

Table 6. Results of ablation experiments with the IHD dataset.

Methods mAP@0.5 (%) Precision (%) Recall (%) F1 Score

YOLOv7-tiny 35.20 49.34 36.80 0.42
A1 47.23 63.59 42.35 0.50
A2 50.05 60.18 49.64 0.54
A3 70.95 76.92 64.17 0.69

YOLO-IHD 77.71 78.83 71.60 0.75

The incremental improvements in mAP@0.5 through successive enhancements during
the training of the YOLO-IHD model are shown in Figure 8.
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which resulted in the best model, YOLO-IHD. Performance metrics include mAP@0.5, precision,
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4.4.2. Comparison with Other YOLO Algorithms

In this study, the performance of the developed YOLO-IHD model was benchmarked
against other YOLO models using the VisDrone dataset, which is widely recognized for
its complexity and real-world applicability in aerial surveillance scenarios. During this
comparative analysis, the focus was specifically on the average precision (AP) metric for
human detection (Pedestrian and People classes). This targeted approach means that only
the human detection values were carefully considered, providing a direct and relevant com-
parison of each model’s ability to recognize and track human figures within the dataset’s
diverse aerial images. By isolating this metric, it was ensured that the comparison accu-
rately reflected each model’s proficiency in the critical task of human detection, thereby
demonstrating the YOLO-IHD model’s capabilities in a focused and precise manner.

In the comparative analysis of object detection models, the proposed YOLO-IHD
model exhibited substantial advancements over current state-of-the-art models, as proved
by the results presented in Table 7 from the VisDrone dataset. YOLO-IHD achieved an
impressive 69.55% mAP@0.5 for human detection, markedly outperforming other models in
the ‘Pedestrian’ and ‘People’ categories. For instance, compared to the earlier versions such
as YOLOv3, which scored 12.8% and 7.8%, respectively, for ‘Pedestrian’ and ‘People’, and
YOLOv7-tiny with 36.5% and 34.4%, YOLO-IHD showed substantial improvements. Even
when measured against more recent models like YOLOv7, PDWT-YOLO, and YOLOv8,
which had mAP@0.5 scores ranging from 44.25% to 45.15%, the proposed YOLO-IHD
model stood out with a significantly higher accuracy. Moreover, YOLO-IHD surpassed
the performance of MS-YOLOv7, which already presented a robust detection capability
with 63.2% and 51.7% for ‘Pedestrian’ and ‘People’, respectively. The consistent AP across
both ‘Pedestrian’ and ‘People’ for YOLO-IHD underscores its reliability and the efficacy of
its integrated improvements, such as the added small-object detection layer, the CSPSPPF
module, data augmentation, and Mish activation function, specifically tailored for the
challenges of aerial human detection.

Table 7. Comparison of YOLO-IHD with other YOLO methods.

Methods Pedestrian (%) People (%) mAP@0.5 (%)

YOLOv3 [71] 12.8 7.8 10.3
YOLOv7-tiny 36.5 34.4 35.45

YOLOv7 51.4 37.1 44.25
PDWT-YOLO [71] 48.7 41.6 45.15

YOLOv8 [72] 50.2 39.7 44.95
MS-YOLOv7 [72] 63.2 51.7 57.45

YOLO-IHD * 69.55 69.55 69.55
* The proposed model consists of a single class, defined as ‘Person’. Therefore, the model’s detection and prediction
outcomes for the ‘People’ and ‘Pedestrian’ categories in the VisDrone dataset are identical.

4.4.3. Comparison with State-of-the-Art Algorithms

This section presents a comprehensive comparison of the proposed YOLO-IHD model
with other leading state-of-the-art (SOTA) algorithms in the domain of indoor human
detection, as presented in Table 8. The evaluation is based on several key performance
metrics: the number of parameters (Params), the computational complexity as measured
by GFLOPs, the frames per second (FPS) indicating real-time processing capability, and the
mean average precision at an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5). The
evaluation of the YOLO-IHD model against other state-of-the-art algorithms was conducted
using the IHD dataset and processed on an NVIDIA Tesla V100 GPU. This rigorous testing
environment ensures a fair comparison in terms of performance and efficiency.
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Table 8. Comparison of YOLO-IHD with other SOTA methods.

Model Params (M) GFLOPs FPS mAP@0.5 (%)

YOLOv7-tiny 6.21 13.3 256.4 35.20
SSD 15.5 81.1 75.6 31.43

Faster-RCNN 137.1 246.2 18.1 33.21
CenterNet 52 109 29.4 34.82
YOLOv7 36.2 106 129.8 54.61

YOLO-IHD 6.86 18.82 186.6 77.71

The YOLO-IHD model, consisting of 6.86 million parameters, demonstrated a com-
mendable balance between model complexity and detection efficacy. With a computational
demand of 18.82 GFLOPs, it managed to sustain a high frame rate of 186.6 FPS, indica-
tive of its real-time applicability. The proposed model outperformed the other methods
particularly in precision, achieving a mean average precision (mAP) of 77.71% at an IoU
threshold of 0.5, substantially surpassing its counterparts. The YOLOv7-tiny, while possess-
ing a similar parameter count of 6.21 M and a higher frame rate of 256.4 FPS, fell behind
significantly in detection precision, with a mAP of 35.20%. Despite its lower computational
load of 81.1 GFLOPs and moderate frame rate of 75.6 FPS, the SSD also achieved a mAP
of 31.43%. The Faster-RCNN, with a much larger model size of 137.1 M parameters and
a higher computational requirement of 246.2 GFLOPs, did not leverage its complexity to
improve precision, achieving a mAP of 33.21% and a lower frame rate of 18.1 FPS. Center-
Net, although it features a higher frame rate than Faster-RCNN at 29.4 FPS, similarly did
not match the YOLO-IHD in precision, achieving 34.82%. The standard YOLOv7 model,
which has a parameter count of 36.2 million and requires 106 GFLOPs, achieved a mAP
of 54.61% at a reduced frame rate of 129.8 FPS. This underscores YOLO-IHD’s superior
precision performance, as it delivers a significant improvement in detection accuracy with
fewer parameters and a competitive processing speed.

In summary, YOLO-IHD stands out as an optimized model for indoor human detection,
especially for drone applications where real-time processing and high detection accuracy
are important. It demonstrates superiority in achieving a fine balance between speed,
accuracy, and computational efficiency, thereby leading the way for future research and
applications in UAV-based indoor surveillance systems.

4.4.4. Realtime Studies

To comprehensively evaluate the YOLO-IHD model’s efficiency, real-time tests were
carried out using a drone as a mobile platform. These tests were critical in evaluating
the model’s performance in real-world conditions that drones typically encounter, such
as varying altitudes, angles, and lighting situations within indoor environments. The
model was tested on two edge computing devices, Jetson Xavier NX and Jetson Nano,
each chosen for their balance of computational power and form factor suitability for drone
integration. In Table 9, the specifications of the edge devices are shown. During these
tests, the frames per second (FPS) at diverse resolutions were measured to mirror the
operational demands of drones, which often require processing high-resolution inputs to
ensure precise detection and tracking. A drone’s capability to process such resolutions at
a high FPS is crucial for applications requiring fine-grained detail and accuracy, such as
search-and-rescue operations or indoor surveillance.
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Table 9. Edge device specifications.

Specs Jetson Nano Jetson Xavier NX

CPU Quad-Core ARM® Cortex 6-core NVIDIA Carmel
Memory 4 GB 8 GB

GPU Architecture 128-core Maxwell GPU 384 CUDA® cores + 48 Tensor
cores Volta GPU

Flops 512 GFLOPS (FP16) 21 TOPS
Power 10 W 20 W

The experimental hardware setup, as shown in Figure 9, involved a specially designed
drone, which is equipped with two camera systems for real-time model testing: a D435i
depth camera and a IMX477 MIPI (Mobile Industry Processor Interface) RGB camera. The
depth camera operates at a resolution of 1280 × 720 at 30 fps, offering a field of view of 80
degrees horizontally and 40 degrees vertically, and it is effective over a range of 0.1 to 15
m. Its power efficiency is notable, requiring only 1.5 watts. The MIPI camera, on the other
hand, stands out as a high-resolution camera, adept at capturing high-frame-rate video.
Its resolution spans a broad spectrum, from VGA (640 × 480) to an impressive 12.3 MP
(4056 × 3040), with frame rates ranging from 20 to 60 frames per second. This camera is
recognized for its minimal power consumption, generally between 0.1 to 1 watt, and its
compact form factor, with size and weight varying based on the model. A 4S 6000 mAh
LiPo battery, ensuring extended operational capacity, powered the drone. Additionally,
it incorporated an NVIDIA Jetson Nano for onboard data processing and a RPLiDAR
system for effective obstacle detection and avoidance. The synergy of a high-capacity
battery, robust processing capabilities, and advanced imaging technology renders the
drone exceptionally suitable for comprehensive data gathering and diverse experimental
applications. This configuration underscores the drone’s versatility and effectiveness in
various research and testing scenarios for indoor environments.
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Figure 9. The custom-built drone is specifically designed for indoor experiments and testing the
YOLO-IHD model. In the configuration presented, the drone utilizes an NVIDIA Jetson Nano, which
is dedicated to testing and optimizing the indoor model. This setup ensures precise data collection
and real-time processing, essential for the accurate evaluation and enhancement of the YOLO-IHD’s
performance in indoor environments. (a) Flight in an indoor garage environment; (b) side view
of drone.

Furthermore, the tests included flying the drone in dimly lit areas to specifically eval-
uate the model’s performance in low-light conditions—a common challenge in indoor
surveillance. The YOLO-IHD model’s robustness was put to the test, and it demonstrated
significant competence in detecting humans with high reliability, which is pivotal for ensur-
ing safety and operational success. As a result, the real-time drone tests not only affirmed
the YOLO-IHD model’s superior detection capabilities but also provided insights into the
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optimal operational parameters for drones employing this model. These results have signif-
icant implications for the deployment of drones equipped with advanced object detection
systems, opening avenues for safer and more efficient indoor navigation and surveillance.

When integrating custom models like YOLO-IHD with edge devices, direct deploy-
ment is often not feasible due to hardware constraints. Custom models typically require
re-parameterization to match the computational capabilities of the target device. The pro-
cess involves converting the model to an ONNX (open neural network exchange) format,
which standardizes the model architecture. Once in ONNX format, TensorRT can then
be applied to optimize the model, creating a highly efficient inference engine tailored for
the edge device. This optimization includes layer fusion, precision calibration, kernel
auto-tuning, and dynamic tensor memory, allowing the model to run effectively within
the device’s resource limitations. These steps are crucial for leveraging the full potential of
edge computing in real-time applications, ensuring that the balance between speed and
accuracy is optimized for the specific use case like onboard human detection on drones.

The real-time analysis of the YOLO-IHD model, integrated with TensorRT across
different quantization levels (FP32, FP16, and INT8), reveals a trade-off between detection
speed and accuracy, as shown in Table 10. The model retains a consistent mAP of 76.23%
with FP32 and FP16 precision on the NVIDIA Tesla V100 GPU, while the frame rate doubles
from 185 FPS to 352 FPS when shifting from FP32 to FP16. This increase in speed can be
attributed to the reduced precision (floating-point), which allows for faster computation
without sacrificing accuracy. However, when the model is quantized to INT8, there is a
noticeable decrease in mAP to 58.84%, but the speed increases significantly to 485 FPS
on the V100. This suggests that for applications where speed is critical and some loss in
accuracy is acceptable, INT8 quantization could be beneficial. On edge device hardware
like the NVIDIA Jetson Nano and Xavier NX, the trade-offs are more pronounced. The
higher frame rates observed on the Xavier NX, achieving 45 FPS with FP16 and 68 FPS with
INT8 precision, underscore its viability for deployment in edge computing, reflecting its
robust computational capabilities. Also, the Jetson Nano shows 27 FPS using FP16 precision
and does not support INT8 due to hardware limitations. These results suggest that the
highly optimized custom model can run efficiently on edge devices, ensuring efficient
real-time performance even with reduced computational resources.

Table 10. Real-time performance results of YOLO-IHD after optimization using different TensorRT
conversions. The experimental results are conducted on the IHD validation set and the inference
results are obtained after converting the models into TensorRT with different quantization levels.

Library mAP@0.5 FPS (V100) FPS (Nano) FPS (Xavier NX)

PyTorch 76.23 185 8 25
FP32 76.23 187 7 25
FP16 76.23 352 27 45
INT8 58.84 485 - 68

Table 11 compares the frames per second (FPS) performance of the YOLO-IHD model
across different input resolutions and hardware configurations. For the 640 × 640 input
resolution, the Nano achieves 8 FPS, which increases to 27 FPS with TensorRT-FP16. The
Xavier NX starts at 25 FPS and improves to 45 FPS with TensorRT-FP16. At the lower
resolution of 416 × 416, the Nano’s performance jumps from 12 FPS to 35 FPS with
TensorRT-FP16, while the Xavier NX sees a rise from 34 FPS to 57 FPS.
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Table 11. Real-time performance results of YOLO-IHD on edge devices at various input resolutions,
with the device power mode set to ‘MAXN’ for maximum computational performance.

Input Size
Jetson Nano Jetson Xavier NX

Pytorch TensorRT Pytorch TensorRT

640 × 640 8 FPS 27 FPS 25 FPS 45 FPS
416 × 416 12 FPS 35 FPS 34 FPS 57 FPS

The performance enhancement with the TensorRT-FP16 optimization on the Jetson
Nano and Xavier NX is significant, especially on the Xavier NX, which shows a remarkable
increase in FPS, nearly doubling at a resolution of 640 × 640. At the lower resolution
of 416 × 416, the improvement remains substantial. This underscores the effectiveness
of TensorRT optimization in achieving higher processing speeds necessary for real-time
applications on edge devices. The results of these experiments inform the hardware
selection process for drones, emphasizing the importance of choosing an edge device that
offers both optimal real-time performance and meets the necessary resolution requirements.

In conclusion, integrating the YOLO-IHD model with TensorRT present certain limita-
tions and challenges, particularly in adapting high-accuracy models for real-time applica-
tions. Employing various quantization levels introduces flexibility, allowing for customiza-
tion in balancing speed and accuracy to fulfill the demands of real-time detection scenarios.
As indicated in Table 9, the Jetson Nano, chosen for its low power consumption, offers
significant benefits for drone applications. However, due to the Jetson Nano’s hardware
limitations, the best balance between speed and accuracy is achieved using FP16 precision.
This strategic choice underscores a specific trade-off, prioritizing efficient power usage
while maintaining effective performance.

5. Discussion

In this study, the YOLO-IHD method was evaluated in various indoor environments
like garages, shopping centers, and concert venues, focusing on detecting human subjects
of different sizes. The results highlight the method’s effectiveness in diverse settings,
emphasizing its significance for models used in densely populated indoor areas and its
adaptability in challenging conditions.

In a comparison of object detection models, the proposed YOLO-IHD model demon-
strates significant advancements over existing state-of-the-art models in the VisDrone
dataset, as evidenced by the data in Tables 7 and 8. YOLO-IHD achieves a remarkable
69.55% mAP@0.5 in human detection, substantially outperforming previous models in
the ‘Pedestrian’ and ‘People’ categories. For example, it shows marked improvement over
YOLOv3, which scored 12.8% and 7.8%, and YOLOv7-tiny, with 36.5% and 34.4%, in these
categories. Even compared to recent models like YOLOv7, PDWT-YOLO, and YOLOv8,
with scores between 44.25% to 45.15%, YOLO-IHD stands out for its higher accuracy. Fur-
thermore, it surpasses MS-YOLOv7, a robust model with 63.2% and 51.7% in ‘Pedestrian’
and ‘People’. YOLO-IHD’s consistent AP in these categories highlights its reliability and
effectiveness, attributed to its unique features like the added small-object detection layer,
CSPSPPF module, data augmentation, and Mish activation function, specifically designed
for aerial human detection.

The YOLO-IHD model was tested for its detection capabilities under different per-
spectives and indoor conditions. Figure 10 illustrates that, compared to the baseline model,
YOLO-IHD detected more objects. The addition of the small-object detection layer to YOLO-
IHD, as evident from the images, yielded successful results in detecting small objects. In
Figure 11, the model successfully identified objects of varying sizes in a shopping mall
under different angles and lighting conditions, outperforming the baseline model. This
success can be attributed to the model being trained with an augmented dataset, which
enhanced its prediction accuracy for objects of different sizes, angles, and views.
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Figure 12 presents a detection study conducted in a closed garage. The baseline model
also managed to detect human objects. However, the primary reason for the 31% increase
in accuracy of the YOLO-IHD model in darker areas is its enhancement with CSPSPPF and
Mish functions. Additionally, a series of experiments were conducted involving multiple
subjects in an enclosed garage environment. These experiments demonstrated that the
YOLO-IHD model not only surpasses the baseline model in terms of accuracy but also
exhibits superior detection capabilities. This is particularly evident in scenarios involving
small-scale objects, as illustrated in Figure 13. In these instances, whereas the baseline
model failed to detect a small human object, the YOLO-IHD model successfully detected it,
underscoring its enhanced performance in complex low-light environments. In Figure 14,
the model was tested in an auditorium, a setting characterized by a complex background
and varying lighting conditions. This was among the most challenging experiments
due to the combination of complex context and varying light. Despite these challenges,
the YOLO-IHD model showed improved performance over the baseline model in this
complex context.
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The conditions and ambiance in Figure 14 are considered crucial for future develop-
ment efforts. The ability of YOLO-IHD to perform well in such a challenging and dynamic
environment highlights its potential for further enhancements and wider applications in
real-world scenarios.

6. Conclusions

This study introduces significant advancements for indoor human detection methods
using a refined version of the YOLOv7-tiny. The YOLO-IHD model incorporates specific
modifications that substantially enhance its precision in human detection, making it partic-
ularly effective for drone-based applications. These modifications include the integration
of a small-object detection layer, the adoption of the Mish activation function, and an
enhanced spatial pyramid pooling (SPP) mechanism. Together, these enhancements have
resulted in a robust model for the complexities of indoor environments and drone-specific
challenges. Relative to the baseline YOLOv7-tiny model, YOLO-IHD has shown a signif-
icant improvement in performance, achieving a 42.51% increase in the IHD dataset and
a 33.05% increase in the VisDrone dataset. This considerable enhancement in accuracy
underscores the model’s sophisticated design and its alignment with practical human
detection surveillance needs. The proposed model’s real-time applicability was evaluated
on edge computing platforms, revealing that YOLO-IHD operates at 27 FPS on Jetson
Nano and 45 FPS on Xavier NX. These frame rates are indicative of the model’s capacity to
function efficiently in real-time applications, suggesting its suitability for deployment in
edge devices where computational efficiency is important.

The YOLO-IHD model represents a substantial advancement in the field of real-time
indoor human detection, offering a robust and well-tested solution that enhances the
surveillance capabilities of drones. This research provides insights and developments
poised to revolutionize autonomous surveillance in complex indoor scenarios. Its novel
integration of a small-object detection layer, the utilization of the Mish activation function,
and the enhancement of the spatial pyramid pooling mechanism demonstrate a significant
improvement in current lightweight detection models. Furthermore, the quantization of
the proposed model for onboard edge devices is noteworthy for its real-time detection capa-
bility. These unique features ensure exceptional accuracy in complex indoor environments,
a critical aspect for real-world applications.

For future work, to enhance YOLO-IHD’s efficiency in crowded areas, integrating
a multi-scale detection mechanism is proposed. This mechanism allows the model to
distinguish between individuals in close proximity by using distinct spatial features at
various scales. For low-light conditions, a dual-phase approach involving automatic image
enhancement algorithms coupled with infrared spectrum analysis could be implemented,
enabling the model to adaptively switch between visual and thermal imaging for opti-
mal detection. In occlusion scenarios, leveraging the depth data from Intel D435i, a 3D
reconstruction of the environment can be utilized in conjunction with 2D image data. This
hybrid approach will enable the model to infer the presence of humans even when partially
obscured, by reconstructing the likely shape and position of occluded parts based on the
environmental context. This technical enhancement aims not only to improve accuracy in
complex scenarios but also to expand the operational versatility of YOLO-IHD in varied
indoor environments.
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