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Abstract: Across five studies, we present the preliminary technical validation of an infant-wearable
platform, LittleBeats™, that integrates electrocardiogram (ECG), inertial measurement unit (IMU),
and audio sensors. Each sensor modality is validated against data from gold-standard equipment
using established algorithms and laboratory tasks. Interbeat interval (IBI) data obtained from the
LittleBeats™ ECG sensor indicate acceptable mean absolute percent error rates for both adults
(Study 1, N = 16) and infants (Study 2, N = 5) across low- and high-challenge sessions and expected
patterns of change in respiratory sinus arrythmia (RSA). For automated activity recognition (upright
vs. walk vs. glide vs. squat) using accelerometer data from the LittleBeats™ IMU (Study 3, N = 12
adults), performance was good to excellent, with smartphone (industry standard) data outperforming
LittleBeats™ by less than 4 percentage points. Speech emotion recognition (Study 4, N = 8 adults)
applied to LittleBeats™ versus smartphone audio data indicated a comparable performance, with no
significant difference in error rates. On an automatic speech recognition task (Study 5, N = 12 adults),
the best performing algorithm yielded relatively low word error rates, although LittleBeats™ (4.16%)
versus smartphone (2.73%) error rates were somewhat higher. Together, these validation studies
indicate that LittleBeats™ sensors yield a data quality that is largely comparable to those obtained
from gold-standard devices and established protocols used in prior research.

Keywords: wearable devices; multimodal sensing; audio; electrocardiogram; inertial measurement
unit; infants

1. Introduction

Advances in personal sensing, Internet of Medical Things, and digital health have
rapidly accelerated over the past decade [1–4], including the use of wearable devices
among adults [2,5,6], children and adolescents [7–9], and infants [10–13]. Innovations in
infant wearables, in particular, have predominantly focused on wireless skin-interfaced
biosensors made of soft, flexible electronics that permit the continuous monitoring of vital
signs, including but not limited to heart rate, blood pressure, temperature, respiration,
and blood oxygen saturation (see [11–13]). Such sensors present notable benefits over
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more conventional wired systems, such as decreased iatrogenic effects (e.g., less damage
to the infant’s delicate skin) and increased mobility (e.g., the infant can be picked up and
held by a parent or caregiver, i.e., kangaroo care). Nonetheless, their development and
testing have been largely restricted to neonatal and pediatric intensive care units (NICUs,
PICUs), calling into question their utility and feasibility with respect to in-home monitoring
under free-living conditions, in which infants’ movements, location, and environment may
continuously change. Further, systems monitoring multiple vital signs typically require
the placement of sensors on different parts of the body (see [11,12,14] for examples), which
increases the complexity of the set up for the caregiver as well as the potential discomfort
or restriction in movement for the infant, all of which may further decrease the feasibility
for home use. Undoubtedly, these sensor systems address an important clinical need–to
monitor the infant’s physical health via the detection of changes in vital signs in ways that
are more patient-friendly. Understandably, however, these systems do not include sensing
modalities, such as audio, that would permit the assessment of the infant’s biobehavioral
development or social environment.

We aim to complement prior work on infant sensors for physical health monitoring
in hospital settings by developing an infant wearable to monitor biobehavioral develop-
ment and mental health in the home context. With this aim in mind, our interdisciplinary
research team has developed a wearable platform, LittleBeats™, designed specifically for
use with infants and young children. Compact and lightweight, LittleBeats™ is worn in
the pocket of a specially designed shirt and integrates electrocardiogram (ECG), inertial
measurement unit (IMU), and audio sensors on a single printed circuit board to permit
daylong (8–10 h/day) remote assessments of infants/children and caregivers in home
environments. Such wearable technology, especially when paired with machine learning
algorithms, has the potential to transform our understanding of developmental processes
through “big data” collected in real-world environments [15]. In this paper, we present
the preliminary technical validation of the data quality of each LittleBeats™ sensor (ECG,
IMU, audio) by assessing its signal quality in relation to the same signal obtained from
an off-the-shelf gold-standard device. For this assessment, we compare the output perfor-
mance of established algorithms and data reduction methods where the input signals are
collected using the LittleBeats™ device and an off-the-shelf gold-standard device. In the
subsections below, we first highlight the anticipated contribution of LittleBeats™ to the
existing literature on wearable devices used with infants in home settings. Next, we identify
the need for the current technical validation in the larger context of wearable sensor systems
that comprise multiple parts and, thus, multiple validation steps. Finally, we present our
specific objectives with respect to the technical validation of each sensor modality.

1.1. Contribution of the LittleBeats™ Platform

Although advances in smartphone technology and wearable sensors have resulted in a
surge of ambulatory assessments with adolescents and adults [16–18], current commercially
available devices typically rely on one unit of analysis, such as self-reported behavior [18],
physiological functioning [19–21], or audio recordings (EAR; [22] Language ENvironment
Analysis [LENA], [23,24]), and almost none are feasible and/or validated for use with
infants or young children. Indeed, the limited number of wearables that have been (a) used
in the home (b) with infants and young children (c) across extended periods of time (e.g.,
daylong recordings) and (d) are validated is striking, particularly when compared with
the proliferation of infant-wearable biosensors that have been designed for clinical use in
hospital settings. The LENA system, which permits daylong audio recordings collected
with an infant-worn recording device and includes proprietary software that automates the
word counts of both infants and adults in the home, is a notable exception [23–26]. Commer-
cially available infant wearables designed for home use that monitor physiological signals
tend to lack rigorous validation (see [20,27]). Further, with respect to cardiac monitoring
specifically, the quality signal of ECG makes it the gold standard compared with more noisy
sensor signals used in wearables (e.g., phonocardiogram, photoplethysmography [28]).
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These latter sensors yield limited or gross cardiac measures (e.g., heart rate), whereas ECG
data can capture a greater array of indices (e.g., cardiac vagal tone [29], which is assessed
through R-R peak detection). With respect to monitoring infants’ physical movements,
researchers have used arrays of IMUs, typically 3–4 sensors placed on infants’ limbs, to
assess body position [30–33], and these studies complement a larger body of work using
IMU and actigraphy to detect physical activity among preschool-aged children (see [34]).

As seen above, infant wearables designed for in-home use have predominantly focused
on a signal modality: audio, physiology, or motion. Prior work assessing a combination
of behavioral (via audio, video, or motion sensors) and physiological (i.e., ECG, electroen-
cephalography [EEG]) signals among infant samples in the home environment is extremely
rare, and in these cases, separate data collection platforms or devices have been used to col-
lect different data streams [15,35,36]. Such methods yield rich data, but limitations include
the complexity of the sensor setup for parents to implement on their own, concerns about
the child tolerating multiple sensors for prolonged periods of time, and challenges and
pitfalls of post hoc signal synchronization. To the best of our knowledge, LittleBeats™ is the
first wearable that focuses on simultaneously and continuously monitoring cardiac physiol-
ogy, motion, and vocalizations of infants and young children. Given no existing device can
simultaneously collect data from all three modalities, we see the gap and opportunity to
develop this compact multimodal platform to capture the biobehavioral development and
mental health of infants and young children from daylong recordings in the home context.

1.2. Wearable Sensor Systems and Technical Validation as a Critical Step

Wearable sensor systems involve multiple steps, including (a) data acquisition, i.e., the
collection of the raw sensor data, (b) data processing, i.e., the reduction of the raw sensor
data into desired features and metrics, (c) health status detection, i.e., comparing reduced
data or metrics against clinical thresholds for diagnostic or treatment purposes, (d) wireless
communication, i.e., the transfer of data metrics and clinical information to physicians,
parents, and/or other health professionals, and (e) power supply, which is an essential
consideration underlying the successful implementation of all other parts of the system [10].
Each part of the sensor system, in turn, requires validation. As such, researchers have
highlighted the need for digital health technologies, including wearables, to incorporate
technical validation (or measurement verification, e.g., how do the raw signals compare to
the technical gold standard?), analytic validation (e.g., how well do the algorithms applied
to the raw sensor data yield meaningful measures of targeted behavioral or physiological
constructs), clinical validation (e.g., how do the key measures perform in comparison with
the clinical gold-standard?), and usability (or clinical utility, e.g., is the device easy to use?
will the user use it in the intended way?) [37,38]. In this report, we undertake a critical step
in the larger validation of the LittleBeats™ platform by conducting a technical validation
on each type of sensor data acquired by the LittleBeats™ device.

To this end, we use laboratory tasks and algorithms that have already been estab-
lished and verified in the literature, and we compare their performance when applied to
LittleBeats™ data versus data from a gold-standard device. We use established tasks and
algorithms in this way to eliminate any uncertainty or performance bias that may be intro-
duced by tasks or algorithms developed specifically for LittleBeats™. Relatedly, although
we have designed the LittleBeats™ platform for use with infants and young children, the
technical validation studies in this report are conducted primarily with adult samples
because there are few established algorithms that are validated among infants/children.
Furthermore, there are few if any standardized assessment protocols of physical movement
(to evaluate IMU data) or vocalizations (to evaluate audio data) among infants and young
children given the logistical challenges and impracticality of such procedures. The assess-
ment of stress physiology is a notable exception, and we leverage a laboratory task (Still
Face Paradigm [39–41]) and algorithm (Porges–Bohrer [41,42]), both of which are widely
used and validated among infant samples (see Study 2).
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In tandem with the technical validation studies reported here, we have collected
LittleBeats™ data among children under five years of age in the home environment and
validated algorithms (i.e., analytic validation) of infant/child and parent vocalizations using
audio data from the LittleBeats™ device [43] and infant/child sleep using all three sensor
modalities [44]. Further, we have assessed parents’ perceptions and experiences of using the
LittleBeats™ device (i.e., usability testing) with their children in the home across multiple
daylong recordings [45]. The current paper complements these prior reports by providing
a detailed description of the LittleBeats™ device used for data acquisition, followed by
the technical validation of each of the three sensors (ECG, IMU, audio) using standardized
laboratory procedures. Finally, although we use signal processing and machine learning
algorithms in our technical validation, this work does not constitute an analytic validation
because the analytic methods we employ here are well established and have been previously
validated.

1.3. Validation of ECG (Study 1, 2), IMU (Study 3), and Audio (Study 4, 5) Sensors

Our first objective is to validate data obtained from the LittleBeats™ ECG sensor.
Such data are a critical aspect of the LittleBeats™ platform because they provide key
information about physiological stress. Specifically, we aim to assess cardiac vagal tone,
which is an indicator of parasympathetic activity reflective of the myelinated vagus (or
Xth cranial nerve) that provides motor and sensory linkages between the brainstem and
visceral organs (e.g., heart and bronchi) [29,46,47]. At rest, higher vagal tone indicates
greater regulatory capacity. Under challenge conditions, the withdrawal of the vagal
“brake” (and corresponding vagal suppression) supports vigilance of the environment and
mobilization in response to the challenge. Respiratory sinus arrhythmia (RSA), a measure
of heart rate variability as a function of the rate of spontaneous respiration, is a well
established and noninvasive method for assessing cardiac vagal tone in both adults [29,48]
and children [49–51]. RSA is computed from interbeat intervals (IBI) and is most accurately
assessed via ECG. Thus, an ECG sensor is an integral part of the LittleBeats™ platform and
enables the assessment of dynamic changes in cardiac vagal tone and reactivity (via RSA) in
response to stressors. We recruited an adult sample (Study 1) and an infant sample (Study 2)
to assess the performance of the LittleBeats™ 3-lead ECG sensor against the BIOPAC MP160
system (BIOPAC Systems, Inc., Camino Goleta, CA, USA), a gold-standard wireless system
for measuring ECG in laboratory studies and one that has been used in similar validation
studies [52–54]. Because a host of prior studies have validated a laboratory task (i.e., Still
Face Paradigm [39–41]) and algorithm (i.e., Porges–Bohrer [41,42]) to assess infant stress
physiology, we conducted a second laboratory validation of the LittleBeats™ ECG sensor
with a small infant sample (Study 2).

Our second objective was to validate the performance of the LittleBeats’ IMU (Study 3),
which integrates an off-the-shelf IMU sensor that has been used in prior studies with ex-
cellent performance [55–57]. Including an IMU on the LittleBeats™ platform provides
information on posture and movements that can be used to assess such constructs as infant
physical activity, sedentary behavior, and sleep. For the purpose of this report, we con-
ducted an initial technical validation of the IMU with adults using controlled protocols and
key physical activities that have been examined extensively in the literature [58–60]. Similar
to prior validation studies of IMUs [61–63], we conducted an on-body validation experi-
ment on predefined motions collected in the laboratory. Additionally, given the pervasive
and effective use of smartphones in IMU-based human activity detection research [58–60],
we used a smartphone IMU (Google Pixel 1, with the SensorLogic app) as the industry
standard [58].

Our third and final objective was to verify the audio quality of LittleBeats™. To this
end, we evaluated adults’ speech on two standard speech-processing tasks: speech emotion
recognition (SER, Study 4) and automatic speech recognition (ASR, Study 5). In previous
studies, algorithm workflows of SER [64–66] and infant/parent vocalization classification
tasks [67–70] have shared many similarities, such as (1) extracting paralinguistic or hand-
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crafted features at the utterance-level and/or acoustic features at the frame-level as input
and (2) performing classification tasks using traditional classifiers (e.g., support vector
machine and k-nearest neighbor) or neural-network-based models (e.g., convolutional
neural networks and recurrent neural networks). These similarities make a technical
validation in the context of SER particularly relevant for LittleBeats™ intended use to
assess infant vocalizations. Further, although we do not intend to use LittleBeats™ data to
transcribe speech recorded in the home, testing LittleBeats™ audio on an ASR task serves
as an especially effective indicator of LittleBeats™ audio quality given the established
advanced ASR technology [71–73] that is capable of dealing with a variety of accents,
dialects, and noisy environments. If LittleBeats™ performs well with such advanced ASR
systems, it indicates that its audio quality is likely to be very high.

2. Overview of LittleBeats™ Platform

To collect synchronized multimodal sensor data suitable for infants and young chil-
dren, we designed a unique sensing platform called LittleBeats™. All electronics are housed
in a 3D-printed case (55 × 57 × 13 mm; see Figure 1), and the device weighs 1.48 ounces
(42 g), making it suitable as a child wearable. The LittleBeats™ device is placed in a
specially designed t-shirt that the child wears (see Figure 1). A chest pocket with a side
opening is centered on the shirt and snugly holds the LittleBeats™ device in place. The
inside of the pocket is padded with a thin foam layer for comfort, and two 1

4 inch metal
snaps are used to securely close the pocket.
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published [45] under the Creative Commons Attribution License.

2.1. Hardware Design

LittleBeats™ consists of five components: a processing unit, memory unit, time-
keeping unit, power unit, and sensing unit (see Figure 2). The technical specifications for
each of these components are provided below. LittleBeats™ is not a commercial device,
which eliminates concerns about “expiration dates” and permits easy modifications to
firmware (e.g., “turning off” one or more of the sensors) to suit research goals.

2.1.1. Processing Unit

LittleBeats™ is controlled by an ARM Cortex M0 processor, clocked at 48 MHz, and
has 256 KB of flash memory and 32 KB of RAM. This processor supports data reading and
writing using a serial peripheral interface (SPI), inter-integrated circuit interface (I2C), inter-
IC sound (I2S), and an analog-to-digital Converter (ADC). This processor is responsible for
collecting data from the sensors, storing the data on the microSD card, and pooling time
from the real-time clock using the I2C and SPI. The unit can communicate with Bluetooth
Low Energy (BLE), which we currently turn off to reduce energy consumption.
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2.1.2. Memory Unit

Besides the flash memory in the microcontroller, to store the collected data, we use a
32 GB microSD card. The microSD socket connects to the microcontroller’s SPI port pins,
and the SD card uses exFAT format to maximize the read–write speed. With a 32 GB SD
card, we can record up to a total of 65 h of audio, motion, and ECG data across multiple
recordings.

2.1.3. Time-Keeping Unit

Though the processing unit has an internal clock, it resets on every reboot of the device
and is not synched with the outside world, a functionality that is essential for longitudinal
data collection. We use a battery-backed real-time clock (RTC), PCF8523 with 32 kHz crystal,
that is interfaced to the microcontroller using the I2C protocol. Note that the processor
clock and the RTC are two different clocks; the first is a relative clock that starts from 0
when the system powers on, and the second is a real-time clock with a backup battery and
is synchronized with the universal clock, which provides log data timestamps. We have
performed a detailed system test and found that this RTC has a drift of 1–3 s every 11–12 h.
As our main intention with the RTC is to synchronize the three sensing modalities, this
drift does not influence our goal and, thus, does not require regular resynchronization.
When preparing the LittleBeats™ device in the lab to send to a new family, the clock is
synchronized via the UART interface via the Coordinated Universal Time or UTC clock.

2.1.4. Power Unit

The system is powered by a 500 mAh LiPo rechargeable battery (LP303450) that
provides approximately 11 h of operational capability per charge. This battery comes with
a Protection Circuit Module and meets national (UL2054) and international (IEC 62133)
safety standards, including RoHS compliance. The system is powered on and off by a
manual switch for easy usage.

2.1.5. Sensing Unit

LittleBeats™ consists of three different sensor modalities: a microphone, a 3-lead ECG
sensor, and an IMU. To record audio, we use a SPH0645LM4H breakout board, which
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includes a single MEMS microphone and the necessary circuitry to output digital signals
(24-bit data) using the I2S protocol. The microphone has a low current requirement of
600 µA and a high signal-to-noise ratio (SNR) of 65 dB. To record ECG, we use the AD8232
heart rate monitor, which measures the electrical activity of the heart and outputs an ECG
as an analog reading. Disposable electrodes are connected to the lead wires (20 cm) via
button snaps (1 cm), and the three leads are connected to the device via a 2.5 mm jack. To
record motion, we use LSM9DS1, which is a 9-degrees of freedom IMU consisting of a
3-axis accelerometer, a 3-axis magnetometer, and a 3-axis gyroscope. These sensors together
provide data on acceleration, direction, and orientation, respectively.

2.2. Data Acquisition

We have developed custom firmware for the system written in the C programming
language and enable timestamped data streams from all three sensor modalities to be stored
on the SD card. For both adult and infant data (including daylong home recordings not
reported here), we sample audio at 22 kHz (downsampled to 16 kHz during preprocessing),
ECG at 2426 Hz, and 9-axis motion data at 70 Hz. The writing of audio data to the SD card
occurs every 10 s, whereas writing the ECG and IMU data occurs every 30 s. These “chunk”
durations were determined, keeping the maximum data transfer rate of the peripheral bus
of the processor (which is a 32-bit multicentral/multiperipheral bus) in mind.

The time from the RTC is recorded at the start and end of each data chunk for syn-
chronizing the multiple data streams. We store these data in little-endian binary format
unreadable to humans without further processing. These binary files are converted to a
human-readable format (.csv for ECG and IMU; .wav for audio) with our custom Python
scripts after removing the SD card from the device. The data extraction codes also perform
several preprocessing steps (described in the relevant study sections below) to verify and
maintain the quality of the data.

2.3. Data Synchronization

Using the time-keeping unit, we synchronize the data collected from three modalities.
As these files are written to the SD card in an asynchronized manner, and the sampling
rate of each modality is different, there is a need for synchronization. As mentioned in the
previous section, each file (or data chunk) in the SD card is timestamped with start and
end times. We split the recorded samples into frames (files) by aligning the starting index
to the timestamp. The split sample frames are naturally synchronized because the UTC
timestamps are consistent across the three sensor modalities. Depending on the version
of the device firmware used during data collection, we zero padded the split sample
frames for ECG and audio data prior to synchronization to match the expected frame
period. IMU data, which are collected at a much lower sampling rate, were not affected by
missing samples.

Importantly, the data collection for the various studies described in this report was
slowed due to the COVID-19 pandemic, and in the interim, the device firmware was
updated. Studies 1, 3, and 4 reported below used Version 1 firmware, whereas Studies
2 and 5 used Version 2. The key update to Version 2 was switching from a FAT32 (write
speed: 108.42 KB/s) formatting of the SDcard to an exFAT (497.33 KB/s) format and
the corresponding SdFat Arduino library, which resulted in faster write times and, thus,
substantially fewer missing samples in the audio (see Study 4 versus 5) and no missing
samples in ECG (see Study 1 versus 2). When applicable, we note the amount of zero
padding (i.e., missing samples) for the sensor modality under investigation.

3. Study 1: Validation of ECG Sensor–Adult Sample
3.1. Materials and Methods
3.1.1. Participants

Sixteen adult participants (56.3% female; mean age = 27.4 years, SD = 8.82, range:
18–46) were recruited through a university listserv and flyers displaying study information
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posted in multiple university buildings. Both forms of recruitment reached adults across
various educational and racial/ethnic backgrounds. Participants reported on their highest
level of education (13% high school graduate, 20% some college, 40% bachelor’s degree,
27% advanced degree) and their race and ethnicity (33.3% Asian, 60% White non-Hispanic,
6.7% Hispanic). Participants were eligible to participate if they met the following criteria:
(a) at least 18 years of age and (b) no known heart problems or abnormalities.

3.1.2. Study Procedure

Participants visited the laboratory and were guided through a series of tasks while
wearing two ECG monitors: (a) LittleBeats™ (Version 1 firmware) and (b) the BIOPAC
MP160 system (BIOPAC Systems, Santa Barbara, CA, USA). Six disposable, pregelled,
signal-conditioning electrodes were placed on the participant (3 electrodes per device):
two below the left clavicle, two below the right clavicle, and two just below the ribcage
(i.e., Einthoven’s triangle). Pairs of electrodes were placed side by side but did not touch
or overlap. The LittleBeats™ device and BIOPAC BioNomadix wireless transmitter were
placed in a specially designed t-shirt with two chest pockets, providing a form factor that
was comparable across the two devices and mirrors the form factor used with infant and
child participants. BIOPAC samples ECG at 1000 Hz.

Participants were video recorded while completing the following tasks: (a) a 3 min
baseline, which involved viewing a clip from a calming video of sea animals, (b) a 4 min
puzzle task, which involved solving a 14-piece Tangram puzzle, (c) a 2 min recovery using
another clip from the video viewed during the baseline session, and (d) a 4 min nonverbal
abstract reasoning task using Raven’s Progressive Matrices (standard version) [74]. The
puzzle and matrices tasks each presented a cognitive challenge, and such tasks have been
used successfully in prior research to elicit a physiological stress response (i.e., cardiac
vagal withdrawal) among adults [75–77] and children [78,79] alike. Further, participants
completed the two challenge tasks (i.e., puzzle and matrices) while a large countdown
timer was displayed on the computer screen, thereby increasing potential stress. For the
Tangram puzzle task, eight participants completed the puzzle in under 4 min (M = 2.63,
SD = 0.87), and the ECG data for these participants included only the time in which the
participant was engaged in solving the puzzle. The Raven’s Progressive Matrices include
sixty multiple choice items; items are organized within five sets (twelve items each), and
items within each set increase in difficulty. Participants were instructed to complete as
many items as possible within the time allotted, and as expected, no participants completed
all items within the 4 min timeframe (M items completed = 28.31, SD = 6.22).

3.1.3. Data Processing

We implemented the following data pre/postprocessing steps to extract IBI values
from the ECG LittleBeats™ and BIOPAC data and compute RSA values: (1) CardioPeak &
Segmenter for LittleBeats™ v1.0 [80] was used to extract the R-R peaks from the LittleBeats™
and BIOPAC ECG data and derive the time in milliseconds between consecutive R peaks
(i.e., IBI values, 250 Hz sampling rate). This software outputs separate IBI files for each
task/session (task time information, which is derived for BIOPAC and LittleBeats™ from
the video and audio recordings, respectively, provided in a separate CSV file serves as an
additional input file). (2) To correct for artifacts due to zero padding (M = 2.36% missing
samples, SD = 0.14%) in Version 1 of the device firmware, we passed the IBI data through a
custom filtering script that took into account missing data samples and used standard IBI
artifact detection and editing approaches [81] to correct IBI points due to missing samples.
(3) LittleBeats™ and BIOPAC IBI for each task were manually aligned in time by plotting
IBI values from each device as a function of time in Excel (see Supplementary Materials
for example plots for Study 1 adult data [Figure S1]). (4) All IBI data files were reviewed
and, when needed, manually edited using CardioEdit v1.5 by members of our research
team who had been previously trained and certified by the Porges’ Brain-Body Center
for Psychophysiology and Bioengineering (BBCPB) at the University of North at Carolina
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Chapel Hill. (5) RSA was computed from BIOPAC and LittleBeats™ IBI data using the
Porges–Bohrer algorithm [42] by calculating the natural logarithm of the variance of heart
period within the frequency bandpass related to respiration (0.12−0.40 Hz for adults) in
CardioBatch Plus [82] software. Within each task, RSA values were computed in 30 sec
epochs and then averaged across epochs to obtain task-level means.

Data from an additional seven participants were collected but were excluded because
for one or more of the target sessions (baseline, puzzle, recovery, matrices), the BIOPAC file
could not be edited due to an extreme value and/or more than 5% edits (n = 4), technical
problems with the video recording, which was needed to align the two files at the session
level (n = 2), and fewer than 90 s of data available (n = 1).

3.2. Results

We present three sets of analyses. First, we computed error statistics in the LittleBeats™
IBI values via (a) mean error (i.e., average difference between BIOPAC and LittleBeats™
IBI values), (b) mean absolute error (i.e., average absolute difference between BIOPAC and
LittleBeats™ IBI values), and (c) mean absolute percent error (i.e., MAPE; mean of absolute
error divided by BIOPAC IBI value and multiplied by 100). MAPE is a widely used metric
in the validation of physiological sensors, and an error rate of ±10% has been deemed
acceptable for ECG-related measurements in recent studies [83–85] and by the Consumer
Technology Association [86]. The number of total IBI data points and error statistics for
each task are shown in Table 1.

Table 1. Error statistics and Bland–Altman analyses for adult participants’ (Study 1) interbeat intervals
(in milliseconds) during the baseline, puzzle, recovery, and matrices tasks.

Session (n Observations) Absolute Mean
Error

MAPE (%) Mean Error (SD)
Bland–Altman Analysis

Lower LoA Upper LoA

Baseline (n = 3355) 49.6 5.93% 11.1 (77.3) −162.54 140.33
Tangram puzzle (n = 3744) 41.9 5.29% 4.5 (62.8) −127.59 118.65

Recovery (n = 2777) 49.7 5.97% 12.7 (73.1) −156.02 130.55
Matrices (n = 4589) 45.6 5.62% 10.6 (68.3) −144.51 123.28

Note. Except for MAPE, which is reported as a percentage, all other values are reported in milliseconds. Mean
error computed as BIOPAC minus LittleBeats™ IBI. MAPE = mean absolute percent error; LoA = 95% limits
of agreement.

The MAPE was under 6% for all tasks across all participants. MAPE values were also
computed separately by participant and ranged from 0.57% to 13.64% for the baseline, 0.59%
to 11.74% for the puzzle task, 0.57% to 11.31% for recovery, and 0.63% to 12.39% for the
matrices task. Of the 64 MAPE scores (16 participants × 4 tasks), 26 were under 5%, 33 were
under 10%, and 5 were between 10% and 13.64% percent. Data from the same participant
yielded the lowest MAPE values across all tasks, whereas data from two participants
yielded the highest MAPE values (baseline and matrices for one participant; puzzle and
recovery for the other). For descriptive purposes, we computed the bivariate correlational
value between BIOPAC average IBI values and MAPE scores. Weak-to-moderate positive
associations emerged, although associations were not statistically significant (rs = 0.24
0.45, 0.26, 0.21, ps = 0.37, 0.08, 0.33, 0.44, baseline, puzzle, recovery, and matrices tasks,
respectively). Scatterplots of these associations indicated a positive association between
BIOPAC IBI average scores and MAPE until IBI scores reached approximately 0.90 s; the
few cases with an average IBI score greater than 0.90 s showed no discernible increase
in MAPE.

Second, Bland–Altman plots provide a direct and appropriate comparison between
quantitative measurements of the same phenomenon [87]. Bland–Altman plots of IBI values,
in which the X axis represents the mean of the two instruments (LittleBeats™, BIOPAC) and
the Y axis represents the difference (in milliseconds) between the two instruments (BIOPAC
minus LittleBeats), are shown in Figure 3. IBI values are plotted separately by task and color
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coded by participant. Bland–Altman plots can be used to assess the presence of outliers
(with respect to differences in the two measurements) or whether data are systematically
biased (i.e., difference between measures is consistently in one direction). Across tasks,
the mean error (BIOPAC–LittleBeats™) in IBI values ranged from 4.5 milliseconds (puzzle
task) to 12.7 milliseconds (recovery) as shown in Table 1 above, indicating the BIOPAC
and LittleBeats™ IBI values were typically within hundredths or thousandths of a second
and that, on average, LittleBeats™ (vs. BIOPAC) IBI values were slightly lower. The
Bland–Altman plots also show that 95% of the BIOPAC–LittleBeats™ errors (difference
scores) fall within a range of approximately± of 150 milliseconds (see Table 1 for specific
95% limits of agreement for each task). Further, errors are smaller at the lower end of
observed IBI values (i.e., ~500 to ~700 milliseconds on the X axis) and are more dispersed
at the middle and higher ends of observed IBIs (i.e., ~800 to ~1200 milliseconds), although
this pattern varies as a function of case and task (e.g., the case shown in peach exhibits
moderate levels of IBI, with a lower error rate in the baseline task but more dispersion in
errors in the puzzle, recovery, and matrices tasks). Finally, errors show a relatively even
distribution around the mean error (black line) and limits of agreement (orange lines) in
the Bland–Altman plots across tasks and individuals, indicating little systematic bias in
the errors.
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Our third and final analysis focused on RSA measurements derived from the IBI data
(see Data Processing section above). We plotted the RSA sample means and distributions
for each task (see Figure 4). Because the puzzle and matrices tasks each presented a mild
to moderate challenge, we expected RSA to decrease from baseline to the puzzle task,
increase from puzzle to recovery, and decrease again from recovery to the matrices task.
Paired t-tests indicated significant (p < 0.05, one-tailed) and hypothesized differences in
RSA means across tasks: (a) baseline minus puzzle, t(15) = 2.71 and 1.78, p = 0.008 and 0.047,
BIOPAC and LittleBeats™, respectively, (b) puzzle minus recovery, t(15) = −2.30 and −1.96,
p = 0.018 and 0.034, and (c) recovery minus matrices, t(15) = 2.36 and 2.00, p = 0.016 and
0.031. Thus, despite a degree of error in the LittleBeats™ IBI values, expected task-related
changes in RSA were observed and mirrored RSA changes assessed via IBI data obtained
from the BIOPAC system.
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4. Study 2: Validation of ECG Sensor–Infant Sample
4.1. Materials and Methods
4.1.1. Participants

We recruited five infants (3 females, Mage = 7.64 months, age range: 4–12 months) via
an announcement posted on a university-wide listserv. Paralleling Study 1 procedures,
infant ECG data were collected simultaneously by LittleBeats™ and the BIOPAC MP 160
system in the laboratory. Due to the burden of wearing two ECG monitors simultaneously
and because results from Study 1 indicated an acceptable agreement between the two
devices, we limited our infant sample to five participants across a wide range of ages
during the first year of life. Infants were eligible to participate if they met the following
criteria: (a) under 12 months of age, (b) no known cardiac abnormalities, and (c) their
mother was willing to speak English during the visit if English was not her native language.
All ECG data collected are included in the analyses below.

4.1.2. Study Procedure

Infant–mother dyads participated in a laboratory visit, in which infants wore the
LittleBeats™ (Version 2 firmware) and BIOPAC ECG sensors (BIOPAC Systems, Santa
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Barbara, CA, USA). The LittleBeats™ device and BioNomadix wireless transmitter were
placed in dual chest pockets of a specially designed infant shirt. While seated on their
mother’s lap, infants were video recorded during a 3 min baseline session that was identical
to the baseline video session used in Study 1. Following the baseline session, infants and
mothers were observed in the Still Face Paradigm (SFP) [39], which consisted of three 2
min episodes: (1) play, while infant was seated in a bouncy seat or high chair (depending
on age), (2) still face, in which mothers were cued (via a brief knock on the playroom door)
to cease verbal and physical interaction with their infant while looking at the infant with a
neutral face, and (3) reunion, in which mothers were cued (via a brief knock) to resume
interacting with their infant. No toys were present during the SFP, and mothers were asked
to not take their infant out of the seat. The still face episode of the SFP is emotionally
challenging for infants and typically elicits a distress response [41]. If the infant displayed
high levels of prolonged distress (i.e., 15–20 s) during the still face episode, the episode
was curtailed. The mother–infant interaction during the SFP was video recorded via two
remote-controlled cameras with pan/tilt/zoom features; the cameras were mounted on
opposite corners of the playroom and controlled from an adjacent observational booth.

4.1.3. Data Processing

Processing of the BIOPAC and LittleBeats™ ECG, IBI, and RSA data were identical to
the steps outlined in Study 1 with the following exceptions. First, Version 2 of the device
firmware results in no missing ECG samples and, thus, we did not implement the custom
filtering script that automated the correction of IBI points due to the missing samples
described in Study 1 (Data Processing; Step 2). Second, in computing RSA values for the
infant data, the natural logarithm of the variance of heart period within the frequency
bandpass related to respiration for infants (i.e., 0.3–1.3 Hz) [88] was calculated in Cardio-
Batch Plus [82] software. See Figure S2 in the Supplementary Materials for example plots
of aligned LittleBeats™ and BIOPAC IBI values for an infant participant.

4.2. Results

We present four sets of analyses. First, we computed the same error statistics reported
in Study 1 (i.e., mean error, mean absolute error, MAPE). As shown in Table 2, the MAPE
was under 2% for all tasks across all participants. Within participants, MAPE ranged from
0.86% to 1.54% for the baseline, 0.74% to 1.10% for the SFP play episode, 0.82% to 3.65%
for the SFP still episode, and 0.69% to 2.23% for the SFP reunion episode. Of the 20 MAPE
scores (5 participants × 4 tasks), 9 were under 1%, 9 were under 2%, and 2 scores were
2.23% and 3.65%, respectively.

Table 2. Error statistics and Bland–Altman analyses for infant participants’ (N = 5, Study 2) interbeat
intervals (in milliseconds) during the baseline and SFP play, still, and reunion episodes.

Session (n Observations) Absolute Mean
Error

MAPE (%) Mean Error (SD)
Bland–Altman Analysis

Lower LoA Upper LoA

Baseline (n = 907) 5.4 1.17% 1.3 (7.22) −15.45 12.84
SFP play episode (n = 1075) 4.4 0.96% 2.0 (6.58) −14.87 10.93
SFP still episode (n = 936) 6.9 1.66% 1.7 (10.93) −23.09 19.75

SFP reunion episode (n = 1472) 5.6 1.22% 1.7 (9.29) −19.92 16.49

Note: Except for MAPE, which is reported as a percentage, all other values are reported in milliseconds. Mean
error computed as BIOPAC minus LittleBeats™ IBI. MAPE = mean absolute percent error; LoA = 95% limits
of agreement.

Next, Bland–Altman plots (by task and color coded by participants) are shown
in Figure 5, with the corresponding statistics reported in Table 2. The mean error
(BIOPAC–LittleBeats) in IBI values ranged from 1.3 milliseconds (baseline) to 2.0 millisec-
onds (SFP play), indicating the BIOPAC and LittleBeats™ IBI values were typically within
thousandths of a second and that, on average, LittleBeats™ values were slightly lower than
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BIOPAC values. The Bland–Altman plots also show that 95% of the BIOPAC–LittleBeats™
errors (difference scores) fall within an approximate range of ±15 to 20 milliseconds (see
Table 2 and Figure 5 for specific 95% limits of agreement for each task). Further, for the
baseline and SFP play episode, errors are consistently small and approach zero across the
range of observed IBI values (~375–675 milliseconds on the X axis). For the SFP still and
reunion episodes, the errors, although still relatively small, are more dispersed, particularly
at the higher end of the observed IBI values (i.e., ~450 to ~650 milliseconds). Finally, across
tasks and individuals, the errors are distributed relatively evenly around the mean error
(black line) and limits of agreement (orange lines), suggesting little systematic bias in the
ECG/IBI data derived from the LittleBeats™ device.
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Third, we examined the RSA task mean to assess the pattern of change across the
baseline and SFP episodes, although the small sample size prohibited statistical tests. Based
on a host of prior studies (see [41] for a meta-analytic review), we expected to observe the
highest RSA values during the baseline and SFP play sessions (indicative of low-stress
contexts) and the lowest RSA values (indicative of an RSA withdrawal in response to a
stressor) during the SFP still episode, with modest increases in RSA during the reunion
episode, indicating a partial recovery from the stress of the SFP still episode. We plotted
the RSA sample means and distributions for each task (see Figure 6). Although RSA
values based on the LittleBeats™ data are consistently higher than values from the BIOPAC
data, the more important finding is that LittleBeats™ data followed the same task-related
changes in RSA observed in the BIOPAC data, indicating sensitivity to within-person
changes in RSA.
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5. Study 3: Validation of Motion Sensor–Activity Recognition
5.1. Materials and Methods
5.1.1. Participants

Twelve adults (66.7% female; mean age = 24.7 years, SD = 5.42, range: 18–33) were
recruited through online announcements at a university in a mid-sized midwestern city.
Participants reported on their highest level of education (16.7% high school graduate, 25%
some college, 41.7% bachelor’s degree, 16.7% advanced degree) and their race and ethnicity
(66.7% Asian, 33.3% White, non-Hispanic).

5.1.2. Study Procedure

Participants wore the LittleBeats™ (Version 1 firmware) and the smartphone in two
chest pockets of a custom t-shirt, and the smartphone and LittleBeats™ device each fit
snugly in their respective shirt pocket, permitting a comparable form factor (note that
other more expensive and precise IMUs (e.g., Xsens [89]) that are worn with form-fitting
chest straps do not permit a parallel form factor). Participants were video recorded while
performing a series of six physical activities (i.e., sit, stand, walk, glide or walk sideways,
squat or deep knee bends, and rotating in chair) commonly used in the activity recognition
literature [58–60]. Here, sitting and standing captured the stability of the data, while
walking, gliding, and squatting captured acceleration along the three different axes of the
accelerometer. Rotation captures the performance of the gyroscope. The following are the
six task descriptions:

1. The participant sits on a chair and watches a video for 2 min.
2. Between each activity, the participant stands for 30 s.
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3. The participant walks to the end of the room and back three times.
4. The participant glides or steps to the left until they reach the end of the room, then

glides or steps to the right until they reach the other end of the room, for one minute.
5. The participant completes squats or deep knee bends for one minute.
6. The participant sits in an office chair and rotates slowly five times.

5.1.3. Data Processing

The smartphone uses an off-the-shelf IMU data collection app named “SensorLogic”
(SensorLogic, Bozeman, MT, USA) that collects the data and provides processed accelerom-
eter data mitigating the effect of gravity and noise on the IMU, as shown in Figure 7. The
microcontroller on the LittleBeats™ device reads the IMU data directly from the appropri-
ate registers with a function call. We remove the gravitational effect from the LittleBeats™
data by subtracting the gravitational acceleration (9.8 m/s) from the affected axis of the
accelerometer data. Note that the smartphone performs this action internally.
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Figure 7. A sample of raw accelerometer data in 3D space collected with LittleBeats™ (top panel)
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coordinates of 3-dimensional space; X (shown in blue) = motion along the horizontal axis (side to
side), Y (shown in orange) = motion along the vertical axis (up and down), Z (shown in green) =
rotation or forward movement.

Due to the asynchronous collection of the IMU data with the ADC, the sampling rate
of the IMU data collection is dynamic with an offset of ±5 Hz. Because we use traditional
off-the-shelf algorithms to validate the IMU sensor data and because such traditional
machine learning and signal processing algorithms take input with a fixed sampling rate,
the dynamic sampling rate of LittleBeats™ requires correction. To this end, we utilize the
timestamp from the time-keeping unit and use a sliding window to determine the number
of samples in each nonoverlapping 30 s interval. We then upsample (with interpolation)
or downsample the 30 s based on whether we have more or fewer data points than the
required sampling rate.

5.2. Results
5.2.1. Data Distribution and Balancing

Among the six tasks, five were relevant to assessing the performance of the accelerom-
eter: sit, stand, walk, glide, and squat. Because the accelerometer on the chest fails to
differentiate between sitting and standing still, we combined these two activities under a
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single label (“upright”). We take 5 s segments and label each segment with the activity label,
which yields a total 1254 samples across all four activities with the following distribution:
812 upright, 150 walk, 176 glide, and 116 squat. Note that we have an imbalanced dataset
where all classes do not have the same number of samples, and we omit samples where the
participant transitions from one activity to another.

We randomly split the data into training and test sets with 80% training and 20% testing
samples, while ensuring that samples from all classes are present in both the training and
testing datasets. Using 10-fold cross-validation, we eliminate any bias of the train–test split.
We normalize the data by removing the mean and scaling to unit variance. We use these
normalized samples as the input to the classifier.

5.2.2. Classification

We classify each 5 s segment using a multiclass random forest classifier for the follow-
ing four-way classification problem: upright vs. walk vs. glide vs. squat. Random forest is
a meta-estimation technique that fits a number of decision trees on multiple subsamples of
the dataset and then takes the average. This averaging increases the prediction accuracy
and controls for overfitting. We use 100 decision trees in our random forest and use entropy
to measure the quality of a split.

We report the mean and standard deviation of three metrics across ten data splits
to evaluate classification performance. These metrics are (1) accuracy, which captures
the overall level of agreement between the classifier and the ground truth, (2) F1-score,
which represents the harmonic mean of precision and recall, where precision (or “positive
predictive value”) is the number of true positive predictions divided by the number of all
positive predictions and recall (or “sensitivity”) is the number of true positive predictions
divided by the number of all true positives, and (3) Cohen’s kappa [90]. Chance (a classifier
that assigns labels uniformly at random) would achieve an accuracy of 25%, an F-1 score
slightly below 25% (because of class imbalance), and a kappa value of 0.0. Kappa values
between 0.60 to 0.80 indicate moderate agreement and are considered acceptable; kappa
values greater than 0.80 indicate substantial agreement and are considered excellent [91].

Table 3 shows the confusion matrices for the four-way activity classification separately
for the LittleBeats™ and smartphone data, and Figure 8 shows the related performance
metrics. Although the algorithm for activity detection performed better when applied to
data from the smartphone, the performance metrics on LittleBeats™ data also showed high
levels of accuracy (89%), F1-score (88%), and Cohen’s kappa (0.79) and are therefore on the
boundary between acceptable and excellent. Further, the F1-score for LittleBeats™ versus
smartphone data represents a decrease in performance of less than 4 percentage points.

Table 3. Confusion matrices of activity classification (4 classes, 1254 samples) with LittleBeats™ and
smartphone IMU data.

LittleBeats™ Data Smartphone Data
Ground Truth Labels UP WA GL SQ UP WA GL SQ

Upright (UP) 805
(0.991)

3
(0.004)

1
(0.001)

3
(0.004)

803
(0.989)

0
(0)

7
(0.009)

2
(0.002)

Walk (WA) 45
(0.300)

88
(0.587)

8
(0.053)

9
(0.060)

1
(0.007)

142
(0.947)

3
(0.020)

4
(0.027)

Glide (GL) 2
(0.011)

11
(0.063)

146
(0.830)

17
(0.097)

6
(0.034)

1
(0.006)

150
(0.852)

19
(0.108)

Squat (SQ) 9
(0.078)

13
(0.112)

17
(0.147)

77
(0.664)

0
(0)

8
(0.069)

40
(0.345)

68
(0.586)

Note: Rows represent the ground truth labels (812 for upright, 150 for walk, 176 for glide, 116 for squat), and
columns represent the predicted data. The proportions of a given ground truth label that were predicted as
upright, walk, glide and squat, respectively, are shown in parentheses.



Sensors 2024, 24, 901 17 of 28

Sensors 2024, 24, x FOR PEER REVIEW 18 of 29 
 

 

Glide (GL) 2  
(0.011) 

11  
(0.063) 

146 
(0.830) 

17  
(0.097) 

6 
(0.034) 

1  
(0.006) 

150  
(0.852) 

19  
(0.108) 

Squat (SQ) 9  
(0.078) 

13  
(0.112) 

17  
(0.147) 

77  
(0.664) 

0 
(0) 

8  
(0.069) 

40  
(0.345) 

68  
(0.586) 

Note. Rows represent the ground truth labels (812 for upright, 150 for walk, 176 for glide, 116 for 
squat), and columns represent the predicted data. The proportions of a given ground truth label that 
were predicted as upright, walk, glide and squat, respectively, are shown in parentheses. 

 
Figure 8. Box and whisker plots depicting the performance metrics (accuracy, F1-score, kappa) of 
activity classification (4 classes: upright, walk, glide, squat) with LittleBeats™ and smartphone IMU 
data (Study 3). The mean proportion score on a given performance metric is indicated by X, the 
median is indicated by a horizontal line, and the range is indicated by the end points of the vertical 
lines or “whiskers.” No outliers were observed. 

To evaluate whether there was a significant difference in overall classification errors 
using LittleBeats™ versus smartphone data, we conducted a McNemar’s test [92], which 
is appropriate to use with paired nominal data representing two categories (e.g., correct 
versus incorrect prediction). A nonsignificant test would indicate that the classification 
error rates (or conversely, rates of correct classification) do not differ across devices. Com-
puting the McNemar’s test using the 2 × 2 contingency matrix shown in Table 4 yielded a 
McNemar significant Chi-squared statistic of 7.41, p = 0.006, which suggests that perfor-
mance is significantly different across the two devices, with LittleBeats™ data yielding 
more errors than the smartphone data.  

Table 4. A 2 × 2 Chi-square contingency matrix comparing correct and incorrect classification on an 
activity recognition task using data from LittleBeats™ and a smartphone (Study 3). 

  LittleBeats™ 
 Correct Incorrect 

Smartphone 
Correct 1065 95 

Incorrect 61 33 
Note: The number of samples reported in each cell are the summation of ten different sets of test 
data randomly selected during each fold. 

Figure 8. Box and whisker plots depicting the performance metrics (accuracy, F1-score, kappa) of
activity classification (4 classes: upright, walk, glide, squat) with LittleBeats™ and smartphone IMU
data (Study 3). The mean proportion score on a given performance metric is indicated by X, the
median is indicated by a horizontal line, and the range is indicated by the end points of the vertical
lines or “whiskers”. No outliers were observed.

To evaluate whether there was a significant difference in overall classification errors
using LittleBeats™ versus smartphone data, we conducted a McNemar’s test [92], which is
appropriate to use with paired nominal data representing two categories (e.g., correct versus
incorrect prediction). A nonsignificant test would indicate that the classification error rates
(or conversely, rates of correct classification) do not differ across devices. Computing the
McNemar’s test using the 2 × 2 contingency matrix shown in Table 4 yielded a McNemar
significant Chi-squared statistic of 7.41, p = 0.006, which suggests that performance is
significantly different across the two devices, with LittleBeats™ data yielding more errors
than the smartphone data.

Table 4. A 2 × 2 Chi-square contingency matrix comparing correct and incorrect classification on an
activity recognition task using data from LittleBeats™ and a smartphone (Study 3).

LittleBeats™
Correct Incorrect

Smartphone
Correct 1065 95

Incorrect 61 33
Note: The number of samples reported in each cell are the summation of ten different sets of test data randomly
selected during each fold.

Finally, we test the Gyroscope using data from the sixth activity (i.e., rotate in chair).
With the Gyroscope data alone and using a rule-based model (decision tree), we were able
to classify rotations in the chair with >99% accuracy for data from both the smartphone
and LittleBeats™, where we have two classes (i.e., rotation versus all other activities). High
levels of accuracy are possible because of the distinct 360 degree rotation at one axis of the
Gyroscope in this activity.
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6. Study 4: Validation of Audio Sensor—Speech Emotion Recognition
6.1. Materials and Methods
6.1.1. Participants

Eight adults (50% female; mean age = 29 years, SD = 13.10, range: 18–55), including six
undergraduate students who majored in theater (3 males and 3 females) and researchers
in our team who had amateur acting experience (1 male and 1 female), participated.
Participants reported on their highest level of education (50% some college, 25% bachelor’s
degree, 25% advanced degree) and their race and ethnicity (12.5% Black, 62.5% White
non-Hispanic, 12.5% Hispanic, 12.5% more than one race).

6.1.2. Study Procedure

We partially replicated the procedures of collecting emotional speech in the Ryerson
Audio–Visual Database of Emotional Speech and Song (RAVDESS) [93] corpus in a smaller
scale in terms of the number of participants and emotion types. RAVDESS corpus contains
the speech of 24 professional actors (12 female, 12 male), vocalizing two lexically matched
statements, “Kids are talking by the door” and “Dogs are sitting by the door.” Eight
emotional speech samples, including neutral, happy, sad, angry, fearful, surprise, and
disgust expressions are recorded. Each expression is produced at two levels of emotional
intensity (normal, strong).

Paralleling our validation of the motion sensor (Study 3), each participant wore a
specially designed shirt that held both the LittleBeats™ device (Version 1 firmware) and
a smartphone (Google Pixel, 1st generation), and both LittleBeats™ and the smartphone
were used to simultaneously record participants’ speech. The smartphone was used as
the industry standard and enabled both high-fidelity recordings as well as a comparable
form factor. Participants were asked to read the two statements used in the RAVDESS
study (“Kids are talking by the door” and “Dogs are sitting by the door”) 1–2 times in a
neutral voice and 2–3 times for each of the six emotion types (i.e., happy, sad, angry, fearful,
surprised, disgusted), but without varying emotional intensity.

6.1.3. Cross-Validation Check on Emotional Speech Corpus

To verify the quality of our emotional speech corpus, three human raters labeled each
utterance using one of the above six emotion labels. Both LittleBeats™ and smartphone
audio clips (one utterance per clip) were randomly shuffled before distributing to the
human raters. Because interrater reliability scores fell below 0.60 for clips expressing fear,
disgust, and surprise, we limited our validation experiment to 4 classes: neutral, happy,
sad, and angry. Most participants read each of the two statements once in a neutral voice
and two times for each emotion. To collect more samples of emotional speech, the last three
participants read each statement three times for each emotion category, including neutral,
resulting in a total possible dataset of 142 utterances for neutral, happy, sad, and angry
combined. One happy utterance was excluded from our dataset due to lack of agreement
among the three human raters. Thus, our dataset includes 141 samples (neutral: 28, happy:
37, sad: 38, angry: 38) for both LittleBeats™ and the smartphone.

6.1.4. Audio Data Processing

As most state-of-the-art acoustic algorithms and pretrained models use audio at
16 kHz, we downsampled our collected 22 kHz samples to 16 kHz. In instances of high-
frequency audio clipping, we further processed the audio stream using the built-in clipfix
function of Audacity® software (version 3.3.3 [94]) that finds the clipped regions of Little-
Beats™ audio and performs interpolation of the lost signals for declipping. We empirically
set the threshold of clipping to 70% without reducing amplitude for restored peaks to obtain
superior audio quality. Using Version 1 of the firmware, the average proportion of missing
samples, computed as a function of expected samples based on the UTC timestamps, was
0.087 (SD = 0.153).
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6.2. Results

Given a relatively small corpus, we used the sklearn package [95] to implement a linear
discriminant analysis (LDA) for our SER validation task. We randomly split our corpus into
3 folds and performed 3-fold cross-validation tests. Table 5 shows the confusion matrices for
the four-way emotional speech classification separately for LittleBeats™ and smartphone
data, and Figure 9 shows the related performance metrics (i.e., accuracy, F1-score, Cohen’s
kappa scores). As seen in the figures, performance on speech emotion recognition tended
to be higher for data collected with the LittleBeats™ device versus the smartphone.

Table 5. Confusion matrices of speech emotion recognition (4 classes) with LittleBeats™ and smart-
phone audio data.

LittleBeats™ Data Smartphone Data
Ground Truth Labels NEU HAP SAD ANG NEU HAP SAD ANG

Neutral (NEU) 22
(0.786)

2
(0.071)

2
(0.071)

2
(0.071)

17
(0.607)

1
(0.036)

6
(0.214)

4
(0.143)

Happy (HAP) 0
(0)

24
(0.649)

2
(0.054)

11
(0.297)

1
(0.027)

25
(0.676)

2
(0.054)

9
(0.243)

Sad (SAD) 6
(0.154)

8
(0.205)

25
(0.641)

0
(0)

6
(0.158)

4
(0.105)

27
(0.711)

1
(0.026)

Angry (ANG) 0
(0)

6
(0.158)

4
(0.105)

28
(0.737)

1
(0.026)

12
(0.316)

3
(0.079)

22
(0.579)

Note: Rows represent the ground truth labels, and columns represent the predicted data. The proportions
of a given ground truth label that were predicted as neutral, happy, sad, and angry, respectively, are shown
in parentheses.
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Figure 9. Box plots showing the performance of speech emotion recognition (4 classes: neutral, happy,
sad, angry) with LittleBeats™ and smartphone audio data (N = 8, Study 4).

Next, we conducted a matched-pairs test [92] to assess whether the performance
on our speech emotion recognition task differed significantly between the two recording
devices (see Table 6 for the 2 × 2 contingency matrix between LittleBeats™ and smartphone
data). The test was nonsignificant (p = 0.26), indicating the LDA performed equally well
when using audio from the LittleBeats™ device versus the smartphone.
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Table 6. 2 × 2 Chi-square contingency matrix comparing correct versus incorrect classification on
speech emotion recognition using data from LittleBeats™ and smartphone (Study 4).

LittleBeats™
Correct Incorrect

Smartphone
Correct 75 16

Incorrect 23 27

7. Study 5: Validation of Audio Sensor—Automatic Speech Recognition
7.1. Materials and Methods
7.1.1. Participants

Twelve adults (58.3% female; mean age = 21.74 years, SD= 3.18, range = 18–26) were
recruited via a university listserv and posted flyers. Participants reported on their highest
level of education (8.3% high school graduate, 58.3% some college, 8.3% associate’s degree,
25% bachelor’s degree) and their race and ethnicity (16.7% Asian, 16.7 Black, 66.7% White
non-Hispanic).

7.1.2. Study Procedure

Paralleling procedures in Studies 3 and 4 above, participants wore LittleBeats™ (Ver-
sion 2 firmware) and a Google Pixel smartphone in a t-shirt with dual pockets. While
seated at a desk, participants read the Rainbow Passage aloud. The Rainbow Passage [96]
(330 words), which includes a variety of sounds and mouth movements used in unscripted
English speech, has been widely used in prior work to assess speech production and
reading fluency [97,98].

We used wav2vec 2.0 (W2V2 [71]) as the off-the-shelf software to perform our ASR
validation task. W2V2 is a recently published model that uses unsupervised pretraining
from ~52k-h of unlabeled raw wav audio, and then excels on multiple speech-processing
tasks. For example, W2V2 with Connectionist Temporal Classification (CTC) loss at the
character-level achieved a competitive performance on the test–clean set of Librispeech
corpus (1.9% word error rate [WER] [71]).

We implemented W2V2 using the SpeechBrain framework [99]. The W2V2 requires
input audio as raw wav files sampled at 16k Hz. For smartphone audio passages, the raw
recordings were sampled at 44.1 kHz and stored in .m4a format. We used ffmpeg software
(version 4.4.4, [100]) to convert the smartphone recordings from .m4a format to .wav format
and downsampled them from 44 kHz to 16 kHz. Identical data processing steps outlined in
Study 4 were used for LittleBeats™ audio recordings (e.g., audio was sampled at 22 kHz
and downsampled to 16 kHz). Using Version 2 firmware, the average proportion of missing
samples was 0.023 (SD = 0.007), which represents a significant decrease from the proportion
of missing samples in Study 4 (Version 1 firmware).

We prepared ground truth transcripts using the smartphone audio passages. Annota-
tors manually added repeated words or deleted omitted words if a participant did not read
the Rainbow Passage verbatim. We pretrained a bigram language model for the Rainbow
Passage using KenLM software (https://kheafield.com/code/kenlm/; accessed 26 June
2023 [101]). We performed both CTC greedy decoding and beam search decoding with
beam size 25 and set the language model weight to either 0.0 (no language model) or 2.0
(language model included with a large weight).

7.2. Results

Table 7 below shows the WER for LittleBeats™ and smartphone audio with and with-
out the language model. WER is measured by the edit distance between the reference
transcripts and hypothesis transcripts generated by the ASR system. WER can be com-
puted using the following formula, WER = S+D+I

N , where S, D, and I are the number of
substitution errors, deletion errors, and insertion errors, respectively, and N is the total
number of referenced words.

https://kheafield.com/code/kenlm/
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Table 7. Word error rates (WER) for LittleBeats™ and smartphone audio with and without a language
model (Study 5).

Models LittleBeats™ WER Smartphone WER

Greedy decoding 5.75% 3.58%
Beam search 5.80% 3.63%

Beam search + language model 4.16% 2.73%

Both LittleBeats™ and smartphone audio passages show relatively good baseline WER
using CTC greedy decoding. With beam search, error rates for both the LittleBeats™ and
smartphone audio increased slightly compared with the model using greedy decoding.
This increase in error rate may be due to beam search bias towards the most probable
sequence of words in a small corpus, which may not fully capture the underlying acoustic
information. With language modeling, LittleBeats™ and smartphone audio passages have
large relative WER improvements (27.6% for LittleBeats™ and 23.7% for smartphone).
Overall, although smartphone audio has a somewhat better performance, both LittleBeats™
and smartphone audio show strong performance on this open-vocabulary ASR task.

8. Discussion

Studying infants and young children in their natural environments without researchers
present poses unique challenges. Unlike research with adults, commercially available
wearables (e.g., FitBit, Apple watch, chest strap heart rate monitors) are not feasible for use
with infants. Our interdisciplinary team has developed a compact, lightweight device that
captures key physiological and behavioral signals unobtrusively in the home and without
researchers present. In prior reports, we have demonstrated the usability of LittleBeats™
with infants and young children in the home environment [45], as well as the analytic
validation of algorithms to detect infant and caregiver vocalizations using LittleBeats™
audio data [43] and sleep/wake states using synchronized LittleBeats™ data from all three
sensors [44] among children from 2 months to five years of age during daylong recordings.
The current report complements this prior work by presenting a technical validation, in
which we compare the performance of each LittleBeats™ sensor against gold-standard
devices that have been used extensively in the prior literature and permit a comparable
form factor. We also use algorithms that have been established and verified in the literature
and compare the performance of these algorithms using LittleBeats and gold-standard
sensor data (see Table S1 in Supplementary Materials for a summary of the algorithms
and software included in this report). Due to the feasibility issues of conducting technical
validations of the IMU and audio data under controlled conditions with infants and young
children, we conducted validations with adult participants only for these modalities using
controlled laboratory tasks prevalent in prior work. Below, we discuss the findings for each
sensor modality. We also present limitations of the current work and directions for future
research with the LittleBeats™ platform.

8.1. ECG Sensor

The performance of the ECG sensor was assessed in two studies, comprising 16 adults
(Study 1) and 5 infants (Study 2). For both samples, RSA values derived from LittleBeats™
IBI data showed expected changes as a function of task demands (i.e., baseline versus
cognitive challenge for adults; baseline and play episode versus still episode of the Still
Face Paradigm for infants), and those changes mirrored the pattern observed for RSA
values derived from BIOPAC data. Further, based on prior work suggesting MAPE values
under 10% offer an acceptable degree of error for ECG-related measurements [83–85],
Study 1 results indicate that the LittleBeats™ ECG signal yielded IBI values that showed
acceptable agreement with a gold-standard ECG monitor (MAPE ≤ 5.97%). Although
these comparisons showed acceptable levels of agreement among the Study 1 adult sample,
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performance was substantially higher and more consistent among the Study 2 infant sample
(MAPE ≤ 1.66%).

Differences in performance between the adult and infant samples could be due to age,
in that adults are more mobile than young infants, and their data may be more susceptible
to movement artifacts. We controlled for this possibility, however, by monitoring ECG when
both adults and infants were seated. A more likely explanation is that data were collected
on different versions of the device firmware, and the presence of missing samples in the
ECG data only occurred in Study 1 (Version 1 firmware). Missing samples were corrected
via a custom filtering/editing script, although pockets of misalignment of LittleBeats™
and BIOPAC IBI data were more frequent in these data. Such misalignment may result
in higher error rates in the IBI data collected in Study 1 compared with Study 2, yet we
underscore that both studies showed the expected patterns of RSA change across challenge
versus baseline sessions. Taken together, this pattern of results suggests that a modest level
of disagreement in the IBI data (likely due to some misalignment) for the adult sample
did not impact the measurement of cardiac vagal tone via RSA. Lastly, results from the
infant data collected with Version 2 of the firmware (i.e., no missing samples), although not
showing an absolute 1:1 agreement with BIOPAC, indicate that the LittleBeats™ platform
is a promising sensor for capturing IBI data for infants under 12 months of age.

8.2. IMU Sensor

Turning to the validation of the IMU, although the classification of four activities
(i.e., upright, walk, glide, squat) among an adult sample showed a higher performance
using accelerometer data from the smartphone, the performance on LittleBeats™ data was
also high (e.g., F1-score = 88%; kappa = 0.79), and the discrepancy in F1-score was less than
4 percentage points. The smartphone acceleration values go through additional filtering via
the smartphone’s internal software, which likely improves performance. LittleBeats™ does
not go through such processing, and thus, performance may increase with the additional
postprocessing of LittleBeats™ data and more complex algorithms [58], including various
filtering (e.g., Butterworth [102], Savitzky Golay [103]) and smoothing techniques. In
summary, Study 3 results indicate that the IMU data of LittleBeats™ are stable and preserve
similar information as an off-the-shelf mobile platform, i.e., a Google Pixel 1 smartphone.

8.3. Audio Sensor

Lastly, audio data were assessed in two studies: speech emotion recognition (SER)
among 8 adults (Study 4) and automatic speech recognition (ASR) among 12 adults
(Study 5). Performance on the SER task did not differ significantly between the two
devices, suggesting that the LittleBeats™ audio performed as well as the smartphone audio.
The signal from LittleBeats™ resulted, however, in slightly less accurate ASR than the
smartphone signal (Study 5). This contrast in findings between Studies 4 and 5 may be the
result of the types of acoustic features used in these two classifiers. ASR depends on the
accurate characterization of individual phonemes and may, therefore, suffer from minimal
amounts of missing data (i.e., 2.3% in Study 5) in the LittleBeats™ data. Speech emotion
recognition, on the other hand, classifies a vector composed of thousands of partially redun-
dant long-term signal features, each of which characterizes the trajectory or statistics, over
time, of one or more low-level signal descriptors. It is likely, therefore, that the redundancy
built into the emotion classifier’s feature extraction algorithms permits LittleBeats™ data
to achieve accuracy levels equivalent to the smartphone data despite a modest degree of
missing samples (i.e., 8.7% in Study 4). Our ultimate aims, speaker diarization and vocaliza-
tion labels for infants (crying, fussing, babbling) and family members (e.g., infant-directed
speech, laughter, singing; see [43,67]), resemble speech emotion recognition more than they
resemble ASR. Only ASR requires the correct recognition of phoneme-length segments
(10–100 ms) based directly on low-level signal descriptors, whereas SER and our tasks of
interest require correct classification of one- or two-second speech segments on the basis of
the segment-length trajectories and statistics of low-level descriptors.
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It is important to note that overall performance on the ASR task was high despite the
difference in performance observed for LittleBeats™ versus smartphone data, whereas
performance on the SER task was modest yet similar across LittleBeats™ and smartphone
data. Because emotions can be expressed in different ways and with different intensities,
we attribute the overall modest performance on SER to the difficulty of the task. Unlike the
prior RAVDESS study [93], we did not use professional actors. Thus, we were challenged
to obtain a reliable adult emotional speech corpus, although we took this challenge into
consideration by conducting a cross-validation check on our corpus and selecting four basic
emotions with human interrater agreement to conduct our experiments. For the purpose of
this validation study, however, what is most germane is that the SER algorithm performed
equally well when using audio from the LittleBeats™ device and the smartphone.

8.4. Limitations and Future Directions

The preliminary technical validation studies reported here provide initial evidence
that the quality of LittleBeats™ sensor data are largely comparable to data obtained from
gold-standard devices. Nonetheless, we note several limitations. First, samples sizes were
relatively small, especially for Study 2, in which our validation of the ECG sensor was
conducted with five infants. We currently have a larger validation study of the ECG sensor
underway among infants between 3 and 10 months of age, in which we aim to further
compare the quality of the LittleBeats™ ECG and IBI data against the BIOPC gold-standard
equipment in the lab.

Second, for the IMU and audio data, we recruited adult samples with whom we could
implement standardized laboratory tasks and use algorithms that have been previously
validated for these data types. Because the features of infants’ vocalizations, postures,
and physical movements may be qualitatively different than adults in some ways (e.g.,
higher pitch range), it is imperative to further validate the LittleBeats™ platform using
data collected among infant samples. Yet, because standardized controlled tasks cannot
be readily carried out to assess infant vocalizations or movements and because we know
of no well-established algorithms to assess infant vocalizations or movements, our best
opportunity to validate the LittleBeats™ IMU and audio data among infants is via analytic
validation approaches. To this end, we are developing new algorithms, applying them to
the LittleBeats™ sensor data, and assessing their performance against ground truth labels
provided by trained human annotators. The analytic studies under way will add to our
related prior work on the detection and labeling of infant vocalizations and sleep/wake
states [43,44,67].

Third, the technical validation studies were conducted using brief controlled labora-
tory tasks. Because we ultimately aim to use LittleBeats™ to assess infant functioning in
naturalistic contexts (i.e., home) and across long periods of time (i.e., daylong recordings
that last 8+ h), validation efforts must also consider these factors. Indeed, in our ongoing
analytic validation of infant data, including ECG data, we include data collected during
semi-structured tasks in the lab or remotely with researchers present (parent–infant play
session), as well as daylong recordings made in the home without researchers present. With
respect to daylong audio recordings in the home, we place high priority on participant pri-
vacy and data confidentiality (see [45] for our prior findings related to parents’ perspectives
on using LittleBeats™ in the home). Such usability issues go hand in hand with technical
and analytic validation efforts, and we continually assess participants’ experiences and
concerns as we work to implement best practices that increase usability and data security
and minimize participant concerns about data privacy [24].

9. Conclusions

Taken together, the results provide confidence in the quality of data obtained from the
LittleBeats™ ECG, motion, and audio sensors. Although we have designed the LittleBeats™
platform for use with infants and young children, we focused our technical validation on
predominantly adult samples because, by doing so, we are able to validate the device using
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structured laboratory tasks for which well-established performance measures exist, and
for which the performance of this device can be compared to the performance of gold-
standard devices used in prior research. This technical validation is an important step in the
validation of the platform. A key advantage of LittleBeats™ is the integration of multiple
sensors into one platform. We are currently leveraging this multimodal capability, in
combination with the further development of postprocessing pipelines, to further increase
data quality and, in turn, the performance of algorithms designed to automatically detect
infant/child behaviors and physiological states (e.g., sleep/wake detection [44]).
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