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Abstract: The emerging yet promising paradigm of the Internet of Vehicles (IoV) has recently gained
considerable attention from researchers from academia and industry. As an indispensable constituent
of the futuristic smart cities, the underlying essence of the IoV is to facilitate vehicles to exchange
safety-critical information with the other vehicles in their neighborhood, vulnerable pedestrians,
supporting infrastructure, and the backbone network via vehicle-to-everything communication in
a bid to enhance the road safety by mitigating the unwarranted road accidents via ensuring safer
navigation together with guaranteeing the intelligent traffic flows. This requires that the safety-
critical messages exchanged within an IoV network and the vehicles that disseminate the same
are highly reliable (i.e., trustworthy); otherwise, the entire IoV network could be jeopardized. A
state-of-the-art trust-based mechanism is, therefore, highly imperative for identifying and removing
malicious vehicles from an IoV network. Accordingly, in this paper, a machine learning-based trust
management mechanism, MESMERIC, has been proposed that takes into account the notions of direct
trust (encompassing the trust attributes of interaction success rate, similarity, familiarity, and reward
and punishment), indirect trust (involving confidence of a particular trustor on the neighboring nodes
of a trustee, and the direct trust between the said neighboring nodes and the trustee), and context
(comprising vehicle types and operating scenarios) in order to not only ascertain the trust of vehicles
in an IoV network but to segregate the trustworthy vehicles from the untrustworthy ones by means
of an optimal decision boundary. A comprehensive evaluation of the envisaged trust management
mechanism has been carried out which demonstrates that it outperforms other state-of-the-art trust
management mechanisms.

Keywords: Internet of Vehicles; machine learning; trust management mechanism; direct trust; indirect
trust; context; optimal decision boundary

1. Introduction

The rapid acceleration in urbanization and growth of the population has substantially
increased the ownership of vehicles. A conservative estimate by the World Health Organ-
isation suggests that traffic accidents kill approximately 1.35 million people every year
and approximately 50 million people suffer from non-fatal injuries [1]. Furthermore, the
congestion of traffic is a global issue which also results in increased noise pollution and
vehicular emissions [2,3]. Accordingly, numerous researchers from academia and industry
over the years have focused on resolving such issues. Ensuring both passenger road safety
and traffic congestion mitigation, therefore, requires an intelligent system of vehicular
communication.

Vehicles today are an indispensable constituent of the Internet of Things (IoT) network
and are accordingly equipped with hundreds of sensors onboard [4]. As per an estimate,

Sensors 2024, 24, 863. https://doi.org/10.3390/s24030863 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24030863
https://doi.org/10.3390/s24030863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3526-9037
https://orcid.org/0000-0001-8553-579X
https://doi.org/10.3390/s24030863
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24030863?type=check_update&version=2


Sensors 2024, 24, 863 2 of 18

modern vehicles are equipped with approximately 100 sensors onboard with each vehicle
capable of producing nearly 380 TB to 4.9 PB data annually [5]. Therefore, vehicle-mounted
sensors (position, velocity, acceleration, pressure, and temperature sensors) and IoT devices
would be able to construct a safe and efficient intelligent network of transportation [6].

The IoV is an application of IoT in the context of intelligent transportation systems
(ITS). The IoV has a similar architecture to the IoT and features a hierarchical structure that
includes data source, edge, fog, and the cloud layers [7]. Vehicles share information with
other vehicles, pedestrians, intelligent infrastructure, and backbone networks to establish
vehicle-to-vehicle, vehicle-to pedestrian, vehicle-to-infrastructure, and vehicle-to-network
communication, thereby formulating vehicle-to-everything (V2X) communication. Figure 1
thus depicts the architecture of an IoV network. The main IoV communication node is a
vehicle with an on-board unit (OBU) which can communicate with the Roadside Units
(RSUs) and other vehicles in its proximity. Due to the unique characteristics of IoV, i.e.,
openness, dynamic topology, and high mobility, it is susceptible to attacks; dishonest
entities can modify legitimate security messages, spread forged information, or delay
forwarding messages, thereby endangering human lives [8].

Figure 1. A system architecture of the IoV.

Accordingly, researchers have proposed several solutions for handling the issues
pertinent to IoV security. Nevertheless, a number of these solutions rely on conventional
cryptographic-related schemes and, therefore, rely on the notions of digital signatures,
certificates, and public key infrastructure [9,10]. Moreover, conventional cryptographic-
related schemes are only capable of mitigating external attacks and are ineffective against
internal network attacks [11]. It is due to this reason that the paradigm of trust has been
recently introduced in the research literature.

The notion of trust originated in sociology as a means to understand how people
are interdependent within a social organization [12]. Trust, over the years, has also been
employed in various other disciplines, including, but not limited to, philosophy, economics,
engineering, and computer science. Trust is generally referred to as the confidence of a
trustor in a trustee. Here, trustor refers to a node that is in a position to ascertain the trust
of the other node (trustee) in the network, whereas the trustee refers to a node whose trust
is being ascertained [13]. In the context of this paper, trust refers to the likelihood that a
trustee can perform a particular operation (contribute to realizing a particular application
or service) within a specific situation at a specific time. It is also important to mention that
trust computation primarily involves a weighted aggregation of both the direct trust and
the indirect trust [14]. Direct trust is ascertained as a result of direct interactions between
a trustor and a trustee and is generally referred to as a trustor’s direct observation of a
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trustee [15,16]. On the contrary, indirect trust is computed by taking into account the direct
trust ascertained by the one-hop neighbors of a trustor pertinent to a trustee. The literature
argues that direct trust is more significant in contrast to indirect trust [1].

To date, a number of trust management models have been proposed in the research
literature which have been broadly classified into three types: entity-oriented trust models,
data-oriented trust models, and hybrid trust models [17]. Entity-oriented trust models aim
to eradicate malicious entities (vehicles) from an IoV network by evaluating the reliability
of the vehicles disseminating messages. Data-oriented trust models, on the other hand,
eradicate the malicious messages instead of the entities from an IoV network [18]. Finally,
hybrid trust models take into account the salient characteristics of both the entity-oriented
and data-oriented trust models and, therefore, regard the reliability of the entities and the
respective messages disseminated by them in a bid to make a decision.

The trust parameters, also referred to as the trust attributes, are integral constituents
of any trust model. The existing literature suggests that a number of research studies
determined the global trust value of a particular vehicle in an IoV network by taking
into account the weighted sum of a number of such trust parameters and which, in fact,
is also subject to limitations [19]. For instance, weights’ settings are based on human
subjectivity and, therefore, different researchers often set different weights for the same
trust parameter which results in an inconsistent trust score. Keeping this in mind, the
envisaged research employs the notion of machine learning to ascertain trustworthy and
untrustworthy vehicles via an optimal trust boundary. In order to better express the running
situation of vehicles and achieve the optimal trust evaluation results, the trust model needs
more trust parameters, but it will lead to an increase in the amount of calculation, so we
can use the learning method to train the trust model. In this way, the global trust value of
each vehicle was established by combining all of its respective trust parameters such that
the optimal influence of each trust parameter on the global trust value is prevalent.

Also, a number of trust models do not take into account the effect of context while
ascertaining the trust of a particular vehicle. For instance, an urban scenario involves more
vehicles and, therefore, the inter-vehicular interactions are much more as opposed to a
highway scenario, wherein it is extremely challenging to establish trust among the vehicles.
Similarly, public vehicles, including, but not limited to, police cars, ambulances, and fire
brigades have higher trust values in contrast to private vehicles. Moreover, drivers with
many years of driving experience generally have higher trust values than novice drivers.
This research, therefore, regards two contextual factors, i.e., vehicle types and operating
scenarios, in order to obtain a more optimal trust value. Therefore, not only were the direct
trust and the indirect trust included in the global trust of our envisaged trust model but the
context was also incorporated (see Figure 2).

Figure 2. The composition of the global trust.

The salient contributions of the research-at-hand are as follows:
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• We propose a novel trust management mechanism that takes into account direct trust
(encompassing the trust attributes of interaction success rate, similarity, familiarity,
and reward and punishment), indirect trust (involving recommendations via the
one-hop neighboring nodes of a trustor pertinent to a trustee and the confidence of
a trustor on the recommendations ascertained by the one-hop neighboring vehicles),
and context (comprising vehicle types and operating scenarios) in order to ascertain
the trust of vehicles in an IoV network.

• In contrast to the conventional trust management heuristics, we envisage a machine
learning-based trust aggregation scheme in a bid to ascertain the optimal trust score of
each vehicle in an IoV network so that they can be classified as either being trustworthy
or untrustworthy.

• We carried out a comprehensive evaluation of our envisaged trust management mech-
anism and demonstrated that it outperforms other state-of-the-art trust manage-
ment mechanisms.

The rest of the paper is systematically organized as follows. Section 2 delineates the
state-of-the-art of trust management in IoV networks. Section 3 presents our envisaged
trust management mechanism. Section 4 presents the experimental results and discussions
pertinent to the same, and Section 5 concludes the paper.

2. Related Works

In recent years, there has been an increase in research on trust management in the
IoV [2,5,11,19–24]. We can divide the existing trust management models into: learning-
based and traditional methods-based trust management models.

2.1. Trust Parameters and Evaluation Parameters

A holistic overview of the existing trust management mechanisms reveals that a num-
ber of trust-based parameters have been applied in different settings in order to measure and
evaluate trust. The trust-based parameters include, but are not limited to, resource availabil-
ity [6], similarity [19,25,26], familiarity [6,7,22,27], timeliness [7], context [19,20,28,29], coop-
erativeness [19,30], community-of-interest (CoI) [19,30], confidence [31,32], reward [28,33],
attitude, subjective norms, and perceptual behavioral control [5], freshness of data [34],
and packet delivery ratio [7,25,31,35,36]. Also, the selection of a trust-based threshold for
determining trustworthy and untrustworthy behavior is crucial. If the threshold is set
too high by the system designers, the trustworthy nodes may be even removed from a
network. Alternatively, if the threshold is set too low, the untrustworthy nodes would
slowly jeopardize the entire network. A comparative summary of the trust parameters
employed in the representative literature is depicted in Table 1.

It is interesting to note that context is the most frequently used trust parameter fol-
lowed by cooperativeness, similarity and reward. Context is an extremely important trust
parameter and a number of other trust parameters depend on the same, and are, therefore,
dissimilar in different contexts. For instance, the number of interactions between vehicles
is different in urban and highway scenarios. Also, different types of vehicles, i.e., high-
priority vehicles, public transport vehicles, professional vehicles, and novice vehicles, have
different trust values. Accordingly, this paper proposes a context-based trust management
model. Table 1 further depicts that there are not many trust parameters employed in the
state-of-the-art trust management models. If there are few trust parameters, the accuracy of
the global trust value calculated will also decrease. To mitigate this problem, we propose a
trust management model that includes six trust parameters, i.e., interaction success rate,
similarity, familiarity, reward and punishment, confidence, and context.

There are two important steps in trust management, i.e., building a trust model and
evaluating a trust model [31]. The purpose of trust evaluation is to evaluate the accuracy,
reliability, and practicality of an envisaged trust model. The literature suggests that typical
evaluation parameters employed for the trust-based models include precision, recall, and
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F1-score [19,20,29,37], false positive rate, true positive rate, true negative rate [27], and
computation overhead [38].

Table 1. Trust parameters in trust management model.

References Similarity Familiarity Timeliness Context Cooperativeness CoI Confidence Reward

[2] - - - ✓ - - - -
[7] - ✓ - ✓ ✓ - ✓ -

[19] ✓ - - - ✓ ✓ - -
[20] - - - - ✓ ✓ - ✓
[23] - - - ✓ - - - -
[24] - - ✓ ✓ - - - -
[25] ✓ ✓ - ✓ - - - -
[26] ✓ - - - - - -
[27] ✓ ✓ - ✓ - - - -
[33] - - - - - - - ✓
[28] - - - - - - - ✓
[29] - - - ✓ ✓ - - -
[31] - - ✓ ✓ - - - -
[32] - - - ✓ ✓ - ✓ -
[34] - ✓ - - ✓ - - -
[39] - - - ✓ - - - ✓
[40] ✓ - - - - - - -
[41] - - - - - - ✓ -
[42] - - - - - - - ✓

Our scheme ✓ ✓ - ✓ ✓ ✓ ✓ ✓

2.2. Conventional Trust Management Models

A trust evaluation algorithm has been proposed in [5] that exploited the attributes
(attitude towards behavior, subjective norms, and perceived behavioral control) from the
theory of planned behavior, i.e., a human psychological theory, to ascertain the trustwor-
thiness of vehicles in a vehicular network within a given context and to decide whether
to accept or not the traffic-related warning messages from a particular vehicle. Moreover,
the notion of fuzzy logic has been employed in a bid to segregate the vehicles’ trust levels
as CompleteTrust, MediumTrust, and DisTrust. The effectiveness of the trust evaluation
algorithm was verified via false positive rates, true positive rates, and F1-score vis-à-vis
different proportions of malicious vehicles.

A context-aware and attack-resistant trust model for the IoV networks has been sug-
gested in [16]. This model takes into account (a) local trust encompassing the weighted
sum of both direct trust (packet delivery ratio and time decay) and indirect trust (confi-
dence factor) and (b) context-dependent trust (propagation delay, cooperativeness, and
familiarity). Also, the notion of an adaptive misbehavior detection threshold has been
proposed to segregate malicious vehicles from dishonest vehicles. Moreover, the resilience
against on–off attacks and the selective node attacks has been demonstrated by employing
optimal and rational influencing parameters as weights during the process of the weights’
assignment.

A forest fire model has been proposed in [23] to select the minimum number of
competent nodes suitable for broadcasting emergency messages in an IoV network. At first,
a social community is established by calculating the similarity of the social characteristics
between the nodes. Subsequently, some key factors, including, but not limited to, the
number of connections, velocity of nodes, general activity of the nodes, and data forwarding
capability of neighboring nodes, are used to select the core node and the complementary
node for the dissemination of emergency messages within the established social community.
This establishes a trust estimation and management mechanism for nodes based on their
behavior in an IoV network. Experimental results suggest that this particular model
demonstrated high accuracy under a high density of malicious nodes.
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A novel hybrid trust management scheme for an IoV network has been proposed
in [43] to evaluate both node-centric and data-centric trust. Node-centric trust has been
determined by employing the distance between the message sender and the message
evaluator in tandem with the antenna height of the message sender and the message
evaluator, whereas data-centric trust has been ascertained by means of information quality
and effective distance (via a tier-based approach) between the message sender and the
message evaluator. A trust threshold has been further employed which facilitates rewarding
(incrementing) and penalizing (decrementing) the trust score of the message sender. The
performance of the trust management scheme has been evaluated under man-in-the-middle
attacks and zigzag attacks.

2.3. Machine Learning-Based Trust Management Models

A trust computational heuristic model has been envisaged in [19] to establish trust-
worthy relationships among the physical objects, i.e., devices, and for mitigating potential
risks throughout the decision-making process in an SIoT environment. The direct trust of a
particular object (trustee) is ascertained by taking into consideration the trust attributes
of friendship similarity, community of interest, cooperativeness, and reward/punishment.
The indirect trust, on the other hand, is computed by requesting the direct trust from
the nodes that have interacted with the trustee. The authors exploited the notion of ma-
chine learning to (a) aggregate the trust attributes in order to determine an optimal trust
score and (b) determine the best possible boundary to segregate between the trustworthy,
untrustworthy, and neutral interactions. The neutral interactions are later classified as
trustworthy or untrustworthy via a percentage threshold mechanism so these interactions
can be employed for real-world applications.

A quantifiable trust assessment model based on machine learning has been proposed
in [20] to make decisions autonomously, i.e., without human intervention, in an IoT network.
This model encompasses trust features, i.e., co-location relationship, co-work relationship,
cooperativeness-frequency-duration, reward system, mutuality and centrality, and commu-
nity of interest, in order to assess the knowledge of a trustor towards a trustee. These trust
parameters are aggregated via machine learning to obtain a single trust value for each pair
of nodes (trustor and trustee) and which are then further segregated into trustworthy and
untrustworthy interactions via a decision boundary.

A trustworthy object classification framework, Trust-SIoT, has been further proposed
in [29] to establish and maintain a trustworthy relationship between the IoT objects over
time. The authors employed social characteristics of objects in the form of direct trust
metrics, reliability and benevolence, credible recommendations, and the degree of relation-
ships. A SIoT knowledge graph was further constructed in order to record five dynamic
social relationships, including, but not limited to, co-location object relationships, parental
object relationships, ownership object relationships, social object relationships (SOR), and a
variant of SOR (to connect public and private mobile devices) to ascertain the degree of
relationships. An artificial neural network-based model was further employed for decision-
making purposes, i.e., to identify the trustworthiness level of a trustee. The performance of
this framework is evaluated in terms of F1-score, MAE, and MSE.

Similarly, a machine learning-based trust model (encompassing trust parameters of
similarity, familiarity, and packet delivery ratio) has been put forward in [25] to identify and
eliminate malicious vehicles within an IoV network. A context-aware trust management
framework for a VANET network has been suggested in [39] to ascertain the trustworthiness
of messages received by vehicles to guarantee that no false information influences any
driving decision-making process. This framework was composed of three modules, namely,
information formalization, trust evaluation and strategy adjustment. The authors proposed
a trust evaluation method based on evaluation strategy in different scenarios. In addition,
information entropy theory was introduced into the trust calculation function to ensure
more accurate evaluation results. Finally, a reinforcement learning model was proposed,
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and the evaluation strategy was dynamically adjusted according to the feedback of previous
evaluation results.

To sum up, over the years, a number of both conventional and machine learning-based
trust management algorithms have been proposed in the research literature, and which
have laid the foundations for the research envisaged in this paper. Whilst these research
papers have made some outstanding contributions, they still lack the potential of being a
generic algorithm that can be suitably adapted to a particular research domain. In addition,
they only take into consideration the traditional and limited trust parameters and a number
of them even do not consider the influence of context on the trust values. Therefore, this
research paper envisages a machine learning-based trust management mechanism that
considers key influential trust parameters and the context for ascertaining the trust of
vehicles in an IoV network.

3. Proposed Trust Evaluation Model

We hereby design a novel trust management framework, as depicted in Figure 3, in
a bid to ascertain the trustworthiness of vehicles in an IoV network. The envisaged trust
model primarily encompasses the following three salient steps:

Figure 3. The framework of the proposed trust management model.

• Step 1—Establishing the Trust Model
The trust of any particular vehicle (trustee) is ascertained via a trust model which
takes into account direct trust, indirect trust, and context. The direct trust is a trustor’s
direct observation pertinent to a trustee and is composed up of four parameters, i.e.,
interaction success rate, similarity, familiarity, and reward and punishment. On the
contrary, the indirect trust is computed via the respective trustor’s one-hop neighbors’
recommendations pertinent to a trustee and the degree of confidence of the respective
trustor on the recommendations of its corresponding one-hop neighbors. It is also
pertinent to mention that the model further takes into consideration the impact of
context (vehicle types and operating scenarios) of both trustor and trustee.

• Step 2—Training the Trust Model
Once the trust values have been computed via the trust model, we first employ un-
supervised learning algorithms such as k-means, fuzzy c-means, and agglomerative
(hierarchical) clustering, in order to ascertain two clusters, i.e., trustworthy and un-
trustworthy. Simply put, an unsupervised learning algorithm has been employed here
to label the feature matrices ascertained in Step 1. Subsequently, we use supervised
learning algorithms such as the k-nearest neighbors algorithm and random forest
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algorithm for training with 5-fold cross-validation so as to identify the optimal trust
boundary for distinguishing between trusted and untrusted vehicles.

• Step 3—Evaluating the Trust Model
The evaluation parameters, i.e., precision, recall, and F1-score are used for evaluating
the performance of the envisaged IoV-based trust model.

We, therefore, define a set of vehicles Vm, m = {1, 2, ..., M}, comprising both trust-
worthy (honest) as well as untrustworthy (malicious) vehicles. At every time instance t

′
,

t
′
= {1, 2, ..., t}, each vehicle interacts with vehicles in its immediate area to evaluate their

trust based on the underlying interaction. This interaction takes place between a pair of a
trustor i and a trustee j. The definitions of trust parameters employed in this section are
delineated in Table 2.

Table 2. Mathematical symbols employed in the envisaged trust model.

Symbol Definition

i Trustor
j Trustee
k The neighbor of i
t
′ A time instance
t The current time instance

ThC Confidence threshold (0.8)
ThT Trust value threshold (0.6)
ISR Interaction success rate
Sim Similarity
ES External similarity
IS Internal similarity

Fam Familiarity
EF External familiarity
IF Internal familiarity
RP Reward and punishment
VT Vehicle types
OS Operating scenarios
n 3266 pairs of interactions

3.1. Direct Trust (Td(i,j,t))

Direct trust refers to a trustor’s direct observation of a trustee. However, it is pertinent
to mention that the historical interactions between a trustor and a trustee should also be
taken into consideration, i.e., in addition to the current interaction, for ascertaining the
trust of a trustee since a malicious vehicle may behave intelligently by altering between
a malicious and a non-malicious behavior. In our envisaged model, we employ four key
trust parameters, i.e., interaction success rate, similarity, familiarity, reward and punishment, in
order to ascertain the direct trust between a trustor i and a trustor j. The details of these
parameters are as follows:

• Interaction Success Rate (ISR)—The ISRi,j,t (0 ≤ ISRi,j,t ≤ 1) manifests the degree of
interaction between a trustor i and a trustee j in an IoV network, and is depicted as:

ISRi,j,t =
∑t

t′=1
Ri,j,t′

∑t
t′=1

Si,t′
(1)

where ∑t
t′=1

Ri,j,t′ signifies total number of messages successfully received by a trustee

j from a trustor i and ∑t
t′=1

Si,t′ represents the total number of messages sent by the
trustor i over the said time period.

• Similarity (Sim)—The similarity (0 ≤ Simi,j,t ≤ 1) itself is a weighted amalgamation
of external similarity (ES) and internal similarity (IS). The external similarity herein
implies the degree of similar content accessed by a trustor i and a trustee j over
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the time t (Equation (3)), whereas the internal similarity represents the exchange of
information, i.e., position, direction, and velocity between a trustor i and a trustor j
(Equation (4)).

Simi,j,t = wESESi,j,t + wIS ISi,j,t (2)

where wES and wIS refers to the weight of the ESi,j,t and ISi,j,t, respectively,
(wES + wIS = 1). The ESi,j,t and ISi,j,t are ascertained as:

ESi,j,t =
t

∑
t′=1

wEs
t′

ESi,j,t′ (3)

ISi,j,t =
t

∑
t′=1

wIs
t′

ISi,j,t′ (4)

where wEs
t′

and wIs
t′

manifests the weights of ESi,j,t′ and ISi,j,t′ , respectively, at a time

t′ (wEs
t′
+ wIs

t′
= 1 ). The ESi,j,t′ and ISi,j,t′ are ascertained as:

ESi,j,t′ =

1, if Cv
i,t′

= Cv
j,t′

0, if Cv
i,t′

̸= Cvj ,t
′

(5)

where Cv
i,t′

and Cv
j,t′

implies the content accessed by a trustor i and a trustee j,

respectively. Similarly, the ISi,j,t′ is computed as:

ISi,j,t′ =
Posi,j,t′ + Diri,j,t′ + Veli,j,t′

3
(6)

Posi,j,t′ =

{
1, if Posi,t′ = Posj,t′

0, if Posi,t′ ̸= Posj,t′
(7)

Diri,j,t′ =

{
1, if Diri,t′ = Dirj,t′

0, if Diri,t′ ̸= Dirj,t′
(8)

Veli,j,t′ =

{
1, if Veli,t′ = Velj,t′

0, if Veli,t′ ̸= Velj,t′
(9)

where Posi,t′ , Posj,t′ , Diri,t′ , Dirj,t′ , Veli,t′ , and Velj,t′ represent the position, direction,

and velocity, respectively, of a trustor i and a trustee j at a time t
′
.

• Familiarity (Fam)—The familiarity (0 ≤ Fami,j,t ≤ 1) is also segregated into external
familiarity (EF) and internal familiarity (IF). The external familiarity refers to the ratio
of the number of common vehicles interacting with a trustor i and a trustee j to the total
number of vehicles interacting with a trustor i over the time t, i.e., the more the number
of common interacting vehicles, the higher the familiarity between a trustor i and a
trustee j. On the contrary, the internal familiarity signifies the interaction frequency
between a trustor i and a trustor j over the time t, i.e., the higher the interaction
frequency, the higher is the familiarity between the two. The same is illustrated in
Equations (10)–(12).

Fami,j,t = wEFEFi,j,t + wIF IFi,j,t (10)

where wEF and wIF refers to the weight of EFi,j,t and IFi,j,t, respectively, (wEF + wIF = 1).
The EFi,j,t is ascertained as:
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EFi,j,t =
∑t

t′=1
Fi,j,t′

∑t
t′=1

Fi,t′
(11)

where ∑t
t′=1

Fi,j,t′ represents the number of common interacting vehicles of a trustor

i and a trustee j, whereas ∑t
t′=1

Fi,t′ is the total number of vehicles interacting with i.
Similarly, the IFi,j,t is computed as:

IFi,j,t =
∑t

t′=1
Ii,j,t′

t
(12)

where ∑t
t′=1

Ii,j,t′ signifies the number of interactions between a trustor i and a trustee j.

• Reward and Punishment (RP)—The RP is employed to evaluate the rewards and pun-
ishments accorded to a trustee j by a trustor i depending on its behavior, i.e., a trustee
j is rewarded by a trustor i for its cooperation, honesty, and reporting a critical event,
and is punished for any misconduct. The RP is, therefore, calculated as:

RPi,j,t = ISRi,j,te
− Np

Np+Nr (13)

where ISRi,j,t is the interaction success rate between a trustor i and a trustor j. Also,
Np suggests the number of negative interactions, whereas Nr exhibits the number of
positive interactions.

3.2. Indirect Trust (Tind(i,j,t))

The indirect trust, also generally referred to as the recommendation trust, is ascertained
by (a) soliciting the recommendations via the one-hop neighboring nodes of a trustor
pertinent to a trustee and (b) by taking into account the confidence of a trustor on the
recommendations ascertained by the one-hop neighboring vehicles [32,44]. The indirect
trust is computed as:

Tind(i,j,t) =
∑n

k=1 Ci,k,tTd(k,j,t)

n
(14)

where Ci,k,t implies the confidence score assigned by a trustor to the recommendations of its
one-hop neighboring vehicles pertinent to a trustee, Td(k,j,t) refers to the recommendations
ascertained by the said one-hop neighboring nodes, and n implies the total number of
one-hop neighboring nodes. The confidence score, Ci,k,t, is calculated as:

Ci,k,t =


1, if Td(i,k,t) ≥ ThC

0.5, if ThT ≤ Td(i,k,t) < ThC

0, if Td(i,k,t) < ThT

(15)

where ThC and ThT refer to the confidence threshold and the trust threshold, respectively,
and act as a weight for distinguishing between a good, an average, or a bad recommenda-
tion [39].

3.3. Context (Tc)

A number of existing trust models ignore the significance of context, thereby making
them quite unrealistic for real-world settings. In our model, the notion of context has been
primarily determined by two factors, i.e., the vehicle types and the operating scenarios, the
details of which are as follows:

• Vehicle types (VT)—Five types of vehicles have been taken into consideration in the
proposed model. Police cars, ambulances, and fire engines are regarded as high-
priority (HP) vehicles since the information disseminated by these particular vehicles
possesses considerable confidence of a centralized trusted authority. The second
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type is public transport (PT) vehicles, i.e., buses, taxis, and subways, which are
also considered reasonably trustworthy since they have been approved by specific
authorized departments. Similarly, private vehicles are classified into professional
(P) vehicles and novice (N) vehicles primarily depending on their respective driver’s
driving experience, i.e., professional drivers are regarded to have extensive driving
expertise in contrast to beginners and are, therefore, considered to be more trustworthy.
Finally, we consider malicious vehicles to be untrustworthy in nature. Equation (16)
illustrates the trust values vis-à-vis the suggested vehicle types:

TVT =



1, if Vehicles = HP
0.8, if Vehicles = PT
0.6, if Vehicles = P
0.4, if Vehicles = N
0, if Vehicles = Malicious

(16)

• Operating Scenarios (OS)—In the envisaged model, we have considered two operating
scenarios, i.e., an urban and a highway one. In Section 4, the simulation results for
these two scenarios have been delineated in detail. It is pertinent to highlight here
that the high mobility and the random geographical distribution of vehicles in an IoV
network results in several different contextual scenarios. Therefore, it is indispensable
to consider such settings while ascertaining the trust of a trustee. For instance, owing
to the limited mobility of vehicles and the high density of RSUs in an urban scenario,
there is a considerable number of interactions, both trustworthy and untrustworthy,
between the vehicles. However, in scenarios involving highways, the mobility of
the vehicles is generally much higher than that in an urban scenario. Furthermore,
vehicles in highway settings have a more sparse geographical distribution, thereby
resulting in fewer interactions between them. Trust management often relies on a
large number of RSUs, but there are fewer RSUs on highways, so trust management
cannot be well implemented in this scenario.

4. Results and Discussion
4.1. Simulation Setup and Feature Extraction

We used the Epinions dataset (https://cse.msu.edu/tangjili/datasetcode/truststudy.
htm, Accessed: 1 June 2023) in order to map the data traces for the trust parameters of our
envisaged IoV-based trust model. Epinions, in essence, is a publicly available trust dataset
that encompasses six parameters: userid, productid, categoryid, rating, helpfulness, and
timestamps. For instance, a data trace of [1, 2, 3, 4, 5, 6] in the Epinions dataset implies
that user 1 accords a rating of 4 to product 2 belonging to category 3 at timestamp 6. The
helpfulness of the accorded rating is 5. For the sake of the research at hand, we have
appropriately transformed the Epinions dataset into an IoV dataset in light of the similar
transformations envisaged in [45].

A total of 3266 pairs of interactions between trustors and trustees, i.e., pertinent to
64 nodes (vehicles), have been taken into consideration. The same are arranged in the form
of a feature matrix M as illustrated in Equation (17).

[Mn×7] =

 ISR1 Sim1 Fam1 RP1 con f idence1 VT1 OS1
...

...
...

...
...

...
...

ISRn Simn Famn RPn con f idencen VTn OSn


n×7

(17)

The dimension of this feature matrix is n × 7, wherein n = 3266 and 7 implies the
trust-based feature vectors via-à-vis each of the 3266 trustor trustee pairs. It is pertinent to
mention here that there is no need for the features’ normalization since each trust feature
value falls in the range of [0, 1]. The seven features are concatenated into three features,
i.e., direct trust, indirect trust, and context, in a bid to form a new feature matrix N with

https://cse.msu.edu/tangjili/datasetcode/truststudy.htm
https://cse.msu.edu/tangjili/datasetcode/truststudy.htm
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a dimension of n × 3, wherein the direct trust implies interaction success rate, similarity,
familiarity, and reward and punishment, the indirect trust is ascertained via direct trust
and confidence, and the context comprises vehicle types and operating scenarios. Since it is
not feasible to display a three-dimensional vector, two out of three features are selected
and displayed at a time for demonstration purposes.

[Nn×3] =

direct trust1 indirect trust1 context1
...

...
...

direct trustn indirect trustn contextn


n×3

(18)

Table 3 depicts the trust-based parametric values of 20 randomly selected vehicles in
the IoV network. Figure 4 further portrays two of such parameters, i.e., ISR and RP, for all of
the 64 vehicles in the IoV network. It is evident that the change in the parametric values of
RP is proportional to the parametric values of ISR with the exception of a few. For instance,
vehicles 3, 32, 48, 52, and 58 possess high ISR values but low RP values. This is owing to
the fact that although the interactions carried out by these vehicles are considerable, most
of them were accounted for as being negative.

Table 3. Trust parameters’ values pertinent to 20 random vehicles in an IoV network (ISR here implies
interaction success rate, and RP refers to reward and punishment).

Vehicles ISR Similarity Familiarity RP Confidence Context

1 0.500 0.614 0.167 0.500 0.000 0.333
2 0.894 0.593 0.120 0.542 0.000 0.711
3 0.982 0.665 0.119 0.361 1.000 0.800
4 0.982 0.770 0.111 0.704 1.000 0.567
5 0.950 0.453 0.104 0.950 0.500 0.850
6 0.964 0.484 0.107 0.964 0.000 0.857
7 1.000 0.515 0.125 1.000 1.000 0.650
8 0.911 0.541 0.226 0.552 1.000 0.771
9 0.833 0.476 0.262 0.735 1.000 0.686

10 1.000 0.524 0.217 1.000 1.000 0.720
11 1.000 0.600 0.292 1.000 1.000 0.933
12 1.000 0.763 0.200 1.000 0.500 0.840
13 0.833 0.750 0.222 0.833 1.000 0.600
14 0.855 0.750 0.375 0.855 1.000 0.550
15 1.000 0.540 0.229 1.000 1.000 0.500
16 1.000 0.529 0.319 1.000 1.000 0.600
17 0.893 0.638 0.351 0.893 0.500 0.729
18 0.815 0.700 0.100 0.815 1.000 0.618
19 0.834 0.585 0.323 0.683 1.000 0.775
20 0.915 0.700 0.333 0.915 1.000 0.600

4.2. Clustering and Labeling

Subsequent to the extraction of the desired trust features, three unsupervised learning
algorithms, i.e., k-means, fuzzy c-means, and agglomerative clustering, have been em-
ployed to label the feature matrices. It is noteworthy that unsupervised learning algorithms
have been employed in a bid to ascertain a credible and reliable ground truth. Accordingly,
two clusters, trustworthy and untrustworthy, have been obtained as a result of the same
and are depicted in Figures 5–7.
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Figure 4. Trust scores of vehicles in an IoV network vis-à-vis ISR and RP (ISR here implies interaction
success rate, and RP refers to reward and punishment).

Figure 5. Labels via unsupervised learning (k-means clustering)—direct trust vs. context, indirect
trust vs. context, and direct trust vs. indirect trust.

Figure 6. Labels via unsupervised learning (fuzzy c-means clustering)—direct trust vs. context,
indirect trust vs. context, and direct trust vs. indirect trust.
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Figure 7. Labels via unsupervised learning (agglomerative clustering)—direct trust vs. context,
indirect trust vs. context, and direct trust vs. indirect trust.

4.3. Classification and Model Evaluation

A number of supervised learning algorithms, including, but not limited to, k-nearest
neighbor (KNN), support vector machine (SVM), random forest (RF), and ensemble ones
have been employed in the research literature for classification purposes [7,19,46,47]. For
the manuscript at hand, we have employed KNN and RF classifiers on the resulting feature
matrix for training purposes via a 5-fold cross-validation approach in a bid to ascertain the
malicious nodes via a decision boundary. The same is depicted in Figures 8 and 9 for KNN
and RF classifiers, respectively, wherein the trusted and untrusted regions can be clearly
observed. We have subsequently evaluated the accuracy of our envisaged trust model via
the following three evaluation parameters:

• Precision: Precision depicts the ability of the envisaged trust model to correctly predict
malicious vehicles as being malicious.

• Recall: Recall refers to the proportion of malicious vehicles that have been correctly
ascertained by the envisaged trust model.

• F1-score: F1-score implies the weighted harmonic mean of the precision, and recall
and ascertains the model’s accuracy.

Figure 8. Trust boundary results for KNN algorithm—direct trust vs. context, indirect trust vs.
context, and direct trust vs. indirect trust.

For our trust model, we further consider vehicles under two different operating
scenarios, i.e., urban and highway. Also, owing to the space constraint, only the figures
pertinent to the urban scenario have been portrayed. Nevertheless, the precision, recall,
and F1-score for both urban and highway scenarios have been depicted in Table 4. It is
pertinent to mention here that the precision, recall, and F1-score of our envisaged trust
model as demonstrated by the KNN classifier under both urban and highway settings
is much higher in contrast to the precision, recall, and F1-score demonstrated by the RF
classifier under the same settings. KNN is regarded as one of the simplest classification
algorithms, i.e., with mature theory, low training time complexity, and insensitivity to
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outliers. This particular algorithm is quite suitable for an automatic classification of class
domains with large sample size [7]. It is also noteworthy to mention that the trust can
be ascertained in a relatively more accurate manner in an urban setting in contrast to the
highway setting since vehicles interact much more frequently in the former owing to their
low speeds as opposed to the latter which is designed to enable them to traverse with high
speeds.

Figure 9. Trust boundary results for RF algorithm—direct trust vs. context, indirect trust vs. context,
and direct trust vs. indirect trust.

Table 4. Evaluation results via supervised learning algorithms, i.e., KNN and RF (KNN here implies
k-nearest neighbor and RF refers to random forest).

Scenarios Classifier Precision Recall F1-Score

Urban KNN 1.0000 1.0000 1.000
RF 1.0000 0.9400 0.9684

Highway KNN 0.9804 0.9623 0.9713
RF 0.9764 0.9338 0.9546

Table 5 depicts the comparison of our envisaged trust model vis-à-vis machine learning-
based trust mechanisms, i.e., [47,48]—labeled as NC—1 and NC—2, respectively, that have
not taken the notion of context into consideration. Whilst the said trust models demonstrate
high precision, our envisaged trust model still outperforms them since it takes into account
the context pertinent to the interactions on the premise that the interaction between a
trustor and trustee is different in different contexts. Table 5 further outlines the comparison
of our envisaged trust model vis-à-vis conventional (weighted sum) trust mechanisms,
i.e., [23,27,49]—labeled as Conv1, Conv2, and Conv3, respectively. It can once again be seen
clearly that the envisaged trust model performs considerably better in terms of precision in
contrast to the conventional trust mechanisms. This reinforces the fact that the weighted
sum mechanisms have strong subjectivity and are influenced by numerous underlying
factors. Hence, when a number of trust parameters are in play, a machine learning-based
mechanism is optimal for not only aggregating the same but ascertaining an intelligent
trust boundary.

Table 5. Comparison of the precision of trust models (NC—1: [47], NC—2: [48], Conv1: [23],
Conv2: [27], Conv3: [49]).

Model Proposed NC—1 NC—2 Conv1 Conv2 Conv3

Precision 1.0000 0.9234 0.9005 0.9700 0.9700 0.9750

5. Conclusions and Future Directions

An intelligent transportation system is an intrinsic component of smart cities since
it allows vehicles to employ vehicle-to-everything communication in a bid to exchange
safety-critical messages with the other road entities and the supporting infrastructure to
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ensure highly secure and intelligent traffic flows. However, road entities within an IoV
network are vulnerable to a number of attacks and malicious actors prevailing in the same
are always on the lookout to manipulate the IoV network for their malicious gains. In this
manuscript, a machine learning-based trust management mechanism, MESMERIC, has
been proposed that takes into account direct trust, indirect trust, and context (each with a
number of qualifying attributes) to not only ascertain the trust of vehicles in an IoV network
but to segregate the trustworthy vehicles from the untrustworthy ones by means of an
optimal decision boundary. In the near future, the authors would investigate designing
and launching a number of dynamic trust-related attacks via a state-of-the-art trust-based
IoV testbed in order to understand the underlying nitty gritty of such dynamic attacks so
that more resilient IoV-based trust models could be formulated. Additionally, the authors
aim to propose an intelligent weighting-based conventional mechanism in a bid to mitigate
any possible subjectivity that could arise during the trust aggregation process.
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