
Citation: Mukhandi, H.; Ferreira, J.F.;

Peixoto, P. SyS3DS: Systematic

Sampling of Large-Scale LiDAR Point

Clouds for Semantic Segmentation in

Forestry Robotics. Sensors 2024, 24,

823. https://doi.org/10.3390/

s24030823

Academic Editors: Peter Ross McAree

and Tyson Phillips

Received: 2 November 2023

Revised: 9 January 2024

Accepted: 23 January 2024

Published: 26 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SyS3DS: Systematic Sampling of Large-Scale LiDAR Point
Clouds for Semantic Segmentation in Forestry Robotics
Habibu Mukhandi 1,* , Joao Filipe Ferreira 1,2 and Paulo Peixoto 1,3

1 Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal
2 Computational Intelligence and Applications Research Group, Department of Computer Science, School of

Science and Technology, Nottingham NG11 8NS, UK
3 University of Coimbra, Department of Electrical and Computer Engineering, 3030-290 Coimbra, Portugal
* Correspondence: habibu.mukhandi@isr.uc.pt

Abstract: Recently, new semantic segmentation and object detection methods have been proposed
for the direct processing of three-dimensional (3D) LiDAR sensor point clouds. LiDAR can produce
highly accurate and detailed 3D maps of natural and man-made environments and is used for sensing
in many contexts due to its ability to capture more information, its robustness to dynamic changes in
the environment compared to an RGB camera, and its cost, which has decreased in recent years and
which is an important factor for many application scenarios. The challenge with high-resolution 3D
LiDAR sensors is that they can output large amounts of 3D data with up to a few million points per
second, which is difficult to process in real time when applying complex algorithms and models for
efficient semantic segmentation. Most existing approaches are either only suitable for relatively small
point clouds or rely on computationally intensive sampling techniques to reduce their size. As a
result, most of these methods do not work in real time in realistic field robotics application scenarios,
making them unsuitable for practical applications. Systematic point selection is a possible solution to
reduce the amount of data to be processed. Although our approach is memory and computationally
efficient, it selects only a small subset of points, which may result in important features being missed.
To address this problem, our proposed systematic sampling method called SyS3DS (Systematic
Sampling for 3D Semantic Segmentation) incorporates a technique in which the local neighbours
of each point are retained to preserve geometric details. SyS3DS is based on the graph colouring
algorithm and ensures that the selected points are non-adjacent in order to obtain a subset of points
that are representative of the 3D points in the scene. To take advantage of the ensemble learning
method, we pass a different subset of nodes for each epoch. This leverages a new technique called
auto-ensemble, where ensemble learning is proposed as a collection of different learning models
instead of tuning different hyperparameters individually during training and validation. SyS3DS has
been shown to process up to 1 million points in a single pass. It outperforms the state of the art in
efficient semantic segmentation on large datasets such as Semantic3D. We also present a preliminary
study on the validity of the performance of LiDAR-only data, i.e., intensity values from LiDAR
sensors without RGB values for semi-autonomous robot perception.

Keywords: 3D LiDAR sensor; semantic segmentation; deep learning; LiDAR intensity

1. Introduction

Wildfires have recently caused major natural disasters in countries such as the United
States and in Mediterranean countries, such as Portugal, Spain, Italy, and Greece [1].
Over the past 25 years, there have been about 65,000 fires per year in Europe and about
18,000 fires per year in Portugal alone, with more than 100 victims since 2017 [2,3]. One
of the measures to prevent wildfires is to encourage landscaping by actively reducing the
accumulation of combustible material and identifying which plants and forest debris catch
fire more easily than others. However, these and other adopted measures have not yet
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solved the problem as they lead to huge investments and focus heavily on human resources,
and it is difficult to find employees willing to work in landscaping due to the harsh and
dangerous conditions inherent to this job.

Semi-autonomous robots have become a promising solution in forestry, providing
significant cost savings in the maintenance of forests [2,4,5]. They can also be particularly
useful for performing tasks that it is difficult to find humans willing to do or that are
dangerous for humans, such as tasks that pose a high risk of accidents and tasks that can
lead to injuries, including back injuries, cuts, numbness, lacerations, and falls, without fully
replacing humans. However, a semi-autonomous robot needs a perception system that
allows it to navigate the forest and, for example, perform landscaping for fire prevention
with the intention of actively reducing the accumulation of combustible material. An
important module of a perception system is efficient semantic segmentation, as it enables
the identification of objects of interest in the robot’s environment.

As average selling prices for LiDARs have declined and they are less affected by
adverse weather conditions, they are increasingly being used for robotic perception, and
they can capture more information than an RGB camera; therefore, they are increasingly
being used for robot perception. A semi-autonomous vehicle with a 3D LiDAR sensor
can detect whether a region is traversable or not to gain a better understanding of the real
environment. Therefore, this work aims to address two problems: (a) the development
of state-of-the-art LiDAR-based semantic segmentation techniques, which are crucial for
tasks such as autonomous robot navigation and fuel detection in areas with complex
terrain, and (b) the investigation of the performance of LiDAR-only data, i.e., intensity
values from LiDAR sensors without RGB values, as a valid option for semi-autonomous
robot perception. Semantic segmentation can also be used in other applications of field
robots, e.g., in agriculture. Semantic segmentation in agriculture can enhance decision-
making processes, may increase resource efficiency, and may contribute to sustainable and
precise farming. Farmers can gain valuable insights to optimise crop production while
minimising the environmental impact. In addition, efficient semantic segmentation can be
used for intelligent real-time systems, such as augmented reality (AR). Efficient semantic
segmentation in AR can improve scene understanding, object recognition, interaction, and
the overall user experience. It may also enable AR systems to seamlessly integrate virtual
and real elements, opening up new possibilities for innovative and practical applications.

Deep convolutional networks have recently become state of the art in 2D structured
computer vision tasks such as classification, object detection, and semantic segmentation.
However, it is challenging to use them directly for the classification and semantic segmen-
tation of unstructured point clouds [6]. Raw point cloud data are typically unstructured.
These data are not arranged in a regular grid (unlike 2D images (Figure 1), where for every
pixel there is a neighboring pixel on all four sides); their density is variable, i.e., objects
closer to the sensor receive more points than those farther away; and they are unordered
(i.e., permutation-invariant), which can be challenging for deep convolutional networks.

Another challenge is that almost all existing 3D point cloud semantic segmentation
algorithms can process only small-scale 3D data (e.g., 4k points or 1 × 1 m blocks) and cannot
scale to larger datasets (e.g., millions of points and up to 200 × 200 m) [7]. Therefore, it is only
logical to sample these 3D points and select a subset of them. However, selecting a small
subset of 3D points from a larger 3D point cloud may not capture the geometric structure
of the point clouds and may miss relevant information that 3D LiDAR sensors capture.

There is also a lack of training and testing datasets that meet the following two
requirements for semantic segmentation using 3D LiDAR data in forests: first, they should
be acquired from outdoor woodland environments, and second, they should be annotated
per point. For example, the TartanAir dataset [8] meets one of the two requirements; namely,
it is annotated per point. However, many outdoor woodland environment data, including
the QuintaReiFMD dataset [9], have outdoor woodland areas, but no annotations. To
our knowledge, there are no known research reports on the use of 3D LiDAR data points
acquired from outdoor woodland environments and no publicly available, labelled 3D
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LiDAR data for semantic segmentation tasks that meet both requirements. Furthermore,
due to the complex and unstructured nature of outdoor woodland environments, labelling
these data can be an arduous task that requires expertise.

Figure 1. Typical example of 3D LiDAR data (i.e., point cloud) corresponding to a woodland environ-
ment. As can be seen, the 3D points are unstructured and sparse, and it is difficult to identify objects.

To summarise, we propose a new point sampling technique called systematic sam-
pling for 3D semantic segmentation (SyS3DS). A graph colouring algorithm is used in the
sampling technique by building a k-d tree based on the difference between the x, y, and
z coordinates. After creating the k-d tree, we compute the k-nearest neighbours for each
point to preserve the local geometric features before using the sampled points as the input
to a deep learning architecture.

2. Literature Review

Several strategies have been proposed in the literature to address the unique challenges
presented by large 3D point clouds.

Figure 2 shows a taxonomy of the different approaches that exist in the literature to
address this type of problem. We will be briefly reviewing these approaches in the following
text; however, an in-depth discussion can be found in the survey paper by Bello et al. [10].

C/SS/OD in 3D

NDL-Based Approaches DL-Based Approaches

3D Data Features Design

SVM

Gradient
Boosted RF

KNN

3D
Data Intermediate

Raw 3D Data
as Input

3D Data to
Voxels

3D Data to
2D Multiview

3D Data to
Grids Pointnet

Pointnet++

RandLA-Net

3D to 2D 3D Data to HS

Figure 2. Taxonomy of classification, semantic segmentation, and object detection research with
3D LiDAR point clouds. C stands for classification, SS for semantic segmentation, OD for object
detection, DL for deep learning, NDL for non-deep learning, SVM for support vector machines, RF
for random forest, KNN for k-nearest neighbours, and HS for Hough space.
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2.1. Non-Deep Learning-Based Approaches

Traditional machine learning algorithms, unlike deep learning methods that learn
to select features on their own, require more human intervention to correctly learn how
to select features. The basic idea in feature selection is to select those that maximise the
discriminative power of each class. However, depending on the application, this can be
difficult to achieve. For example, Aubry et al. [11] carefully defined features from a point
cloud using the statistical properties of the points. However, it is not a trivial task to
find optimal feature combinations that are specifically chosen to be invariant to certain
transformations [12]. In the following list, we describe the two main approaches proposed
in the literature for manual feature definition and selection for 3D data points and depth
images as inputs to traditional machine learning algorithms:

• 3D key point detection: Lo and Siebert [13] use an improved version of the scale-
invariant feature transform (SIFT) algorithm [14], namely 2.5D SIFT, to detect key
points in a depth image. They created a discrete scale space representation of the depth
image using Gaussian smoothing and the difference of Gaussian (DOG) method. The
signal maxima and minima were detected within the DOG scale space. The key points
were then validated and located by comparing the ratio of principal curvatures to a
predefined threshold. The 2.5D SIFT algorithm achieved better fitting performance
than the 2D SIFT algorithm [15]. Knopp et al. [16] first voxelised a mesh into a 3D
voxel image. They then computed the second-order derivatives of each voxel using
box filters with an increasing standard deviation, σ, and defined a saliency measure
for each voxel and a scale σ based on the Hessian matrix. The local extrema were then
determined and used to identify 3D SURF key points and their corresponding scales.
Our own analysis has shown that both SIFT and SURF [17] for 3D data points have a
computational complexity of O(N3) for 3D data points, which is not suitable for point
cloud preprocessing. After key point detection, the geometric information of the local
surface around the key point can be extracted and encoded in a feature descriptor,
which is another additional computational step;

• Novel statistical feature definition [18]: This approach is based on manual feature
definition from 2D images. Features are defined by calculating the mean, median,
standard deviation, coefficient of variance, skewness, covariance, kurtosis, correlation,
and entropy of neighbouring 3D points. These calculations result in a set of feature
vectors for a 3D point cloud. This set of features is then input to a feature optimisa-
tion step before being passed to a machine learning model. Like the other manual
feature definition approaches, this one is computationally intensive and dependent on
human supervision.

The best-known algorithms for non-deep learning are the gradient-boosted random
forest algorithm [19,20], support vector machines [21] and k-nearest neighbours [22]. In
addition to manual feature definition, a post-processing step, such as clustering [23], is
required to improve the classification results of traditional machine learning methods,
which also increases their computational costs.

2.2. Deep Learning-Based Approaches

Traditional machine learning algorithms are not well-suited for large amounts of data
because they perform simple, mostly linear inference. In particular, for 3D point clouds, it
can be difficult to learn complex features [24]. Deep convolutional networks have recently
been shown to be effective when applied to structured 2D computer vision data. Therefore,
researchers have turned to deep learning to process 3D point data [25]. The research can be
mainly divided into two categories: methods that require the 3D data points to be converted
into a more compact intermediate representation before being input into a deep learning
model and methods where the raw 3D points are directly input into a deep learning model.
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2.2.1. Converting 3D Data into an Intermediate Representation

One of the two categories of approaches to input 3D point data into a deep learning
model involves converting the 3D data points into a more compact intermediate represen-
tation before inputting them into a deep learning model. Some of the proposed approaches
are described in this section.

3D Data as 2D Images or Voxels

This method proposes the projection of 3D data points onto 2D images or 3D voxels
to avoid irregularities in the 3D data. Moreover, processing 3D data points as images is
computationally efficient because much research is being done on 2D data in the field of
computer vision and deep learning using convolutional neural networks. Although this
method has produced impressive results over the years, it makes the data unnecessarily
voluminous, and much of the useful information contained in the 3D data points is lost. In
addition, converting 3D data points into 2D images, as described by Li et al. [26], and into
3D voxels, as described by Graham et al. [27], leads to poor results because the 3D data are
too sparse. Furthermore, these approaches are computationally intensive and may not be
well suited for real-time systems [6].

3D Data as 2D Images from Multiple Views

The multiview convolutional neural network (MVCNN) method developed by
Qi et al. [28] is reported to provide better performance for object detection tasks than
methods that represent 3D data as voxels or images. The idea is to represent a 3D data
object as images obtained from multiple viewpoints. The authors used 12 viewpoints of
an object and trained convolutional neural networks (CNNs) on the data as images. Each
of the 12 viewpoints was used as input to an independent CNN, and the outputs of these
12 CNNs were then used as input to another CNN for segmentation. It is nontrivial to
extend this method to 3D tasks such as point classification and shape completion.

3D Data as Grids

Ben-Shabat et al. [29], who proposed 3DmFV (three-dimensional points as Fisher
vectors), have found that converting 3D data to a grid does not have to involve working
directly with raw 3D data as input to a deep learning model; nor does the data need to
be projected onto 2D images. Also, this method has the advantage of being reversible
to restore the original raw 3D data points, unlike the method of rasterising 3D data onto
images. 3DmFV transforms 3D data to a grid using Fisher vectors and can revert from this
grid to the 3D data points. This method performs similarly to the methods that project 3D
data to 2D images or voxels. However, it cannot work in real time.

3D Data to Hough Space

Other researchers working on the classification of 3D objects from point clouds, such
as Song et al. [12], have proposed transforming LiDAR data points into the Hough space.
First, they project the 3D data onto the x–z plane. Second, they map the x–z plane onto
the Hough space. Finally, they use the accumulator count of the individual curves in
the Hough space as the input to a deep learning model. However, this method cannot
distinguish between trees and walls because these objects produce similar outcomes in the
Hough space.

2.2.2. Raw 3D Data as Input

Recent research suggests that it is possible to use 3D data points directly as input to
a deep neural network. The problem of data irregularity has been studied and solved by
modelling a symmetric function and designing a transformer network. The authors of the
PointNet [6] paper, which is a pioneer work in the field of using raw 3D data points as
input to artificial neural networks (ANNs), have developed a promising approach that
directly processes raw 3D point clouds. The authors proposed using a function that models
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a symmetric function using shared multilayer perceptrons (MLPs). A symmetric function
is used to account for the permutation invariance of 3D points, and a spatial transformer
network is used to correct for affine transformations that may occur in 3D data points. The
PointNet approach, while computationally efficient, does not capture the geometric context
for each point because the symmetric function only captures the maximum features and
discards the fine local features [7,30]. In Pointnet++ [30], which is an extension of Pointnet,
each local region is passed independently to a symmetric function. Both Pointnet and
Pointnet++ suffer from the problem that they can only be trained and work on small-scale
point clouds.

To overcome the challenge that the geometric context is not captured for each point,
many subsequent ANNs have been introduced [30–34]. They all achieve promising results
in semantic segmentation, but they are limited to small 3D point clouds (e.g., processing
times range from 10 to 200 s for these ANNs to process 106 points on an NVIDIA RTX2080Ti)
and cannot be easily scaled to larger point clouds [7], which makes them not feasible for use
in an UAV or semi-autonomous robot applications. The main reason for this is that almost
all of them use computationally intensive or memory-inefficient sampling techniques to
select points and add them to the subset of points used as input to the deep ANNs. The
following are some of the methods proposed in the literature for sampling 3D data points:

• Farthest point sampling (FPS): To select a subset of K points from the N original points,
the algorithm returns a reordering of points p1, . . . , pk, . . . , pK such that each pk is the
farthest point from the k − 1 points already selected. FPS has been widely used in the
literature, including in Pointnet++ [30] and Pointcnn [25] for semantic segmentation
tasks. Despite the good coverage of an entire point cloud and the good representation
of the data, the computational complexity is O(N2). The authors of RandLA-Net
reported that, for a large point cloud (N ≈ 106), this sampling algorithm takes up to
200 s to process on a single NVIDIA RTX2080Ti GPU. Therefore, it cannot be used to
sample large point clouds in real time;

• Policy gradient-based sampling: To select a subset, this method formulates the sam-
pling operation as a Markov decision process. It sequentially learns a probability
distribution to sample the points. The RandLA-Net authors report that for a sample of
10% of 106 points, the exploration space is (105

106), which is difficult for a neural network
to converge to;

• Inverse importance sampling: To select a subset of K points from all N points, this
algorithm orders all N points by their distance to a given reference point. The distance
of each point becomes its density. All points are reordered according to their density.
Then, the top K points are selected [35]. The computational complexity is on the order
of O(N). The authors of RandLA-Net found through experiments that this algorithm
takes 10 s to process 106 points. Compared to farthest point sampling and policy
gradient-based sampling, this algorithm is computationally efficient. However, it is
sensitive to outliers and also not suitable for use in a real-time system;

• Random sampling: This method randomly selects K points from N original points.
The method runs in O(1), constant time, and is independent of the number of points,
so it can be scaled to any number of points. Compared to other sampling algorithms
in the literature, it is the most computationally efficient method. According to the
authors of RandLA-Net, it takes only 0.004 s to process 106 points.

Landrieu et al. [36], who introduced large-scale point cloud semantic segmentation
with superpoint graphs (SPG), proposed a technique to deal with large-scale raw 3D
points using superpoints, which are similar to superpixels in 2D images, as inputs to a
deep convolutional neural network. The creation of superpoints is very computationally
intensive due to a pre-processing step that partitions the points by geometric positions [7].
Moreover, it can be difficult to detect a whiteboard on a white wall using superpoint
partitioning [30].

The authors of RandLA-Net, which uses the random selection of raw 3D points to be
able to run in real time, have found a solution to this problem that has been shown to work
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better than previous methods. The authors used a random selection of points and dropped
the unselected points before inputting them into a deep neural network. This method
has better accuracy than the best-performing state-of-the-art methods for the semantic
segmentation of 3D data points, including the rasterisation of 3D data in image methods
using only 3D point data as input.

In our work, we input raw 3D data into our deep learning network. As men-
tioned in the introduction (see Section 1), we use a systematic method of sampling
points that can scale and process even larger amounts of 3D data in real time for effi-
cient semantic segmentation.

2.3. Dataset

As we saw in Section 1, there is a lack of 3D datasets of outdoor woodland envi-
ronments annotated per point. Therefore, we will first use known datasets from the
autonomous driving research community to test our proposed method and compare it
to existing 3D deep learning algorithms. Furthermore, self-driving car datasets contain
objects such as vegetation, trees, people, and roads that may also be present in outdoor
woodland environments.

We plan to evaluate our proposed work against a large public dataset, Semantic3D [37],
to be fair in comparison to RandLA-Net. The Semantic3D dataset consists of 15 point clouds
for training and 15 for online testing. Each point cloud contains up to 100 million points
covering up to 160 × 240 × 30 m in real 3D space. The raw 3D points belong to 8 classes and
contain 3D coordinates and RGB information and intensity. For simplicity, the authors of
the state-of-the-art method used only the 3D coordinates and colour information to train
and test their networks. The mean intersection over union (mIoU) and overall accuracy
(OA) of all classes are used as standard metrics. Table 1 describes the classes of the
Semantic3D dataset.

Table 1. A description of the Semantic3D (reduced-8) dataset classes.

Class Description

Man-made Man-made terrain, which is mostly pavement.
Natural Natural terrain, which is mostly grass.
High vegetation High vegetation, which is trees and large bushes.
Low vegetation Low vegetation, which is flowers or small bushes that are smaller than 2 m of height.
Building Houses, city halls, churches, stations, tenements, and so on.
Hardscape A clutter class with garden walls, fountains, and banks.

Scanning arts Artefacts caused by dynamically moving objects during static scan acquisition (this class may
overlap with other classes, such as cars, if the cars are moving).

Cars Cars and trucks.

2.4. Comparative Evaluation of State-of-the-Art Approaches

Some of the works in the literature on 3D data are summarised in Table 2, including
summaries of the performance of deep learning-based strategies on the SemanticKITTI
dataset; Table 3 summarises the performance of different deep learning-based strategies
on the Modelnet40 dataset [38]. Table 4 presents a summary of the different deep learning
based solutions in the literature. It presents a comparative analysis of the design features of
deep learning-based strategies.
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Table 2. Comparative evaluation of the performance of different deep learning-based strategies on
the SemanticKITTI dataset using the mean intersection over union (mIOU) metric. Larger values
imply better performance.

Work Description Input Type mIOU

PointNet [6] Takes into account the irregularity of point clouds;
transformation-invariant 3D points Raw data 14.60

PointNet++ [30] An extension of PointNet where each local location is
passed independently to a symmetric function 3D points Raw data 20.10

RangeNet++ [39] Rasterises the data points as range images 2.5D data Range images 52.20

RandLANet [7] A subset of data points is randomly selected to be able to
run in real time 3D points Raw data 53.90

Table 3. Comparative evaluation of the performances of different deep learning-based strategies on
the Modelnet40 dataset [38] using the mean intersection over union (mIOU) metric. Larger values
imply better performance.

Work Description Input Type mIOU

Volumetric [27] Convert data points to voxels Voxels Transformed 3D points 83.00
MVCNN [28] Obtains 12 views of an object 2D images Transformed 3D points 90.10
3dmfv [29] Converts data into Fisher vectors Grid Transformed 3D points 91.40

Table 4. Summary of the desired features of the solutions proposed in the literature compared to our
proposed approach. A large scale of points refers to hundreds of thousands of points or more.

Solution Runs in
Real Time Raw 3D Data as Input LiDAR

Only
Scale of
Points

Sampling
Approach

Volumetric [27] ✓ Unknown N/A
MVCNN [28] ✓ ✓ Unknown N/A
PointNet [6] ✓ ✓ Small FPS
3dmfv [29] ✓ Small N/A
PointNet++ [30] ✓ ✓ Small FPS
RangeNet++ [39] ✓ ✓ Large N/A
RandLANet [7] ✓ ✓ ✓ Large Random

Ours ✓ ✓ ✓ Large Systematic

There are research works, such as those on FG-Net [40], Qiu et al., 2021 [41], and
KPConv [42], that show mIOU values of more than 72.23 on Semantic3D. However, FG-Net
uses inverse density importance sampling (IDIS). The authors of RandLA-Net have found
in experiments that the IDIS algorithm takes 10 s to process 106 points. Although IDIS is
computationally efficient compared to farthest point sampling and policy gradient-based
sampling, the algorithm is sensitive to outliers. Qiu et al., 2021 [41], used farthest point
sampling (FPS), which does not run in real time. The authors stated that they wanted to
optimise this model’s efficiency for real-time applications in the future. The authors of
KPConv do not seem to provide any information on its runtime performance for large
datasets, such as Semantic3D, and seem to have used a block partition.

3. Systematic Selection of 3D Points

As mentioned earlier, it is difficult to process larger amounts of 3D data points and
make inference in real time. Therefore, we propose a 3D point selection approach to select
a subset of points, which is a better method for point selection than the random point
selection proposed in RandLA-Net and has the advantage of being able to scale to larger
point clouds by saving training time and significantly reducing the number of parameters.
We also ensure that the order of input of 3D data points does not affect the performance of
the segmentation algorithm since the geometric features of the data points are preserved.

Our proposed sampling algorithm is based on the graph colouring algorithm [43] to
perform point selection, since we want to ensure that we obtain a subset of points that are
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representative of the 3D points in the scene. This algorithm ensures that the points we
obtain are part of the skeleton of every object in the scene, which PointNet calls critical
points. According to PointNet, only part of the skeletons of objects is sufficient to detect
objects in the scene, since the critical points are not affected by density variations in the
point cloud.

In addition, it has been shown that not all points are necessary for the correct detection
of an object. PointNet has shown that up to 40% of points can be omitted or occluded
without affecting performance and that up to 60% can be omitted without significantly
reducing object detection performance. These results were obtained without considering
the encoding of local geometric features, as we propose in our approach.

A graph is a nonlinear data structure with at least one node. In a graph, there may
be nodes that are connected to each other; this connection is called an edge, E. A node
is sometimes called a vertex, V. Formally, a graph consists of a set of vertices and edges.
A graph is denoted as G(E,V). Two nodes are considered adjacent if they have an edge
between them. The adjacent nodes are also called neighbours. The number of edges a node
has is called the degree. A tree is a special type of graph that has no cyclic connections
between nodes. A k-dimensional tree, or k-d tree [44], is a binary tree of points with more
than one dimension. Since 3D LiDAR points are three-dimensional data, a k-d tree is a very
effective way to construct a 3D data point graph using the nearest neighbour algorithm.

The process of constructing a k-d tree from three-dimensional data has a complexity
of O(NlogN), as can be seen in Figure 3, where N is the number of nodes. After creating a
graph, we used k-nearest neighbours to find the nearest neighbours for each point (to save
calculations, we used the square distance instead of the square root to find the Euclidean
distance). RandLa-Net randomly selects 105 points for each point cloud; therefore, we
chose varying numbers of neighbours (i.e., from k = 14 to k = 81 depending on the total
number of points in the point cloud) for each point cloud to sample ≈100 k points. The
systematically sampled points were then used as inputs to a shared MLP. Our algorithm
ensures that the selected points are non-adjacent, which can be essentially compared to
the FPS algorithm, with the difference that our method is faster. To take advantage of
the ensemble learning method proposed by Yang et al. [45], we passed a different subset
of nodes for each epoch. This leverages a new technique called auto-ensemble, where
ensemble learning is created as a collection of different learning models in one rather than
tuning different hyperparameters individually during training and validation.
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the x-coordinate of the root; it goes to the right if its x is larger than the x of the root. At level 1, a
node’s y-coordinate is compared with the y-coordinates of the node at the level. If they are smaller,
we go to the left, and if they are larger, we go to the right. On level 2, the z-coordinates are compared.
On level 3 we find the x coordinates that are compared as on level 0. Thus, the process repeats. Note
that this algorithm makes a precedent of placing a node closer to its nearest neighbour throughout
the process described above, as can be seen with nodes 9, 4, and 0.
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4. Local and Global Information Aggregation

In addition to systematically selecting points, we preserved local geometric structures
using local spatial encoding (LocSE) and attentive pooling to automatically preserve useful
local features. We also stacked multiple LocSE units and attentive pooling into an extended
residual block, significantly increasing the effective receptive field for each point. Each
point sampled in the systematic selection of points is considered a reference point. We
refer to each reference point as point pi and each of its neighbours as pk

i . In our work,
the step of finding the nearest neighbours does not take any additional computation time
since the nearest neighbours are already computed during the systematic sampling, unlike
RandLA-Net, which performs the computations in this step.

In order for the deep neural network to learn the relative position of each point
and its geometric features, we need to preserve the sampled points and their considered
neighbours because during the selection of a subset of points, many points are discarded. To
obtain the relative positions, the x, y, and z positions of the 16 neighbours are concatenated
as features in the feature map, along with the x, y, and z positions of the reference point as
it can be seen in Figure 4. After we performed a heuristic hyperparameter search, we found
that 16 neighbours is the number of neighbours that provides the best results. In addition,
the Euclidean and Manhattan distances of a selected point relative to each of the reference
point’s nearest neighbours are encoded into the feature to complete the feature map.

Reference Point p1(x,y,z)

Neighbour Point p1
1 (x1,y1,z1)

Neighbour Point p1
2 (x2,y2,z2)

Neighbour Point p1
16(x16,y16,z16)

Figure 4. A reference point with its nearest neighbours. The neighbours’ x, y, and z positions are
encoded as shown in Equation (1).

Relative point position encoding:

rk
i = MLP(pi ⊕ pk

i ⊕ (pi − pk
i )⊕ ∥pi − pk

i ∥) (1)

where ⊕ is the concatenation operation, ∥.∥ is the Euclidean distance, (pi − pk
i ) is the

difference between the centre and the neighbouring point k, pi is the selected point, and
pk

i is each of the k = 16 neighbours. MLP() is the input for the multilayer perceptron, and
rk

i is the encoding of the relative point position. This encoding is concatenated with the
other features, such as the RGB colours of each point and their intensity values, as shown
in Figure 5.
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X Z

Xk Yk Zk

Euclidean Distance (P,Pk)

Manhattan Distance (P,Pk)

Y
Red BlueGreen

shared MLP

Attention
Features

(Si
k)

hidden layer 1
hidden layer 2 hidden layer 3

output layer

input layer

Relative
Positions

(ri
k)

Intensity

fik

Local Spatial Encoding (LocSE)

S

input layer hidden layer 1
hidden layer 2 hidden layer 3

output layer

shared MLP

Attentive Pooling

Figure 5. Attentive pooling to produce attentive features instead of using maxpooling. ⊕ is the
concatenation operation, ⊙ is the dot product operation, and s is the Softmax layer.

The following equation introduces the concatenation process:

f̂ k
i = rk

i ⊕ f k
i (2)

where f k
i represents the RGB value and intensity value for each point and f̂ k

i is the point
feature augmentation.

Sk
i is the attention score from the Softmax outputs of a shared MLP, given by

Sk
i = g( f̂ k

i , w) (3)

where g is the function estimated from a shared MLP with the input features f̂ k
i , and w

represents the learned weights after training the shared MLP.
Instead of selecting only the maximum features and ignoring the rest, we give each

feature f̂ k
i a weight according to its importance by concatenating the attention scores of

each feature with its corresponding feature (see Figure 5).

5. Deep Learning Architecture

Instead of max-pooling to approximate the underlying symmetric function in the data,
we used attentive pooling, inspired by Engelmann et al. [46]. The reason for this is that
max-pooling tends to drop the features that did not respond the most. Therefore, it becomes
difficult to integrate the neighbouring features, which results in losing much of the infor-
mation. Since we only used a subset of points, we needed all the neighbouring information
we collected. This technique is inspired by the work of Yang et al. [47]. Attentive pooling
uses an attention mechanism to automatically learn important local features.

We needed to encode the geometric information of many more neighbours, as we
selected only a subset of points from an entire scene. The dilated residual block is a repeat of
the local feature aggregation module and attentive pooling (see Figure 6). The subsequent
local feature aggregation module receives input from the output of the previous attentive
pooling. Therefore, the number of neighbours collected as features after repetition increases
from n neighbours to n2 neighbours.

3D points

Systematic
3D Points
Sampling

Local
Feature

Aggregation
Attentive
Pooling

Attentive
Pooling

Dilated Residual Block (DRB)

Local
Feature

Aggregation

Figure 6. Dilated residual block containing a module for local feature aggregation and attentive
pooling repeated twice to increase geometric feature encoding. To avoid overfitting, we avoid
repeating this more than twice. Green boxes represent proprietary work, blue boxes represent work
adapted from Yang et al., and yellow boxes represent work adapted from Engelmann et al.
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We used four encoding layers and four decoding layers. Selected subsets of points
and the dilated residual block were input to each encoding layer. In the encoding layers,
the filter size (feature map) was gradually increased from 8 to 32 to 128 to 256 to 512, and
the number of points was downsampled using strided convolution from N to N/4 to N/16
to N/256. The four decoding layers were the mirror image of the encoding layers (see
Figure 7). The number of points was gradually upsampled from N/256 to N/16 to N/8 and
back to N to perform semantic segmentation. The output of the last decoding layers was
connected to a fully connected layer, which was connected to three other fully connected
layers that preceded each other to predict the class for each point. This combination of
decoder/encoder and four fully connected layers produced the best performance on the
Semantic3D dataset after an extensive search for hyperparameters.

DRB

Four Encoding and
Four Decoding

Layers

FC

DP

FC FC FC
N,64 N,32 N,16

Figure 7. Encoder and decoder for downsampling and upsampling the features of the input points
for the semantic segmentation task. (N, D) stands for the number of points and the feature dimension,
respectively. FC stands for fully connected layer. DP stands for dropout layer. DRB stands for dilated
residual block. N is the number of 3D points. Green boxes represent proprietary work, and yellow
boxes represent work adapted from RandLA-Net.

6. Experimental Evaluations

In Table 5, we summarise the evaluation of the computational complexity of our
network on real, large-scale 3D point clouds for semantic segmentation. Specifically,
we evaluated our network on the SemanticKITTI dataset [48], taking as a reference the
complexity reported by RandLA-Net for a fair comparison. We only compared our work
with RandLA-Net because the other deep learning architectures proposed in the literature
used computationally intensive sampling techniques, such as farthest sampling algorithms,
and are therefore not suitable for large sets of 3D points, as described in the Literature
Review section. In contrast, RandLA-Net uses a random sampling algorithm that is suitable
for large sets of 3D points. The SemanticKITTI dataset includes 43,552 scans divided into
21 sequences. Each scan has about 100,000 points distributed over a volume of 160 by
160 by 20 m. The sequences are divided into a training set, containing sequences 00 to
07, 09 and 10 (19,130 scans), a validation set containing sequence 08 (4071 scans), and
sequences 11 to 21 for testing (20,351 scans). The dataset includes 19 classes, including cars,
road signs, vegetation, people, terrain, cyclists, roads, sidewalks, etc. Our algorithm has
higher computational complexity than inverse density importance sampling and random
selection. However, inverse density importance sampling is sensitive to outliers, and
random selection is not a systematic approach to point selection. Our algorithm is not
sensitive to outliers, has reasonable complexity, and works similarly to random selection in
real time.

Table 5. Benchmarking our systematic sampling algorithm with other 3D point selection algorithms,
as reported by RandLA-Net. Smaller values imply better performance.

Algorithm Complexity

Policy gradient-based sampling [49] does not converge for large data
Farthest point sampling [50] O(N2)
Inverse density importance sampling [51] O(N)
Random sampling [7] O(1)

Ours O(N log N)
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We used a GeForce RTX 3090 Nvidia GPU with 24 GB of memory for both training and
testing the Semantic3D dataset. We conducted four experiments. In the first experiment,
we used the 3D coordinates and the colour information of each point to train and test our
network, similarly to other researchers. The mean intersection over union (mIoU) and
overall accuracy (OA) of all classes were used as standard metrics.

In Table 6, we summarise the results of the mIOU of our network on real, large-scale
3D point clouds for semantic segmentation. Specifically, we evaluated our network on the
Semantic3D dataset [37] against the mIOU and IOU for each individual class reported by
RandLA-Net for a fair comparison. It can be seen that our network outperforms RandLA-
Net, which represents the state of the art in all eight classes. Further improvements are
needed for the low vegetation class. Like RandLA-Net, our network performs poorly
because of the limited data available for training in this class.

For the second experiment, only the 3D coordinates of each point were used to train
and test our network since most 3D datasets do not contain colour information. The mean
intersection over union (mIoU), IOU for each individual class, and overall accuracy (OA)
of all classes were used again as standard metrics.

In Table 7, we summarise the mIOU results. The mIOU decreased by about ten
percentage points to 62.25, as did the accuracy of each individual class.

Table 6. Benchmarking our network with the state-of-the-art RandLA-Net on the Seman-
tic3D (reduced-8) dataset with x, y, z, and RGB values and no intensity. Larger values imply
better performance.

XYZ + RGB

RandLA-Net Ours

mIOU (%) 69.31 72.23
Overall accuracy (%) 89.50 91.30
Man-made (IOU%) 94.09 94.74
Natural (IOU%) 81.87 85.72
High veg. (IOU%) 85.39 89.52
Low veg. (IOU%) 37.09 39.49
Building (IOU%) 82.18 85.77
Hardscape (IOU%) 25.71 28.85
Scanning arts (IOU%) 61.36 62.95
Cars (IOU%) 86.80 90.77

Table 7. Benchmarking our network with the state-of-the-art RandLA-Net on the Semantic3D
(reduced-8) dataset, omitting RBG features. Larger values imply better performance.

XYZ Only

RandLA-Net Ours

mIOU (%) 53.79 62.25
Overall accuracy (%) 81.00 85.60
Man-made (IOU%) 77.39 81.74
Natural (IOU%) 31.44 41.07
High veg. (IOU%) 70.54 83.33
Low veg. (IOU%) 23.53 34.38
Building (IOU%) 89.95 89.92
Hardscape (IOU%) 17.36 31.80
Scanning arts (IOU%) 55.25 59.66
Cars (IOU%) 64.91 76.09

For the third experiment, the 3D coordinates of each point and the intensity values
were used to train and test our network as LiDAR-only data. The mean intersection over
union (mIoU), IOU for each individual class, and overall accuracy (OA) of all classes were
used once again as standard metrics.
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In Table 8, we summarise the mIOU results. The mIOU decreased only about three
percentage points to 68.15 compared to 72.23 for 3D coordinates with colour information.
This shows that intensity values can perform almost as well as 3D coordinates with colour
information even without colour information.

Table 8. Benchmarking our network with the state-of-the-art RandLA-Net on the Semantic3D
(reduced-8) dataset, omitting RBG features but adding intensity information. Larger values imply
better performance.

XYZ + Intensity

RandLA-Net Ours

mIOU (%) 47.01 68.15
Overall accuracy (%) 75.80 89.23
Man-made (IOU%) 76.22 91.99
Natural (IOU%) 17.51 76.16
High veg. (IOU%) 47.28 84.06
Low veg. (IOU%) 13.72 38.63
Building (IOU%) 87.12 85.18
Hardscape (IOU%) 17.85 24.50
Scanning arts (IOU%) 54.22 62.89
Cars (IOU%) 62.17 81.79

For the fourth experiment, we used input fusion with 3D coordinates, colour informa-
tion, and intensity values to train and test our network. The mean intersection over union
(mIoU), IOU for each individual class, and overall accuracy (OA) of all classes were used
here as well as standard metrics.

In Table 9, we summarise the mIOU results. The mIOU here is lower than that of
3D coordinates with colour information and that of 3D coordinates with intensity values.
Notably, our network also achieves superior performance on six of the eight classes, except
the man-made and natural classes.

Table 9. Benchmarking our network with the state-of-the-art RandLA-Net on the Semantic3D (reduced-
8) dataset with RBG features and intensity information. Larger values imply better performance.

XYZ + Intensity + RGB

RandLA-Net Ours

mIOU (%) 61.07 67.93
Overall accuracy (%) 85.20 89.07
Man-made (IOU%) 93.14 92.10
Natural (IOU%) 82.72 77.30
High veg. (IOU%) 64.89 74.85
Low veg. (IOU%) 23.32 37.65
Building (IOU%) 78.22 91.46
Hardscape (IOU%) 21.31 26.93
Scanning arts (IOU%) 53.71 59.17
Cars (IOU%) 71.26 83.95

Table 10 summarises the benchmarking of our network with the state-of-the-art
RandLA-Net on the Semantic3D (reduced-8) dataset with RBG features as the baseline for
the four experiments we performed. Our first experiment provides the best mIOU, the best
overall accuracy, and the best IOU of the man-made class, natural class, high vegetation
class, low vegetation class, scanning artefacts class, and cars class. The second experiment
provides the best IOU for the hardscape class. The fourth experiment provides the best
IOU for the buildings class. It can also be observed that our network without RGB or
intensity performs better than our first experiment for objects with classes with blocks,
such as buildings and hardscape.
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Table 10. Benchmarking our network with the state-of-the-art RandLA-Net on the Semantic3D
(reduced-8) dataset with RBG features as the baseline for the four experiments we conducted. Larger
values imply better performance.

RandLA-Net x, y, z + RGB x, y, z Only x, y, z + Intensity x, y, z + RGB + Intensity

mIOU (%) 69.31 72.23 62.25 68.15 67.93
Overall acc. (%) 89.50 91.30 85.60 89.23 89.07
Man-made (IOU%) 94.09 94.74 81.74 91.99 92.10
Natural (IOU%) 81.87 85.72 41.07 76.16 77.30
High veg. (IOU%) 85.39 89.52 83.33 84.06 74.85
Low veg. (IOU%) 37.09 39.49 34.38 38.63 37.65
Building (IOU%) 82.18 85.77 89.92 85.18 91.46
Hardscape (IOU%) 25.71 28.85 31.80 24.50 26.93
Scanning arts (IOU%) 61.36 62.95 59.66 62.89 59.17
Cars (IOU%) 86.80 90.77 76.09 81.79 83.95

Figures 8 and 9 enable a qualitative evaluation of the performance of our network
on the test set of the Semantic3D dataset for the first experiment (XYZ + RGB). In general,
our network seems to produce good quality results but can mistake things like hills as
buildings. This could be due to the RGB channel features in the Semantic3D dataset that
make hills look like old buildings. In some rare cases, our network may also mistake bushes
for grass.

road building artifacts hardscape cars trees grass bush

Figure 8. Qualitative analysis of our network from one view for a scene showing bushes, buildings,
trees, grasses, hardscape, artefacts, and roads.
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road building artifacts hardscape cars trees grass bush

Figure 9. Qualitative analysis of our network from another view in the scene showing bushes, trees,
grasses, artefacts, roads, and a car. It can also be seen that a rock on a hill is being classified as a
building since the rock resembles some buildings in the dataset.

The qualitative analysis can also been viewed in the video, see link in Appendix A.
Table 11 summarises the runtime of SyS3DS on a GeForce RTX 3090 Nvidia GPU with

24 GB memory when tested on the Semantic3D (reduced-8) dataset with RBG features. It
can be seen that 24 frames per second can be processed during inference.

Table 11. A description of the evaluation of the inference of SyS3DS on a GeForce RTX 3090 Nvidia
GPU with 24 GB of memory on the Semantic3D (reduced-8) dataset with RBG features. The Seman-
tic3D data with RGB features are the most complete data.

Total Frames per Point Cloud Frames per Second Seconds per Frame

4071 frames 24 frames per second 0.042

7. Conclusions and Future Work

In this paper, we have shown that the systematic sampling of 3D data points outper-
foms a simple random selection of points and has the advantage that large point clouds can
be used as input and processed in real time. Our findings strongly support the key tasks of
navigation, situational perception, such as the identification of flammable materials, the
coordination of robotic teams, and decision-making by providing fine-grained information
about the local environment. It also provides efficient semantic segmentation that can be
used to provide decision-making modules with task-oriented context to inform the actions
that the robot should enact.

The baseline of the state of the art for efficient semantic segmentation shows that
further improvements are needed for the low vegetation class. Similarly to RandLA-
Net, our network performs poorly because of the limited data available for training this
class. The mIOU for intensity only from the third experiment decreased only about four
percentage points to 68 compared to 72 for 3D coordinates with colour information from
the first experiment. This shows that points with x, y, z, and intensity values without colour
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information (LiDAR-only data) can perform almost as well as 3D coordinates with colour
information. In future work, we will analyse the impact of the stacking ensemble technique
on our two models, namely the model trained on Semantic3D with RGB without intensity
and the model trained on Semantic3D without RGB values but with intensity values.
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Appendix A

We have provided a video to show the qualitative results of our work on the Seman-
tic3D dataset with x, y, z, and RGB values, which can be viewed at https://youtu.be/tqlkj-
banys (accessed on 22 January 2024).
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