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Abstract: Background: Falls are common and dangerous for stroke survivors. Current fall risk
assessment methods rely on subjective scales. Objective sensor-based methods could improve
prediction accuracy. Objective: Develop machine learning models using inertial sensors to objectively
classify fall risk in stroke survivors. Determine optimal sensor configurations and clinical test
protocols. Methods: 21 stroke survivors performed balance, Timed Up and Go, 10 Meter Walk, and
Sit-to-Stand tests with and without dual-tasking. A total of 8 motion sensors captured lower limb
and trunk kinematics, and 92 spatiotemporal gait and clinical features were extracted. Supervised
models—Support Vector Machine, Logistic Regression, and Random Forest—were implemented to
classify high vs. low fall risk. Sensor setups and test combinations were evaluated. Results: The
Random Forest model achieved 91% accuracy using dual-task balance sway and Timed Up and Go
walk time features. Single thorax sensor models performed similarly to multi-sensor models. Balance
and Timed Up and Go best-predicted fall risk. Conclusion: Machine learning models using minimal
inertial sensors during clinical assessments can accurately quantify fall risk in stroke survivors. Single
thorax sensor setups are effective. Findings demonstrate a feasible objective fall screening approach
to assist rehabilitation.
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1. Introduction

Falls are experienced by everyone at least once in their lifetime in the form of sudden
traumatic events typically accompanied by a sense of loss of balance. Such events, however,
can be a fatal cause of morbidity and mortality in the elderly population, especially those
suffering from neurological disorders such as stroke survivors (SS). The US alone sees
800,000 stroke cases (~75% experiencing first time) every year [1]. Stroke is the cause of
one out of every 20 deaths and is the fifth leading cause of death in the US [2]. A stroke
can affect the neuro-musculoskeletal systems of the body causing sensory, motor, cognitive,
and emotional impairments. Such impairments lead to poor quality of life experienced
in survivors due to physical (such as paralysis, lack of balance, muscle spasticity, pain,
numbness) and mental (memory retention, poor attention span, and difficulty solving
problems) limitations. Consequently, the lack of proper motor control increases the risk
of fall. The elderly population (>65 yrs.) experiences falls at least once annually, and
10-15% of these falls are fatal [3]. Falls are even more critical in SS by being seven times
more prevalent [4]. Furthermore, SS are often prescribed antiplatelet or anticoagulants
for secondary stroke prevention, which may cause brain bleeding after experiencing a fall.
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To prevent fatal injuries, it is critical to identify patients with high fall risk, ensure proper
rehabilitation programs to enhance their physical performance, and consequently decrease
the risk of fall.

Several efforts have been made to develop scales to evaluate the risk of fall in SS [5-8].
Examples of such scales include the Fugl-Meyer assessment of motor recovery, Berg Bal-
ance Score (BBS), Fall Efficacy Scale (FES), Postural Assessment Scale for Stroke (PASS), and
Activity-Specific Balance Confidence (ABC) Scale. Particularly, a large diversity in scales
stems from a lack of adequate knowledge about the factors influencing a fall. There are
more than 120 factors in the literature as fall risk factors (FRFs) in the stroke community,
which can be categorized as subjective and objective. Subjective risk factors are usually
measured by a clinician or the subject filling different questionnaires targeting various
aspects of the individual’s capability and performance. On the other hand, objective factors
are measured using various equipment such as timers, force platforms, optoelectronic
cameras, or wearable sensors. Among these, gait and balance analyses using force plates
and motion sensor signals are the most popular objective approaches to assessing the
risk status. Additionally, recent work has begun exploring the utility of time-dependent
spectral descriptors derived from gait sensor data signals to characterize neurological
impairments [9,10], which could be later implemented for fall risk assessment as well. Our
recent review [11] showed that FRFs that were highly focused upon were age (in 21/27 stud-
ies), gender (21/27), motion-related measures (19/27), motor function/impairment (17/27),
balance-related measures (16/27), and cognitive impairment (11/27). Among these factors,
motion-related measures had the highest rate of significance (i.e., 84% or 16/19). Overall,
objective methods are less prone to biases and errors and can provide a more accurate
assessment for fall risk.

A total of 18 risk prediction models were proposed in 12 articles as observed from
a previous review article [12]. The development of fall-risk scales followed a specific
procedure, which started with an initial pool of fall risk factors (FRF), data collection,
statistical analysis, and estimating the performance of the algorithm in terms of measures
such as accuracy, sensitivity, and specificity. Previous studies on fall risk assessment in
the stroke community have considered singular tasks from Activities of Daily Living
(ADL) [13-16]. Cognitive-motor dual-task would provide more realistic information about
the functionality of the SS during ADLs. Furthermore, the addition of cognitive loading
may help in discriminating between high vs. low fall-risk individuals. The addition of
cognitive loading is often overlooked in studies on SS but has been previously considered
in a few studies aiming to investigate the effect of dual tasks on the fall risk assessment
of patients suffering from Parkinson’s disease and multiple sclerosis [17,18]. Thus, it is
necessary to conduct a study having a list of tasks comprising single and dual tasks to
identify the effect of the dual tasks on the accuracy of the fall risk assessment models.

In this study, we will develop a new objective model for the assessment of fall risk
based on the kinematic features (obtained from wearable motion sensors) specifically tuned
for SS during a battery of physical and motor-cognitive dual-tasks (along with clinical
information). Furthermore, we will determine the optimal configuration of wearable
sensors as well as sub-tasks for the test battery with the minimum number of sensors and
physical tasks. Another novelty of our approach is the algorithms that we are going to
implement for developing the models. Earlier studies have used traditional statistical tools
such as t-tests to indicate the significant differences between patients with different fall
risk levels. In this study, we have developed a fall-risk assessment model using a Support
Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) which are among
the most well-known classification methods. The overall outcomes of this study may be
beneficial to researchers and clinicians alike, working toward developing and improving
rehabilitation programs for surviving patients of stroke.
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2. Materials and Methods
An overview of the study methodology is illustrated in Figure 1. This schematic

provides a visual representation of the entire research process, with further details and

explanations provided in the subsequent subsections.
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Figure 1. Schematic overview of the study method illustrating a sample signal. Note: this signal was
not used in the model development and was only implanted to show the study overview.

2.1. Participants

A group of 21 stroke survivors were recruited from healthcare systems in the City of
Rochester, NY, USA. Participants were included in the study if they (1) had experienced
a stroke at least six months prior to the day of the experiment, (2) were able to walk
for 10 m with no assistance. Participants were excluded from the study if they suffered
from more than three chronic health conditions. Eligible participants were also vetted by
clinic directors in addition to the study investigators. The demographics of participants,
specifically their gender, age, height, and weight have been collected and considered in
the process of fall risk model development. All participants in this study provided written
consent according to the best clinical research practices under an approved Institutional
Review Board (IRB) process.

2.2. Experimental Procedures and Test Battery

For this study, a comprehensive set of physical single and dual tasks was carefully
chosen, encompassing a variety of activities, as illustrated in Table 1. These tasks included
assessments such as upright stance balance tests, the timed up and go (TUG), the 10 Meter
Walk Test (10MWT), and sit-to-stand (STS). Additionally, we introduced motor-cognitive
dual tasks for each task in the test battery, where participants were required to perform the
designated task while simultaneously counting backward verbally from 200 in increments
of 10. In total, the experiment incorporated five single tasks, comprising balance tests with
both open and closed eyes, TUG, 10MWT, and STS. Furthermore, five combined motor-
cognitive dual tasks were included, resulting in a comprehensive test battery comprising a
total of 10 tasks.
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Table 1. Lists of tasks within the experimental test battery along with their descriptions.

Test Battery Tasks (with & without

Cognitive Load) Description

Stand as still as possible with open/closed eyes

Balance Test on a firm surface for 30 s

Stand up from a normal chair, walk for 3 m,

Timed Up and Go (TUG) return, and sit on the chair
10 Meter Walk Test (10 MWT) 10 m straight walk without a turn
Sit to Stand (STS) Standing up and sitting down on a chair

5 times

Repetition of the five above tasks while

Motor-cognitive Dual-tasks counting backward from 200 by the step of 10

2.3. Equipment and Tools

We used the Movella motion capturing system (Xsens, Enschede, The Netherlands) to
acquire the motion data of participants while they performed the tasks. These miniaturized
inertial measurement units (IMUs) integrate a 3D accelerometer (range £6 g), 3D gyroscope
(range £2000 deg/s), and 3D magnetometer (range £750 mGauss) to capture body segment
kinematics. The sensors have dimensions of 47 x 30 x 13 mm and weigh 16 g each. The
MTw Awinda units communicate wirelessly via an encrypted proprietary protocol with
the MVN Studio software (https://www.movella.com/support/software-documentation,
accessed on 15 January 2022) on a Windows computer, enabling untethered monitoring
during the clinical assessment tasks. The sensors have a sampling frequency of 60 Hz, which
provides adequate capture of human motions along with efficient data bandwidth and
storage. Additionally, the large dynamic range of the accelerometer and rate gyroscopes
ensures measurement accuracy even for vigorous movements by stroke survivors. To
have the minimum number of sensors, which helped in making the experiment more
comfortable for the patients, as well as to cover the significant body segments, the 8-sensor
configuration was selected for this study. Specifically, the sensors were placed on the feet,
shanks, thighs, low back, and sternum of participants, as shown in Figure 2, during the
tests. This setup enabled us to have movement data of the entire lower extremity as well as
the trunk motion from the upper extremity.

2.4. Data Processing and Feature Extraction

In the analysis of kinematic data, a customized MATLAB (https:/ /www.movella.
com/support/software-documentation, accessed on 15 January 2022) code was utilized,
as detailed in the previous chapter. The kinematic data, which included segment angles,
angular velocity, and linear acceleration, underwent initial preprocessing and extraction
using the MVN Analyze® software package (Movella, Enschede, The Netherlands, https:
/ /www.movella.com/support/software-documentation, accessed on 15 January 2022).
To enhance the quality of the data, we applied a low-pass Butterworth filter with a 5 Hz
cut-off frequency within MATLAB to the imported data. For each test, we developed a
unique MATLAB code to perform segmentation and feature extraction. After executing
the code for each trial, all segmentation processes were visually validated. In instances
where discrepancies occurred between the code-generated segmentation and the predefined
strategy, manual adjustments to segmentation were made.

In the analysis of the TUG test, we divided it into five specific sections, each represent-
ing a distinct phase of the task, from standing up from a chair to turning and sitting back
down. To identify the starting and ending points of these sections, we defined key events
based on signals from body segments. For example, we detected the start of the task (T1) by
analyzing signals such as thorax angular velocity. T2 marked the initiation of walking, T3
the start of turning, and so forth. To improve the accuracy of identifying the turning phases,
we incorporated the thorax angular velocity in addition to linear acceleration signals from
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the feet. This detailed breakdown and analysis allowed us to precisely segment the TUG
test signals. In the STS test, we focused on angular velocity data to evaluate the transition
between sitting and standing positions, particularly in the thighs. By identifying distinct
convex shapes in the angular velocity data, we could segment the signals into different
phases of the sit-stand-sit activity. This approach provided insights into the duration and
patterns of the task. In the I0MWT, we determined heel-strike (HS) and toe-off (TO) events
to analyze walking patterns. We used resultant linear acceleration data from shank sensors
to identify these events [19]. Subsequently, we calculated various kinematic variables
and gait-related factors, including total walk time, cadence, gait speed, and stride dura-
tion, providing a comprehensive assessment of participants” walking performance. From
the collected signals in each test, we have extracted several features as shown in Table 2.
These features were implemented as the initial pool in the development of the fall risk
assessment model.

Table 2. The extracted features from each test implemented as the initial pool of features in the
development of a machine learning model to predict the risk of fall. Note that Acc 1: acceleration
toward the front side of the participant, Acc 2: acceleration toward the right side of the participant,
Acc 3: acceleration toward down, Acc 4: resultant acceleration, std: standard deviation, Ang Vel:
Angular Velocity, CE: closed eyes.

Test Battery Features

Functional Tests

Balance Test (open eyes)

Balance_Thorax Linear Acc 1, Balance_Thorax Linear Acc 2,
Balance_Thorax Linear Acc 3, Balance_Thorax Linear Acc 4,
Balance_Pelvic Linear Acc 4, Balance_Right Thigh Linear Acc 4,
Balance_Left Thigh Linear Acc 4

Balance Test (closed eyes)

CE_Balance_Thorax Linear Acc 1, CE_Balance_Thorax Linear Acc 2,
CE_Balance_Thorax Linear Acc 3, CE_Balance_Thorax Linear Acc 4,
CE_Balance_Pelvic Linear Acc 4, CE_Balance_Right Thigh Linear Acc 4,
CE_Balance_Left Thigh Linear Acc 4

Timed Up and Go (TUG)

TUG_Time, TUG_Sit to Stand, TUG_Walk toward Cone, TUG_Turn
around the Cone, TUG_Walk toward Chair, TUG_Turn and Sit,
TUG_Steps toward Cone, TUG_Steps toward Chair, TUG_Cadence
toward Cone, TUG_Cadence toward Chair

10MWT_Walk Time, 1I0MWT_Step, 10MWT_Cadence, I0MWT_mean

10 Meter Walk Test (I0OMWT)  Swing Total, 10MWT_std Swing Total, I0MWT_Single Support,

10MWT_Stride Duration, 1I0MWT_std Stride Duration

STS_Time, STS_Mean Sit to Stand, STS_Mean Stand to Sit, STS_Thorax

Sit to Stand (STS) Ang Vel, STS_Pelvic Ang Vel, STS_std STS, STS_std Sit to Stand,

STS_std Stand to Sit, STS_std Thorax Ang Vel, STS_std Pelvic Ang Vel

Dual-Task All the features for the 5 above tests calculated for dual-task tests.

Clinical Information

BMI, Gender, Age, Feel Unsteady, Worried when Walking, Joint Pain,
Number Neurological Disease beside Stroke, Fear of Fall (FES
Questionnaire)

2.5. Machine Learning Model Development

Table 2 illustrates the initial pool of features for the fall risk prediction model, which
initially comprised over 92 features. To streamline this feature set and identify the most
significant ones, an innovative feature selection process was employed. In the initial step of
this approach, a single feature was introduced into the model, and its performance was
systematically assessed, with accuracy calculations performed for each individual feature.
Moving forward, feature sets were constructed, commencing with the feature that yielded
the highest accuracy. Then, the model’s performance, in combination with each of the
remaining features, was evaluated by systematically calculating performance values for
each pair. The feature set was continuously updated by identifying the pair demonstrating
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the highest accuracy. This process was consistently maintained, with performance fluctu-
ations in the fall risk model analyzed as each feature was added. Ultimately, the feature
set and the model with the maximum accuracy was selected as the baseline model for
subsequent analysis. The iterative feature selection process aimed to systematically identify
the most relevant feature set. It also involved analyzing performance trends as each feature
was incrementally included, all with the ultimate objective of creating a refined predictive
model for fall risk assessment.

TIMED UP & GO TEST

Tye
TS
. STERNUM
% . SACRUM
T, T,
%\ [" ® 1 ® THIGH

& & SHANK

T,-T, : Sit - Stand - Walk Start T3
T,-T;/ T,-Ts: Straight Walking s ® rooT
T5-T, : 180° Turning

Ts-Ts : Walk End - Stand - Sit SENSOR PLACEMENT

Repeat: 5 times

EYES OPEN  EYES CLOSED

START 10 METERS END i i
SIT-TO-STAND TEST 10 METER WALK TEST BALANCE TEST

Figure 2. Schematic depicting sensor placement on body segments and the tests.

Three machine learning techniques, namely Support Vector Machine (SVM), Logistic
Regression (LR), and Random Forest (RF), were applied to the dataset to distinguish patients
with high or low fall risk. As per the literature, these approaches are widely utilized and
have demonstrated strong performance in the development of human movement-based
models [20]. In order to ensure a bias-free assessment, given the limited dataset of only
21 participants, the “leave one subject out” cross-validation method was employed during
the implementation of the machine learning approach. The ‘leave one subject out’ cross-
validation approach was systematically utilized to evaluate model performance. This
involves iteratively splitting the dataset into a training pool consisting of all except one
hold-out test subject. For each iteration, feature selection, hyperparameter optimization,
and model training is conducted based on the 20 training subjects. Then the final evaluation
is performed by predicting the labels for the excluded test subject. This maximizes the
utilization of available data for training, while reserving new subject data for testing to
avoid overfitting biases. The procedure repeats until each of the 21 subjects has been
individually left out and predicted exactly once. The overall cross-validation performance
metrics are then averaged across the 21 hold-out test iterations. Additionally, feature
normalization through standardization was utilized in the implementation of the SVM and
LR methods. Both normalized and unnormalized features were applied to RF algorithm to
assess their performance. Consequently, the discriminative capabilities of each condition
were compared by calculating accuracy, sensitivity, specificity.
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3. Results

Demographic information and clinical characteristics of the participants are presented
in Table 3. The study included 21 stroke survivors, with 11 classified as fallers and 10 as
non-fallers based on the results of the 6-month follow-ups. The groups were balanced in
terms of gender, age, height, weight, and BMI. Most participants reported joint pain (14/21)
and feeling unsteady while walking (15/21). More fallers reported being worried about
falling while walking (7/11) compared to non-fallers (3/10). Fallers had significantly higher
scores on the short FES-I questionnaire assessing fear of falling (13.1 & 5.1) than non-fallers
(9.1 £ 3.0). These results indicate that clinical factors related to balance confidence and
steadiness differentiate fallers from non-fallers in our stroke survivor sample.

The outcomes of the machine learning model development were presented in
Figures 3-5, corresponding to the three different approaches: SVM, LR, and RF. The
initial set of features used in the model development process was identical for all cases and
consisted of the 92 features listed in Table 2. While our feature space consisted mostly of
time domain variables selected a priori based on sensor signals and standard gait metrics,
emerging research suggests richer information may be contained within spectral patterns
and frequency characteristics of motion sensor data [9,10]. However, the results of the
model development process revealed distinct sets of features that led to the highest accura-
cies for the SVM, LR, and RF models. The most effective SVM model was a 3-feature model,
including Fear, TUG_Cadence toward Chair, and 1I0MWT_std Swing Total, achieving accu-
racy, sensitivity, and specificity values of 0.86, 0.9, and 0.8, respectively. The top LR model
also consisted of 3 features: Worried when Walking, Age, and CE_Balance_Thorax Linear
Acc 2, with accuracy, sensitivity, and specificity of 0.71, 0.73, and 0.7, respectively. Lastly,
the RF model, which achieved the highest accuracy among all three models, identified a top
model with 2 features: Dual_Balance_Thorax Linear Acc 2 and TUG_Walk toward Cone,
resulting in accuracy, sensitivity, and specificity values of 0.91, 0.82, and 1, respectively.

Table 3. Descriptive statistics for measures across the different levels of fall risk for stroke survivors.
(Note: M and F denote male and female participants).

Parameter Faller Non-Faller Total
(N=11) (N =10) (N =21)
Gender 4M,7F 7M,3F 11M,10F
Age (year) 64.1 (12.3) 67.6 (7.1) 66 (10)
Height (cm) 172.7 (8) 175 (9.1) 173.8 (8.4)
Weight (kg) 84 (13.3) 90.8 (16.2) 86.3 (14.7)
BMI (kg/mz) 28.1 (3.5) 29 (4.7) 28.5 (4)
Poor Vision 1 1 2
Joint Pain 8 6 14
Feel Unsteady while Walking 9 6 15
Worried of Falling when Walking 7 3 10
Lack of Normal Cognitive Function to be Independent with ADLs 0 0 0
Joint Replacement 3 3 6
Short FES-I (out of 28) 13.1 (5.1) 9.1 (3) 11.2 (4.6)

Table 4 presents the top fall risk assessment models using three sensor configuration
approaches: single-sensor, double-sensor, and triple-sensor. For single-sensor models, the
thorax and pelvic regions provided effective sensor locations across various combinations
of 1-3 tasks. The triple-sensor models with sensors on the upper legs, lower legs/feet, and
thorax achieved the highest accuracy of 0.91 using just the balance and TUG tests. Overall,
balance tests and TUG, with or without cognitive dual-tasking, were most frequently included
in the top models. The single thorax sensor model with balance, TUG, and STS tests produced
a good accuracy of 0.91. This demonstrates the capability of a simple, single thorax-worn
sensor setup to assess fall risk through a short battery of clinical tests. The triple-sensor
models did not considerably improve accuracy over the best single-sensor models.
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Table 4. The top predictive models for the three simplest configurations and their relevant character-

istics and performance.

Consﬁigr:lslgrtion Sensor Location Test Battery Features Accuracy Sensitivity ~ Specificity
Thorax B%?:;Ti;;li: h Dual_Balance_Thorax Linear Acc 2 0.86 0.91 0.8
Thorax UG with Dual_TUG_Turn and Sit 0.76 0.73 0.8
Balance with Dual Bal Th Li Acc?
. Dual-task. TUG ual_ Balance_Thorax Linear Acc 2,
Single-sensor Thorax with Duai—task Dual_TUG_Turn and Sit, STS_Time, 0.91 0.91 0.9
STS 4 Age, Dual_STS_Thorax Ang Vel
Pelvic STS Dual_STS_std Pelvic Ang Vel 0.76 0.73 0.8
%UCi ‘t/vitllz Dual_TUG_Turn and Sit,
Pelvic Balgigeaé’fs Dual_STS_std Pelvic Ang Vel, Fear 0.81 0.82 0.8
with Dual-task (FES), Balance_Pelvic Linear Acc 4
Dual_Balance_Thorax Linear Acc 2,
Thgg ?;‘iind B%igﬁ;gﬁ o Balance Pelvic Linear Acc 4, 0.91 0.82 1
Balance_Thorax Linear Acc 4
Double-sensor Upper Legs TUC with Dual_TUG_Turn and Sit 0.76 0.73 0.8
Lower Legs or TUG and 10MWT_mean Swing Total, 0.81 0.82 08
Feet 1I0MWT TUG_Cadence toward Chair ’ ’ ’
Upper Legs and Balance with Dual_Balance_Thorax Linear Acc 2, 091 0.82 1
Thorax Dual-task, TUG TUG_Walk toward Cone ) )
Triple-sensor Lower Legs or Balance and STS  Dual_Balance_Thorax Linear Acc 2,
Feet and T% with Dual-task, TUG_Walk toward Cone, 0.91 0.91 0.9
eetand Lhorax TUG Dual_STS_Thorax Ang Vel
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4. Discussion

Stroke Survivors (SS) often suffer from affected neuromusculoskeletal functions and
reduced motor capabilities, increasing the risk of falling during routine tasks. Falls can
lead to fatal injuries and serious health implications for such patients. Detection of fall-
risk is crucial to ensure that necessary interventions are employed for those more prone
to falling [4,7,21]. As current clinical fall risk evaluations rely on subjective scales and
questionnaires, their outcomes may be biased, leading to errors in fall risk estimation. Our
earlier studies have shown the benefits of using detailed motion analysis to identify lost
functions in SS [22,23]. The use of motion data can lead to higher accuracy in predicting fall
risk as compared to test scores from clinical tests [24]. Building upon our prior work, in this
study, we provide a quantitative approach to predicting fall risk using machine learning
approaches. We assessed the movement of 21 SS using 8 wearable motion sensors placed
on their lower limbs, pelvis, and thorax as they performed balance tests, TUG, 10MWT,
and STS, with/without motor-cognitive dual-task conditions. Using both motion data and
clinical information, we extracted a robust set of 92 clinical and time domain kinematic
features including accelerations, segment angles, temporal characteristics, and dual task
costs. Supervised classification algorithms, namely SVM [25], LR [26], and RF [27,28] can
be beneficial in predicting fall risk using motion data from instrumented clinical tests. In
this study, we first distinguished between high and low fall-risk individuals and then
through heuristic feature selection, identified optimal predictive subsets for each model.
This comprehensive study demonstrates the feasibility of an objective, wearable sensor,
and machine-learning-based approach to evaluate fall risk in stroke survivors, which in
turn can assist clinicians in prescribing preventive interventions.

Among the three machine learning models, the RF classifier achieved the highest
accuracy of 91% using just two predictive features (medio-lateral balance, and gait speed in
TUG) and was derived from the motor-cognitive dual-task infused balance and TUG tests.
The models presented in this study achieved high accuracies comparable to previous efforts
that aimed to develop fall-risk prediction models for patients with a range of conditions
(60-87%) that included older adults, SS, and multiple sclerosis, and total hip arthroplasty
patients [27-31]. Furthermore, we ran two more models to identify the effect of having
motion-related features and dual-task features in the process of fall risk assessment for
SS. The model without motion-related features yielded accuracy, sensitivity, and speci-
ficity of 67%, 64%, and 70%, respectively. Also, the model without the dual-task features
(only using the single-task features and clinical /demographic features) achieved accuracy,
sensitivity, and specificity of 81%, 82%, and 80%, respectively. These results showed that
the implementation of the motion-related features and dual-task paradigm improves the
accuracy of the fall risk assessment model’s performance.

For the top RF model, the first feature was the dual-task balance thorax accelera-
tion, which captured the medio-lateral trunk sway during standing with eyes open and
simultaneous counting backwards. On the other hand, the TUG walk time consisted of
measuring gait speed during the walk phase from the chair toward the cone. One of
the reasons for high accuracies could be the infusion of dual tasking. Prior assessments
of fall risk under divided attention conditions in the form of motor-cognitive dual-tasks
have led to an increased fall-risk in patients of diverse neurological disorders, including
stroke [8,17,18,32-34]. The dual-task challenges mobility and balance, unmasking deficits
not apparent in single tasks, agreeing with findings from previous studies that evaluated
the impact of dual tasks on movement [32,33]. The other two models used in this study
included SVM and LR, which achieved moderately high accuracy between 71-86%. Overall,
the machine learning approach proved highly capable of distinguishing between high and
low fall-risk stroke survivors based on the defined battery of clinical assessment tasks.

Prior studies have shown different approaches for assessing fall risk using wearable
sensors placed at different locations on the body [35], but less emphasis has been observed
on determining the most efficient (least number of sensors for achieving high accuracy,
as well as determining optimum placement locations) method for assessing fall risk. We
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investigated the prediction performance of the three machine learning models for features
extracted from different configuration settings of wearable sensors, single, double, and
triple sensors. An analysis of optimal sensor configurations and test batteries for fall
risk assessment has been listed in Table 4. Three setups were compared: single-sensor
models, double-sensor models, and triple-sensor models. For single sensor models, the
thorax and pelvis regions provided effective sensor locations across various combinations
of 1-3 clinical tests. Features from thorax and pelvic sensors during balance, TUG, and STS
tests were the most predictive. This demonstrates that a simple, minimal setup with one
inertial sensor on the thorax or pelvis can extract kinematic information to quantify fall
risk. The triple-sensor models with additional sensors on the lower limbs did not lead to
considerable improvements in accuracy over the best single-sensor models. The maximum
accuracy achieved was 0.91 for both the single- and triple-sensor models. Thus, augmented
sensor configurations appear to have diminishing returns for fall risk evaluation in stroke
survivors. Between the balance test, TUG, 10MWT, and STS, the TUG and balance tests
were most frequently included in the highest performing models. This affirms the specific
utility of these standard clinical tests for assessing fall risk. TUG evaluates timed mobility
skills while balance tests assess static steadiness. Taken together, the results indicate that a
single thorax-worn sensor capturing dual-task TUG, dual-task balance, and dual-task STS
metrics can provide robust fall risk assessment comparable to more complex multi-sensor
systems. This result highlights the high significance of implementing a motor-cognitive
dual-task paradigm for fall risk assessment in stroke survivors. Finally, the single-sensor
configuration could be replaced with a smartphone that has IMU technology embedded to
make the risk assessment procedure much cheaper, easier, and accessible [19,36].

Recent efforts in the research community aim toward the exploration of data-centric
methods for objectively evaluating the fall risk of patients using accessible and portable
wearable technologies [35]. In our study, the single thorax sensor model with balance,
TUG, and Sit-to-Stand tests produced an accuracy of 0.91. This configuration offers an
accessible and low-cost approach to screen for fall risk using three standard clinical tests
using a single IMU-based wearable sensor to capture mobility performance and postural
sway without ceiling effects. Moreover, the entire protocol can be completed in under
10 min using the TUG task, which is familiar, safe, and requires minimal space. The high
accuracy also demonstrates potential utility for clinics, as well as for at-home assessments
with limited resources [37]. Specifically, this can allow for conducting periodic home-based
screening to identify changes in fall risk over time, as well as to assess the progress over the
course of rehabilitation programs [21,38]. The simple low-cost system could also extend fall
risk screening to areas with limited healthcare access. Ultimately, the obtained quantitative
fall risk scores could assist therapists in prescribing appropriate interventions. Overall,
the single sensor configuration with TUG, balance and sit-stand offers an objective and
practical approach to evaluate and monitor fall risk in stroke survivors.

Although our approach shows promise in efficiently predicting fall risk in SS using
wearable sensors and machine learning models, it is important to acknowledge the limita-
tions of this research. The relatively small sample size of 21 participants may restrict the
generalizability of the findings, emphasizing the need for larger and more diverse cohorts
to validate and refine the models. Once validated using a much larger sample size, this
model could enable regular fall risk monitoring and prevention in community settings.
Further research should evaluate real-world implementation across diverse mobility levels,
living environments, and clinical workflows. Patient perspectives on the usability of the
proposed model should also be gathered. Our study primarily included high-functioning
SS who could walk unassisted for 10 m, potentially limiting the applicability of the results
to those with more severe mobility impairments. Further investigations should encompass
a broader range of stroke disability levels. Additionally, the study focused on specific sen-
sor configurations and feature extraction methods, leaving room for exploring alternative
setups and extraction techniques to improve model accuracy and reliability. Particularly, fre-
quency domain features could provide complementary information beyond the time-based
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characteristics assessed here as demonstrated in recent spectral biomarker research [9,10].
Despite these constraints, this research underscores the potential of wearable sensors and
the use of machine-learning-based approaches in conducting fall risk assessment for SS
and provides a foundation for future studies to develop efficient tools for conducting fall
risk assessment.

5. Conclusions

This study presents a promising approach to fall risk assessment in stroke survivors
using wearable sensors and machine learning models. The results demonstrate the feasibil-
ity of using inertial sensors during clinical assessment tasks along with machine learning
algorithms to objectively quantify and classify fall risk. The Random Forest model achieved
91% accuracy in distinguishing high versus low fall risk individuals using only two mo-
tion features related to balance and walking. Analysis of optimal sensor configurations
revealed that a single thorax-worn sensor can effectively assess fall risk through a short
battery of balance, TUG, and sit-stand tests. These findings underscore the potential of a
quantitative, wearable sensor-based method to evaluate fall risk in stroke survivors com-
pared to current subjective scales. With further validation on larger cohorts, the developed
approach could assist clinicians in prescribing preventive interventions through objective
screening. This could help avoid injurious falls and enhance mobility in stroke survivors.
The single thorax-worn sensor model provides a pragmatic configuration for clinical and
in-home assessment. However, some limitations should be noted. The modest sample
size may restrict generalizability and model optimization. Testing across a wider range of
stroke disability levels is also needed. There are opportunities to explore different sensing
modalities, alternate sensor placements, and more sophisticated analytics. Overall, this
research provides an important step toward developing portable, accurate tools for fall
risk evaluation in stroke survivors. Quantitative screening can support patient-specific
rehabilitation to improve balance and mobility. Wearable sensor systems with machine
learning have a strong potential to make fall risk assessment in neurological disorders more
objective, enhancing clinical decision-making and patient outcomes.
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