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Abstract: In order to improve the measurement sensitivity of ferrous wear debris sensors with a
permanent magnet, a new numerical approach to the appropriate position of the sensor is presented.
Moreover, a flow guide wall is proposed as a way to concentrate flow around the ferrous particle
sensors. The flow guide wall is intended to further improve measurement sensitivity by allowing the
flow containing ferrous particles to flow around the sensor. Numerical analysis was performed using
the multi-physics analysis method for the most representative gearbox of the sump-tank type. In
condition diagnosis using ferrous wear debris sensors, the position of the sensor has a great influence.
In other words, there are cases where no measurements occur, despite the presence of abnormal
wear and damage due to the wrong sensor position. To determine the optimal sensor position, this
study used flow analysis for the flow caused by the movement of the gear, electric and magnetic
field analysis to implement the sensor, and a particle tracing technique to track particle trajectory.
The new analysis method and results of this study will provide important information for selecting
the optimal sensor location and for the effective application of ferrous wear debris sensors, and will
contribute to the oil sensor-based condition diagnosis technology.

Keywords: optimal position; gearbox; ferrous wear debris sensor; multi-physics; flow guide wall

1. Introduction

Maintenance strategies are applied in terms of the reliability in various mechanical
systems. Maintenance has been defined as the combination of technical and associated ad-
ministrative actions intended to retain an item or system in, or restore it to, a state in which
it can perform its required function (ISO 14224 [1]). The main purpose of maintenance is to
reduce the adverse effects of breakdown and to increase availability at a low cost, in order
to increase performance and improve the dependability level. That is, the key objective
of maintenance management is “total asset life cycle optimization”, the maximization of
the availability of a plant and/or equipment, and the reliability of these assets in order to
achieve operational and/or business objectives [2,3]. In the field of machine condition diag-
nosis, condition diagnosis based on noise and vibration still occupies a large proportion.
As with most mechanical devices, condition diagnosis technology based on vibration and
signals is widely used to monitor gearboxes [4–6]. However, ferrous wear debris occur
as a sign of gear abnormality, and with the development of lubricant sensors, condition
diagnosis technology based on lubricant analysis is being widely applied. Therefore, condi-
tion diagnosis based on oil analysis occupies more than 20%, and the ratio is expected to
increase in the near future due to the continued development of oil sensors and diagnostic
algorithms [7].

Among oil sensors, the development of sensors for wear particles accounts for a large
proportion, and among them, ferrous wear debris sensors are widely used for condition
diagnosis because iron is widely used as a component of mechanical systems, and the
generation of wear particles is a major indicator for abnormality diagnosis [8–11]. This

Sensors 2024, 24, 810. https://doi.org/10.3390/s24030810 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24030810
https://doi.org/10.3390/s24030810
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3445-0646
https://doi.org/10.3390/s24030810
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24030810?type=check_update&version=2


Sensors 2024, 24, 810 2 of 14

study focused on the application of a ferrous wear debris sensor with a permanent magnet.
This sensor can accumulate ferrous wear particles by use of a permanent magnet, so
the sensor can not only measure the number of ferrous wear particles, but also prevent
three-body abrasive wear. In previous research [10], different results have been obtained
depending on the location of a ferrous wear debris sensor with a permanent magnet to
diagnose the condition of an axle in construction equipment. Here, the axle performs a
function similar to that of a gearbox. In one case, a ferrous wear particle was measured,
but in the other case, even though severe wear and breakage occurred, the sensor did not
measure it. In the latter case, the location of the sensor was far from the area where the
wear occurred. Moreover, as a way to improve the sensitivity of this sensor, the internal
design factors of the improvement were changed. By appropriately changing the shape of
the core among various design factors, the maximum magnetic flux density was improved
to more than twice that of the existing sensor [11].

Except for ferrous wear debris sensors with permanent magnets, most wear sensors
mainly measure wear particles where a fine flow occurs. However, ferrous wear debris
sensors combined with permanent magnets are applied to sump-type lubrication systems
such as gearboxes and engines due to the advantage of measuring a large number of
wear particles. As mentioned above, when applied to a system containing a large space
or lubricating oil, such as a gearbox or an engine, the position of the sensor has a large
effect on its sensitivity. The author believes that there are several methods for solving the
problem [8]. The first is to improve sensor sensitivity by either changing the design of
an existing sensor or developing a new type of sensor. However, in both cases, it is not
an easy objective. There have been previous studies [12–17] to improve the sensitivity of
oil sensors, but there is no study on the sensitivity improvement of ferrous wear debris
sensors combined with permanent magnets. Another method to improve sensor sensitivity
involves improvement in signal processing such as noise removal. The development of
a new type of ferrous wear debris sensor has also been carried out [18–20]. In addition,
there are improvements in sensor positioning to improve the sensitivity of the sensor.
Most studies suggest methods to analyze or eliminate the causes of the sensor position
errors [21–31]. Research has also been conducted to improve technology for analyzing
wear particles. An improved ant colony algorithm [32], synchronized sampling [33], and
deep learning with stochastic global optimization [34] are also used to effectively analyze
wear particles. Most wear particle sensors measure in a small oil passage, but the ferrous
wear debris sensor with a permanent magnet measures particles in a large volume of
lubricant such as a gearbox and engines, as shown in Figure 1. Therefore, this ferrous wear
debris sensor used for condition diagnosis in a relatively wide space has very different
measurement results depending on the location, as shown in Figure 2. The ferrous wear
debris sensor installed on the axle of construction equipment, which performs a similar
role to the gearbox, did not detect abnormalities even though the gears of the axle were
severely damaged. That is, it is necessary to select an appropriate sensor location in order to
effectively perform condition diagnosis in sump-type lubrication systems such as a gearbox.
Therefore, this study focused on how to select the optimal location of the sensor to improve
its sensitivity. A numerical approach is suggested for selecting the optimal location of the
ferrous wear debris sensor with a permanent magnet, considering the flow and the sensor’s
measurement capability. Furthermore, this study tried to improve sensitivity by proposing
a guide wall to generate the flow around the sensor.
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Figure 1. Representative methods for measuring wear particles through an oil sensor: (a) Measure-
ments in the flow of microchannels; (b) Bulk measurement in a large space such as the gearbox. 
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2. Numerical Model and Methods

The ferrous wear debris sensor uses a permanent magnet to attach ferrous wear
particles to the sensor and measures the number of ferrous wear particles using a change
in the magnetic field. In addition, condition diagnosis of sump-type lubrications such as
gearboxes and engines is mainly applied. Therefore, to analyze the optimal positioning of
the sensor, sensitivity must be measured by installing the sensor in a control volume that
simulates the gearbox. Figure 3 shows the numerical model for the ferrous wear debris
sensor and gearbox. The cross-sectional shapes of the ferrous wear debris sensor are shown
in Figure 3a. The geometries of the sensor are presented in Table 1. The sensor was placed
in three positions while the position of the gears was fixed, as shown in Figure 3b. Sensors
can be placed in various locations in sump-type lubrication systems such as gearboxes.
In this study, the three most representative cases were selected and analyzed. However,
it is difficult to determine the optimal sensor location only based on the analysis results
for the three cases. Nevertheless, through this study, the sensitivity of the sensor can be
numerically shown according to the locations of the three representative sensors and the
importance of sensor location selection is intended to be demonstrated. In position-1, the
sensor was installed on the floor, slightly away from the gears, and in position-2, the sensor
was installed at the bottom, below the gears. In position-3, the sensor was installed on the
right side wall, somewhat away from the gears. The actual gearbox is composed of various
gears; however, for the convenience of analysis, only two gears are used to describe the
main flow. Figure 3c shows the meshes of the gearbox with the sensor for the position-1
case. The total number of elements for the three position cases ranges from 2,995,456 to
3,074,755. In addition, a dense mesh is applied around the sensor and gears to ensure
numerical accuracy. There is no difficulty in using the three analysis modules used in the
numerical analysis, but trial and error is necessary to improve convergence when applying
meshes between gears. The sensor is composed of a core, permanent magnet and case. The
magnetic core is made of low-carbon steel M-50, and the B-H curve is the same as the value
used in previous studies [11].

Table 1. Geometries of the ferrous wear debris sensor with a permanent magnet.

Parameters Values Parameters Values

a [mm] 20 f [mm] 3.75

b [mm] 5.8 g [mm] 0.5

c [mm] 2.2 h [mm] 0.4

d [mm] 2.05 r1 [mm] 5

e [mm] 2.5

This analysis was performed on a closed system. For the gear, a Frozen Rotor study
analysis was performed using the rotating domain function. As a boundary condition, an
insulation condition was given on the symmetry plane. And infinite domains were applied
to the outer boundary area surrounding the fluid. Even though a plane symmetry analysis
was performed, it took about 2 days of calculation time per case using a computer with
3.00 GHz, 16 Core CPU, and 500 GB RAM specifications.

The flow in the gearbox was laminar and the working conditions for numerical
analyses are shown in Table 2. The particles used in the analysis were spherical and
composed of iron with a density of 7800 kg/m3. The ferrous particles were sprinkled from
above, in the midsection of the gears to simulate the occurrence of wear particles on the
gears. During the initial two seconds of calculation, particles were injected at intervals of
0.05 s from the injection area. The total number of injected particles was 450. The viscosity
and density of the lubricating oil were 0.04 Pa·s and 870 kg/m3, respectively. The number
of teeth in the gear was 20, with a rotational speed of 1000 rpm. In addition, the diameter
of the gears was 25 mm and the width was 12.5 mm.
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Table 2. Working conditions for numerical analysis.

Items Conditions Items Conditions

Particle diameter 10 µm Number of particles 450

Particle material Steel Particle shape Sphere

Particle density 7800 kg/m3 Relative permeability of the particle 1000

Dynamic viscosity of the lubricant 0.04 Pa·s Density of the lubricant 870 kg/m3

Number of teeth in the gear 20 Rotational speed of the gears 1000 rpm

In this research, a method of analyzing multiple physics was employed, and numerical
calculations were performed using the commercial software COMSOL 6.0. The numerical
analysis involved using an interface model for the electromagnetic field, a module for
tracing particles, and the Navier–Stokes equation. Figure 4 shows the configuration of the
numerical analysis modeling used in this analysis. The analysis proceeds sequentially from
step 1 to step 3. Step 1 and step 2 are analyzed independently of each other. Step 1 uses
the computational fluid dynamics (CFD) module to solve the velocity and pressure of the
fluid, and step 2 uses the AC/DC module to solve the magnetic field potential. Finally,
in step 3, the particle tracing module is used. This module calculates the velocity and
positions of the particles using the drag force (FD) of the fluid obtained in step 1 and the
magnetophoretic force (Fext) obtained in step 2. Step 1 and step 2 analyze the steady-state;
however, in step 3, analysis of unsteady-state is performed. A detailed description of the
governing equations is as follows. The COMSOL AC/DC module included the interface
model for the electromagnetic field, which was utilized to determine the magnetic flux
density of the ferrous wear debris sensor. Meanwhile, the particle tracing module enabled
the calculation of the paths of individual particles by solving their equations of motion
over time, which resulted in several different trajectories. This module made it possible to
verify whether the ferrous wear debris sensor captured any particles and to analyze the
trajectories of ferrous particles in the flow.
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Equations (1)–(3) are used to calculate the sensor’s magnetic field based on Maxwell’s
equations in the case of a magnetic field and no current condition. If the electromagnetic
field and currents change gradually, the displacement current that is induced can be dis-
regarded. It is referred to as the quasistatic approximation, a method often applied in
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low-frequency electromagnetic modeling, particularly when the structure’s size is consider-
ably smaller than the wavelength.

∇ · B = 0 (1)

B = µoµr H (2)

H = −∇Vm (3)

where B, µ0, µr, H, and Vm represent the magnetic flux intensity [T], permeability of
vacuum [N/A2], relative permeability, magnetic field intensity [A/m], and magnetic
scalar potential [A], respectively. In this program, the AC/DC module incorporates the
electromagnetic field interface model, which computes the magnetic flux of the ferrous wear
debris sensor. The numerical analysis involved employing the Navier–Stokes equations,
the electromagnetic field interface model, and the particle tracing module. Within the
AC/DC module, the electromagnetic field interface model (Equations (1)–(3)) is utilized to
determine the magnetic flux of the ferrous wear debris sensor. Additionally, the applicable
Navier–Stokes equations for rotating domains are expressed in Equations (4) and (5) [11].

∇ · (ρv) = 0 (4)

ρ(v · ∇)v + 2ρ Ω × v = ∇ · [−pI + τ] + F − ρ(Ω × (Ω × r)) (5)

where ρ, Ω, I, τ, and F are the density of fluid [kg/m3], angular velocity [rad/s], identity
matrix, shear stress [Pa], and volume force [N/m3], respectively. Moreover, v, r, and p are
the velocity [m/s], position vector [m], and pressure [Pa], respectively.

The particle tracing module is utilized to compute the individual particles’ paths by solving
their equations of motion over time, which allows for the evaluation of discrete trajectories.

d
dt (mpv1) = FD + Fext

FD = 1
τp

mp(v − v1), Fext = 2πr3
pµo µr K|H|2, τp =

ρpd2
p

18µ

(6)

where, mp, v1, FD, and Fext express the particle mass [kg], velocity vector of the particle
[m/s], drag force [N], and magnetophoretic force [N]. In addition, τp, dp, rp, ρp, µ and K
mean particle velocity response time [s], particle diameter [m], particle radius [m], particle
density [kg/m3], dynamic viscosity of fluid [Pa·s], and nondimensional parameters. The
motion of particles in a fluid follows Newton’s second law, which states that the net force
on an object is equal to the time derivative of its linear momentum in an inertial reference
frame, as shown in Equation (6) [11].

An infinite boundary condition was set for the outermost boundary. In this case, the
magnetic vector continuously exits the outermost layer. Therefore, if it is explained as a
boundary condition, it can be given meaning as a continuous condition. Moreover, the
fluid velocity on all walls except the rotating gear wall was set to 0. In other words, no-slip
boundary conditions were applied in most cases. A stick condition of zero velocity was
applied to the wall of the sensor in the plane symmetry plane. In addition, in the symmetry
plane, a magnetic insulation boundary condition (n·B = 0) was set.

3. Numerical Results and Discussions
3.1. Sensitivity Evaluation According to the Sensor Position

The sensitivity of the sensor was evaluated by changing the position of the sensor in
a situation where the position and working condition of the gears was not changed. The
ferrous wear debris sensor uses a permanent magnet to attach ferrous wear particles in
the lubricant to the sensor and measures the number of particles through inductance and
magnetic field change by the attached ferrous wear particles. In the ferrous wear debris
sensor, the number of particles attached to the sensor is closely related to its sensitivity.
Therefore, the sensitivity of the ferrous wear debris sensor was evaluated by the number
of ferrous particles attached to the sensor. The trajectories, due to the flow caused by the
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movement of the gears, of 450 ferrous particles injected between the gears are shown in
Figure 5. The trajectories of the particles at the three positions of the sensor are slightly
different; however, there is no change in the number of collected particles after 18 s. Figure 6
shows the distribution of magnetic flux density for the three positions. The maximum
magnetic flux density is formed at the top of the sensor and its magnitude is 0.471 T (Tesla).
Figure 7 shows the distribution of the magnetic force lines around the sensor, and the
particles attached to the sensor, when the sensor is at position-1. As shown in the picture at
the right of Figure 7, the sensitivity of the sensor was evaluated by identifying the number
of particles attached to the sensor.
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Figure 8 shows the number of ferrous particles attached to the sensor over time. In
position-1 and position-3, the number of ferrous particles collected did not change to five
after about 15 s. In position-2, the number of ferrous particles collected is constant at 56
after about 7 s. For position-2, the number of ferrous particles collected increased by 1020%
compared to position-1 and position-3. This is because the location of the sensor is close
to the point where ferrous wear particles of the gears are generated and also close to the
place where the main flow, due to the movement of the gear, is generated when the sensor
is installed at position-2. Moreover, in the case of position-2, the time during which the
number of collected particles did not change is short. This means that anomalies can be
detected earlier than other sensor positions. That is, it is more effective in diagnosing
abnormalities when the sensor is in position-2. Therefore, it is important to select the
location of the sensor in terms of the early detection of abnormal symptoms. The reason
is that the time of diagnosis is closely related to the degree of damage to the machine. As
mentioned above, the sensitivity of the sensor and the time taken to detect anomalies are
correlated with the main flow and the location of the sensor. Figure 9 shows streamlines in
the gearbox according to the three positions of the sensor. When the sensor is in position-2,
it can be seen that the main flow due to the movement of the gear meets the top of the
sensor. The result explains the improved sensitivity when the sensor is in position-2.
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The actual gearbox has more gears and a more complex structure than the model used
in the analysis. However, the direction of the main flow due to the movement of the gears
can be sufficiently investigated through CFD analysis. Therefore, in order to effectively use
the ferrous wear debris sensor for condition diagnosis in sump-type lubrication systems, it
is necessary to select a position where measurement is the easiest by examining the main
flow. In other words, the sensor must be selected in a location where the main flow is
developed in the lubrication system, where there is sufficient space and where installation
is easy. If the main flow is developed, but the distance between the sensor and the gear is
very close, it may not be suitable in a place where the sensor may break down or installation
is difficult.

3.2. Improvement of Sensitivity Using a Flow Guide Wall

Due to the large size of the gears in the gearbox, it is sometimes difficult to install
the sensor in the place where the main flow occurs because the distance to the sensor is
short and damage may occur. Thus, if the sensor needs to be placed at a location away
from the main flow, such as position-1 and position-3, a method to compensate for this is
needed. As a complementary method, a flow guide wall was applied that allows a part of
the main flow to proceed around the sensor which is installed away from the main flow. As
an example, two types of flow guide walls were applied for the case where the sensor was
located at position-1, as shown in Figure 10. Position-1+guide-1 is the case where a part of
the main flow proceeds toward the sensor using the flow guide wall. In position-1+guide-2,
the returning flow colliding from the right wall flows towards the sensor using the flow
guide wall. Moreover, guide-1 is designed to narrow in the direction toward the sensor
to collect the flow. The streamlines within the gearbox are shown in Figure 10, where the
two types of flow guide walls are applied. When guide-1 is applied, a large part of the
main flow is directed toward the sensor, and when guide-2 is applied, a portion of the
returning flow from the wall is directed toward the sensor. That is, it is confirmed through
the streamlines that the proposed flow guide walls could induce the flow toward the sensor.
In terms of sensor sensitivity, a comparison of the results with and without the flow guide
walls is shown in Figure 11. When guide-1 was applied, the number of collected particles
increased by 620% compared to where it was not applied. Moreover, when guide-2 was
applied, this number increased by 300% compared to where the flow guide wall was not
applied. Figure 12 shows the trajectories of ferrous particles for three cases at 18 s. In three
cases, the sensor is located at position-1 and there is no guide wall case, guide-1 case, or
guide-2 case. As shown in the red dotted line in Figure 12, it can be seen that more particle
trajectories are formed toward the sensor when there is a flow guide wall than when there
is no flow guide wall. This particle trajectory shows that the flow guide walls improve the
sensitivity of the sensor. In addition, it was confirmed that guide-1 can collect particles
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more effectively than guide-2 by directing the main flow generated from the gear toward
the sensor.

The application of guide-1 is more effective in improving the sensitivity of the sensor
because it allows a higher proportion of the main flow to go toward the sensor. The
sensitivity of the sensor using the flow guide wall is lower than that of the sensor at
position-2, which is installed in the main flow. Through the results of this study, it was
confirmed that the optimal sensor position is the location where it directly meets the main
flow, and if the sensor is installed at a location away from the main flow due to a sensor
installation problem, sensitivity can be supplemented by applying the flow guide wall.
For each gearbox, the shape of the gears or the direction of the main flow is different.
Therefore, to effectively perform condition diagnosis using a ferrous wear debris sensor in
a sump-type lubrication system such as gearboxes and engines, it is necessary to determine
the optimal location of the sensor through flow analysis. Next, through flow analysis, the
shape of the guide is determined so that the main flow can be directed toward the sensor.
Moreover, the width and length of the guide must be designed properly so that it does not
cause collision with gears and is easy to manufacture or install.
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4. Conclusions

In this study, a numerical analysis method for selecting the optimal sensor position
was suggested for the first time as a way to effectively diagnose machine conditions using
a ferrous wear debris sensor with a permanent magnet in lubrication systems. The ferrous
wear debris sensor is widely used for condition diagnosis in sump-type lubrication systems
such as engines and gear-boxes where iron-based wear particles are mainly generated.
However, if the sensor is installed in an inappropriate location, it may fail to diagnose
abnormalities. To solve this problem, the sensitivity of the sensor was evaluated depending
on the position in a lubrication system such as a gearbox. The sensitivity of the sensor
was defined as the number of ferrous particles attached to the sensor because this sensor
attached ferrous particles to the sensor with a permanent magnet and measured the number
of ferrous particles through changes in inductance. By analyzing the streamlines of the
flow field, the location with good sensor sensitivity was where the main flow flows in the
lubrication system. Therefore, in order to increase sensitivity, the sensor should be installed
at a location where it directly meets the main flow. To determine the optimal location
with high sensitivity, it is necessary to investigate the main flow through flow analysis. In
addition, when the sensor is installed away from the main flow due to installation problems,
sensor sensitivity can be improved by utilizing the flow guide wall which directs a large
part of the main flow towards the sensor. Therefore, flow guide walls are another way to
improve the sensitivity of the sensor and should be designed based on flow analysis.
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