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Abstract: The spatial distribution of gas emitted from an odor source provides valuable information
regarding the composition, size, and localization of the odor source. Surface-enhanced Raman
scattering (SERS) gas sensors exhibit ultra-high sensitivity, molecular specificity, rapid response, and
large-area detection. In this paper, a SERS gas sensor array was developed for visualizing the spatial
distribution of gas evaporated from benzaldehyde and 4-ethylbenzaldehyde odor sources. The SERS
spectra of the gas were collected by scanning the sensor array using an automatic detection system.
The non-negative matrix factorization algorithm was employed to extract feature and concentration
information at each spot on the sensor array. A heatmap image was generated for visualizing the
gas spatial distribution using concentration information. Gaussian fitting was applied to process the
image for localizing the odor source. The size of the odor source was estimated using the processed
image. Moreover, the spectra of benzaldehyde, 4-ethylbenzaldehyde, and their gas mixture were
simultaneously detected using one SERS sensor array. The feature information was recognized
using a convolutional neural network with an accuracy of 98.21%. As a result, the benzaldehyde and
4-ethylbenzaldehyde odor sources were identified and visualized. Our research findings have various
potential applications, including odor source localization, environmental monitoring, and healthcare.

Keywords: two-dimensional surface-enhanced Raman scattering sensor array; non-negative matrix
factorization; gas spatial distribution; localization of the odor source; size estimation; visualization of
two distinct odor sources

1. Introduction

The detection and visualization of volatile organic compounds (VOCs) have significant
applications in various fields [1], including environmental monitoring [2], biotechnology [3],
food safety [4,5], adulteration detection [6,7], and healthcare [8,9]. Furthermore, the spatial
distribution of the VOCs’ gases can provide significant information about the odor source.
By analyzing the spatial distribution of the detected gas influenced by airflow, we can
use a robot equipped with recognition algorithms to determine the location of the odor
source [10–12]. Additionally, through the analysis of the spatial distribution of gas evapo-
rating from the odor source, we can clarify the information contained in the odor source,
including composition, localization, and temporal variations [13–16].

The spatial distribution of gas can be visualized by utilizing the gas concentration
information obtained from various positions across the sensors. Metal oxide semiconductor
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(MOS) sensors, utilizing materials like SnO2, CuO, WO3, and ZnO, have found extensive
use for gas detection [17]. These sensors display alterations in the resistance corresponding
to fluctuations in the gas concentration. Li et al. utilized CuO nanowires for fabricating
an MOS sensor through template-assisted electrodeposition, achieving a detection limit
of 2.5 parts per billion (ppb) for H2S gas [18]. Despite their high sensitivity and rapid
response times, MOS sensors encounter challenges related to high operational temperature
requirements. Quartz crystal microbalance (QCM) sensors measure gas mass and are
utilized for gas concentration determinations. Due to their lack of selectivity, these sensors
benefit from coatings of selective materials, like polymers [19], carbon nanotubes [20],
or molecularly imprinted polymers (MIPs) [21]. Yang et al. used a porous MIP film on
a QCM sensor to detect formaldehyde gas, showcasing its selectivity in the presence of
hydrogen chloride and hydrogen fluoride [21]. QCM sensors boast high sensitivity, quick
response times, and room temperature operation capabilities. However, their detection
accuracy can be impacted by humidity. Fluorescent sensors, utilizing fluorescent materials,
are optical sensors employed for gas detection [22]. Interactions between target gases
and fluorescent materials induce changes in the fluorescence properties, such as intensity,
emission, or decay, enabling the measurement of the gas concentration [1]. Petruci et al.
introduced a portable online sensor platform employing fluorescein mercury acetate for
gaseous hydrogen sulfide detection purposes, demonstrating a linear calibration within
the range of 17–67 ppb and a 3 ppb detection limit [23]. While fluorescent sensors are
widely acknowledged for their sensitivity and specificity, they require tailored materials
for target gases, which can pose toxicity concerns. Surface-enhanced Raman scattering
(SERS) has emerged as an efficient gas sensing technique, enhancing the Raman signals of
molecules adsorbed onto metal surfaces, like silver or gold nanoparticles (NPs) [24,25]. The
Raman signal contains unique molecular fingerprints, enabling selective gas detection [26].
Additionally, SERS sensors possess high sensitivity, even at the single-molecule detection
level [27], allowing for the detection of low-concentration gases. Furthermore, immediately
after the laser irradiation of the gas-adhered SERS sensor, the SERS spectra of the gas can be
promptly collected, showcasing the rapid response characteristics of the SERS sensor [28].

In this work, we develop a two-dimensional (2D) SERS sensor array to visualize the
spatial distribution of gas evaporating from odor sources placed at different positions.
Benzaldehyde (BZD) and 4-ethylbenzaldehyde (EBZD) are chosen as the odor sources. The
SERS spectra of the gas adsorbed on the sensor are acquired by scanning the sensor array
and decomposed using the non-negative matrix factorization (NMF) algorithm to extract
the feature and concentration information of the detected gas. The feature information
corresponds to the SERS spectra of the gas. The concentration information is used to
visualize the gas spatial distribution by creating a heatmap image. Then, the Gaussian
fitting method is employed to process the heatmap image for localizing the odor source.
The odor sources of the same analyte placed at different positions are accurately localized.
The visualization result is also used to estimate the size of the odor source. The estimated
and actual sizes show a strong linear correlation, with a correlation coefficient (R2) of 0.968.
Additionally, BZD and EBZD odor sources are simultaneously identified and localized
using one SERS sensor array. The SERS spectra of these two gases are correctly identified
using a convolutional neural network (CNN) model, with a classification accuracy of
98.21%. This gas sensing method demonstrates significant potential for visualizing the
spatial distribution of VOC gases, which can be used to localize an odor source, monitor
environmental pollution, and provide good healthcare.

2. Related Work

To visualize the spatial distribution of gases, the sensor technology employed should
meet three primary conditions. Firstly, it should be an array-type sensor: arranging multiple
sensors in an array allows for gas detection at various positions, aiding in capturing the
comprehensive spatial distribution information of the gas. Secondly, the sensor requires
high sensitivity: gas concentrations are typically low and exhibit considerable mobility,
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necessitating highly sensitive sensors to swiftly detect their presence. Thirdly, the sensor
ought to possess an exceptional spatial resolution: capturing subtle variations in the gas
distribution and enhancing the comprehensibility of visualization results requires sensor
technology with a high spatial resolution.

A large-scale sensor array had been previously assembled using QCM sensors, serving
to visualize gas distributions. Ishida et al. developed an olfactory video camera compris-
ing a sensor array utilizing 21 QCM sensors to track the flow of triethylamine gas [29].
Each sensor in this array measured 4 mm × 8mm, with a spacing of 12.7 mm between
the sensors. Consequently, the entire sensor array occupied an area of approximately
90.8 mm × 70.8 mm. This portable and cost-effective sensing system was capable of visu-
alizing gas flow speeds of up to 30 cm/s. However, due to the limited amount of data
collected, the resulting images had a relatively low resolution.

Iitani et al. developed a fluorometric sensor for visualizing the gas distribution [13].
They designed a 90 mm × 90 mm alcohol dehydrogenase (ADH)-immobilized mesh to
detect transcutaneous ethanol gas concentrations. When gaseous ethanol encountered
the mesh soaked with an oxidized nicotinamide adenine dinucleotide (NAD) solution,
an ADH-mediated reaction produced a reduced form of NAD (NADH). NADH emitted
fluorescence under ultraviolet excitation. Consequently, the distribution of gaseous ethanol
concentrations was visualized by capturing the fluorescence intensity distribution using a
camera. A high-resolution color image visualizing the spatial distribution of the detected
gas was obtained. A fluorometric sensor necessitates suitable fluorescent dyes for the target
gas and requires a consideration of environmental lighting interference.

Matsuoka et al. utilized a gas sensor employing localized surface plasmon resonance
(LSPR) in conjunction with a cooled charge-coupled device camera to visualize gas distribu-
tions [30]. The LSPR sensor was easily manufactured by depositing metallic nanoparticles
(NPs) on a 50 mm × 50 mm substrate, requiring no further modification, demonstrating
a rapid response. Specific gas molecules interacting with the NPs induced a shift in the
LSPR frequency, enabling the detection and quantification of gases. The change in LSPR
frequency was used for gas visualization. In their results, four gases, including geraniol,
eugenol, piperitone, and pentadecane, were identified and visualized using an LSPR sensor.
However, the selectivity of the LSPR sensor remains unresolved.

Notably, SERS sensors can be used to address several challenges associated with
other gas sensing technologies. SERS sensors have three main advantages: (1) the correct
identification of the analytes by vibrational spectroscopy [26,31], (2) label-free molecular
detection, which simplifies the detection process [24], and (3) high-resolution imaging by
capturing SERS spectra at different positions on the sensor surface [32,33].

3. Materials and Methods

In this section, we delineated the method for fabricating our SERS sensor and evaluat-
ing its reproducibility performance. Additionally, we provided details for detecting and
visualizing the spatial distribution of gases evaporating from the odor source.

3.1. Fabrication of SERS Sensor

The SERS sensor was fabricated using silver nanoparticles (Ag NPs), which were
synthesized according to a previous report [34]. First, the Ag NP seeds solution was
synthesized, as described in the Supporting Information. Second, Ag NPs with a size of
approximately 90 nm were synthesized using the prepared Ag seeds solution. Then, a
densely packed Ag NPs monolayer film was formed using an oil/water/oil three-phase
system based on the Marangoni effect [35,36]. Finally, a glass substrate was inserted
under the monolayer film at an angle and then pulled out to transfer the film onto the
glass substrate (5 mm × 5 mm). The whole fabrication process is shown in Figure S1.
Nine SERS sensors were arranged in a 3 × 3 array to construct a 2D sensor array. Within
the sensor array, adjacent sensors were positioned in close proximity, with their distance



Sensors 2024, 24, 790 4 of 14

was considered negligible (0 mm). As a result, the overall size of our SERS sensor array
measured 15 mm × 15 mm.

3.2. Reproducibility of the Fabricated Sensor

Nine SERS sensors were immersed in 8 mL of a 4-aminothiophenol (4-ATP) ethanol
solution (1 µM) for 1 h. After that, the sensors were cleaned with the ethanol solution and
dried under a flow of nitrogen. The SERS intensities of the selected characteristic peak were
calculated to evaluate the reproducibility of the fabricated SERS sensor.

3.3. Detection of the Gas Evaporating from Odor Sources

We individually added BZD or EBZD solutions to an aluminum cup as odor sources.
The mixed odor source was prepared by mixing EBZD and BZD solutions with a volume
ratio of 1:1.

The diameter and depth of the cup were both 5 mm. A Peltier device was used to
heat the odor source, thereby accelerating the evaporation of the gas. Herein, the BZD,
EBZD and EBZD/BZD solutions were heated for one, two, and two minutes, respectively.
Five positions were designated for placing the odor source, namely the center, left-bottom,
left-up_left-bottom, right-up_left-bottom and center_left-bottom, as shown in Figure S2.
The constructed SERS sensor array was placed above the stationary odor source, which
was fixed in a selected position in an enclosed space. The detection process is illustrated in
Figure S3. After heating, the sensor array was moved from the odor source and fixed in the
detection chamber. The SERS spectra of the gas were collected by scanning the sensor array
using a program-controlled detection system (Figure S4). In the detection process, 1296 spec-
tra from one sensor array were obtained in a scanning format of 36 points × 36 points.

The odor sources with different sizes were detected using the same method. An
aluminum plate with one circular hole was placed above the odor source, and the diameter
of the hole was changed to alter the size of the odor source. In addition, the centers of the
hole and the odor source were aligned along the same vertical line, as shown in Figure S5.

3.4. Visualization of the Gas Spatial Distribution

On the surface of the sensor array, areas closer to the odor source exhibited greater
gas adsorption, whereas those farther away had relatively less gas adsorption. Thus, the
spatial distribution of gases was visualized by considering the amount of gas adsorption
on the sensor surface. NMF was used to decompose a non-negative matrix into the product
of a feature matrix and a weight matrix [37,38].

In this study, the V matrix was constructed by applying the SERS spectra obtained
from n points on the SERS sensor array. The dimension of each spectrum was m. Therefore,
V was decomposed as:

Vn×m = Wn×r Hr×m (1)

where matrix, W, represents the concentration of each component at each position, matrix H
represents the feature of each component, and r is the number of the components extracted
from the sensor array. For component 1, h1×m is the feature of the component and wn×1 is
the concentration of component 1 in each position. Therefore, wn×1 is reconstructed as a
matrix for visualizing the gas spatial distribution, generating a heatmap image. Finally, the
component was identified by the h1×m feature result.

In the experiment, several factors affected the measurement, including the air interfer-
ence and randomness of the gas flow. The concentration information was not considered
ideal. Thus, the Gaussian fitting model was used to process this image (see Supporting
Information) [39].

3.5. Construction of the Datasets for the CNN Model

The SERS spectra matrix obtained from detecting each odor source was utilized to
establish the datasets. For the training dataset, the SERS spectra matrix results were
obtained by placing the BZD odor source in the center, left-top, and left-bottom positions,
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and similarly for the EBZD source. Moreover, we obtained spectra matrix results by
detecting two BZD odor sources positioned in three different patterns using a single sensor
array. The obtained SERS spectra matrices underwent decompositions through the non-
negative matrix factorization algorithm, resulting in a three-feature information matrix that
included features for the target gas, baseline, and noise, respectively. Within the feature
matrix, the feature information values linked to BZD and EBZD gases were labeled as
1 and 2, respectively, while the other information attributed to the noise and baseline
(interference) was labeled as 0. Therefore, this resulted in 21 samples for the BZD gas, 13
for the EBZD gas, and 68 for interference in the training datasets. Each feature information
(spectra) consisted of 307 Raman shifts. Regarding the testing dataset, the SERS spectra
matrices collected from BZD and EBZD detections using a single SERS sensor array were
composed to extract four features for the target gases (two) and interference (two). We
acquired 14 SERS spectra matrix results by placing these two odor sources in three different
positional patterns. Thus, the testing dataset comprised 14 samples each for BZD and
EBZD, and 28 samples for the interference.

3.6. Identification of the Odor Source Using a CNN Model

A CNN model was used to identify the component in the NMF decomposition result.
We utilized Python (version 3.8) and PyTorch (version 2.1) to construct our CNN model.
The training datasets were constructed from the feature data of the component when
one and two of the same odor sources were detected. The training dataset was divided
into training and validation sets at a ratio of 7:3. The input data were fed into a one-
dimensional convolutional layer, followed by a rectified linear units (ReLUs) layer. Two
consecutive fully connected layers were attached to a ReLU layer. Finally, the output was
classified by the SoftMax layer. Therefore, there were five layers in the CNN model. At the
beginning of the training process, the learning rate was 0.0001 and the adaptive moment
estimation optimizer was selected. During the training phase, a cosine annealing learning
rate scheduling strategy was employed with a period of 10 epochs and a minimum learning
rate of 0.00001. The trained CNN model was employed to identify the components in the
NMF decomposition result upon the detection of two distinct odor sources.

4. Results and Discussion

In this section, we presented the morphology and performance results of the fabricated
SERS sensor. We compared the SERS spectra of target gases detected by the SERS sensor
array. Additionally, we employed the non-negative matrix factorization algorithm to
decompose the SERS spectra matrix for identifying and visualizing the spatial distribution
of gas evaporation from the odor source.

4.1. Performance of Fabricated SERS Sensor

SERS sensors were fabricated by transferring the Ag NP monolayer film to the glass
substrate using an oil/water/oil three-phase system. The Ag NPs with large sizes were
synthesized using the seed-mediated growth method. Ultraviolet-visible (UV-vis) spectra
were obtained to understand the optical properties of the Ag NP seeds and Ag NPs, as
shown in Figure 1a. A distinct dipole peak was observed at approximately 400 nm for the
Ag seeds. As for the Ag NPs, a new quadrupole peak was observed at around 500 nm.
Furthermore, the dipole peak position was red-shifted to a longer wavelength [40]. The
morphological features of the Ag NPs on the SERS sensor are shown in Figure 1b, demon-
strating that the monolayer film with a dense and large-scale arrangement is transferred to
the glass substrate. The sizes of the synthesized Ag NPs were almost identical. The size
distribution of the Ag NPs on the sensor was obtained by processing the scanning electron
micrograph (SEM) image using ImageJ software (version 1.53), as illustrated in Figure 1c.
The average diameter of the Ag NPs was estimated to be 90.90 ± 12.56 nm.
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Figure 1. (a) The UV-vis spectra of the synthesized Ag nanoparticle (NP) seeds and Ag NPs with large
sizes. (b) Scanning electron microscope (SEM) image of the Ag NPs on the SERS sensor. (c) Size dis-
tribution of the Ag NPs obtained by ImageJ software. (d) SERS spectra of 4-aminothiophenol (4-ATP)
modified on the fabricated SERS sensor. (e) The histogram of the SERS intensities at 1082 cm−1 in
their corresponding SERS spectra of 4-ATP collected from 100 positions on the sensor. (f) Average
values of SERS intensities at 1082 cm−1 of 4-ATP obtained from nine SERS sensors.

To evaluate the uniformity and reproducibility of the fabricated SERS sensor, the
sensor was immersed in a 4-ATP solution, and the SERS spectrum of 4-ATP was recorded,
as shown in Figure 1d. The bond vibration information of the prominent characteristic
peaks is summarized in Table S1 [28]. We collected 100 SERS spectra with a step distance of
200 µm over an area of 2 mm × 2 mm. The spot-to-spot variation distributions of the SERS
intensities for the 1082 cm−1 peak are shown in Figure 1e. The relative standard deviation
(RSD) for the SERS intensity was 5.45%. Therefore, the fabricated SERS sensor presented
high uniformity over a large area [31,41,42]. Additionally, the reproducibility of the SERS
sensor was investigated using nine batches of sensors modified by 4-ATP. The average
SERS intensities of 100 spectra at 1082 cm−1 from nine batches of fabricated sensors are
summarized in Figure 1f. The RSD value for nine sensors was 8.47%, which confirmed the
high batch reproducibility of the SERS sensor. Stability is a crucial parameter for assessing
the performance of SERS sensors. The fabricated SERS sensor can be used after being stored
in a vacuum box for one week. In this study, our primary focus was on the reproducibility
of the sensors, a characteristic significantly affecting the spatial visualization of gases. We
used a new SERS sensor for each visualization experiment, and due to the difficulty of
removing adsorbed gases, we did not recycle or reuse the substrates.

4.2. SERS Spectra of the Gas Adsorbed on the 2D Sensor Array

After the 2D SERS sensor array was placed above and facing the heated BZD and
EBZD odor sources for 1 or 2 min, the gas-adsorbed sensor array was positioned inside
a detection chamber and scanned to collect SERS spectra. The SERS spectra of the SERS
sensor baseline and three types of gases are shown in Figure 2a. Two characteristic peaks
were observed at 1006 and 1603 cm−1 for the BZD gas [43]. For the EBZD gas, only one
distinct peak appeared at 1614 cm−1 [44]. Notably, the SERS spectra of the gas mixture
containing these two gases exhibited peaks at 1010 and 1607 cm−1. The peak at 1010 cm−1

was attributed to the BZD gas. The spectrum resolution of our Raman spectrometer was
approximately 4 cm−1. The characteristic peaks observed at 1603 cm−1 and 1614 cm−1

corresponded to the BZD gas. Within the range from 1603 cm−1 to 1614 cm−1, only two
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values were present, resulting in the detection of a single peak (1607 cm−1) within this
range. Ultimately, the distinct spectra can be used to distinguish the different gases.
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Figure 2. (a) The SERS spectra of the sensor baseline, benzaldehyde (BZD), 4-ethylbenzaldehyde
(EBZD), and mixture of benzaldehyde and 4-ethylbenzaldehyde gases. (b) The SERS spectra were
collected from the spot on the diagonal line of the SERS sensor array when the BZD odor source
placed at the center position was detected, and (c) the BZD odor source placed at the center position
and EBZD odor source placed at the left-bottom position were simultaneously detected.

In the detection procedure, 1296 SERS spectra were obtained by scanning the 2D
sensor array in a format of 36 spots × 36 spots. The sensor array was scanned from the
top-left corner to the bottom-right corner. By comparing the spectra along the diagonal of
the sensor array, the variations in the SERS spectra with respect to the sensor’s position
were confirmed (Figure 2b). In this result, the BZD odor source was positioned in the
central location. The SERS intensities of the spectra obtained from the central location
were stronger than those from the surrounding locations. Therefore, the variation in SERS
spectra among different locations could be used to visualize the spatial distribution of
the gas.

4.3. Visualization of the Spatial Distribution of the Gas Evaporating from the Odor Source

A total of 1296 SERS spectra were collected for each detection, and each spectrum
consisted of 308 different Raman shift features, resulting in the detection result matrix
of V1296×308. As shown in Figure 2b, even when the patterns of the SERS spectra were
identical, the SERS intensities were affected by the gas concentrations. Hence, the matrix, V,
was decomposed into a concentration matrix, W, and a feature matrix, H, using the NMF
algorithm [45]. As described in Section 3.4, the tunable parameter, r, should be optimized
to accurately extract the concentration information contained in matrix, V. For a single
odor source, there were three types of spectra in matrix V, namely those for the sensor
baseline, gas, and noise. Owing to the slight gap between the sensors in the sensor array
setup, some spectra were collected from the space between the two sensors. These spectra
were considered as noise in the matrix, V. Therefore, the parameter, r, was set to 3 in the
NMF algorithm for the detection of a single odor source. In this study, the value of r was
determined by adding 2 to the number of gas types.

The visualization image of the BZD odor source placed at the central position was
obtained by first decomposing the result matrix, V1296×308, into a feature matrix, H3×308,
and a concentration matrix, W1296×3. Three feature spectra in H were compared, as shown
in Figure 3a. The spectrum of component r1 was identical to the SERS spectrum of BZD. The
spectra of the other two components were considered to represent the sensor baseline and
noise. In these two spectra, some obvious Raman peaks, including 900 cm−1, 1050 cm−1,
and 1400 cm−1, were observed. In Figure 2a, obvious peaks can be observed at 900 cm−1,
1050 cm−1, and 1400 cm−1. We hypothesized that these characteristic peaks stemmed
from the residual chemical agents present on the surface of the Ag NPs. This was due to
our Ag NPs being synthesized via a chemical process without prior cleaning before their
deposition onto the glass substrate. The values from the first column of the concentration
matrix, W, which represented the coefficients for r1, were then normalized and reorganized
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into a 36 × 36 matrix, which was used to create a heatmap image (Figure 3b). In our sensor
array, while there may not have been uniformity at the edges of individual SERS sensors,
there was uniformity within each sensor’s surface. When detecting the same concentration
of 4-ATP using nine SERS sensors, the average intensity values of 100 points collected on
each substrate were very close, as shown in Figure 1f. This observation suggests the good
uniformity of our sensors within the surface. The adsorption of gases evaporating from the
BZD odor source onto the sensor involved a degree of randomness and could not perfectly
represent the spatial distribution of the gas. In our detection experiment with minimal
interference, the gas evaporated from the odor source was considered to follow a Gaussian
distribution. Hence, the Gaussian fitting method was used to process the heatmap image
and enhance the readability of the visualization results, enabling the localization of the odor
source [39]. The standard deviation parameter of the Gaussian fitting model was adjusted
to acquire a clearer visualization result. As shown in Figure 3c, a nearly circular shape
with a higher concentration at the center and a lower concentration in the surroundings is
obtained. Considering the open-top cylindrical container holding the odor solution, this
visualization result corresponds with the ideal gas diffusion state.
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Figure 3. (a) The spectra of in the feature matrix, H, after the detection result matrix, V, was de-
composed using the non-negative matrix factorization (NMF) algorithm for (a) benzaldehyde (BZD),
(d) 4-ethylbenzaldehyde (EBZD), and (g) the 4-ethylbenzaldehyde/benzaldehyde (EBZD/BZD) mix-
ture (1:1). The visualization results of the (b) BZD, (e) EBZD, and (h) EBZD/BZD odor sources using
heatmap images. The visualization results of the (c) BZD, (f) EBZD, and (i) EBZD/BZD odor sources
processed using the Gaussian fitting model.

In addition to the BZD odor source, the EBZD and EBZD/BZD mixed odor sources
(1:1) were effectively visualized, as shown in Figure 3f,i. For the mixed odor source, the
parameter r was set to 4 because there were two odors in the mixture. As a result, only one
gas spectrum belonging to the EBZD/BZD mixture was extracted, as shown in Figure 3g.
It could be explained that there were no separate spectra for the BZD and EBZD gas
in the result matrix, V. For distinct odor sources, the component results after an NMF
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dimensionality reduction were distinct (Figure 3d,g). Additionally, the BZD and EBZD
odor sources placed at the left-bottom corner were also visualized and localized, as shown
in Figure S6. This confirmed that the NMF algorithm could extract the feature information
(SERS spectra) of gases from the detection result matrix, V.

The size of the odor source was estimated from the visualization result. The diameters
of the holes on the aluminum plate were altered (2.24, 3.25, 3.96, 4.43, and 4.8 mm) to
obtain BZD odor sources of different sizes. The spot size in the visualization result varied
proportionately with the hole size on the plate, as illustrated in Figure 4a–c. In the Gaussian
model, the parameters σx and σy varied with the gas spatial distribution. Therefore, these
two values were utilized to estimate the spot size in the visualization result. The fitted
diameter of the odor source was calculated using (σx+ σy

)
÷ 2. Then, the fitted diameter

was compared with the actual diameter of the hole, as depicted in Figure 4d. A linear
regression was conducted to demonstrate the correlation between the fitted and actual
diameters. An R2 value of 0.968 was obtained. Hence, the fitted diameter could be used to
estimate the actual size of the odor source.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 14 
 

 

(1:1). The visualization results of the (b) BZD, (e) EBZD, and (h) EBZD/BZD odor sources using 
heatmap images. The visualization results of the (c) BZD, (f) EBZD, and (i) EBZD/BZD odor sources 
processed using the Gaussian fitting model. 

In addition to the BZD odor source, the EBZD and EBZD/BZD mixed odor sources 
(1:1) were effectively visualized, as shown in Figure 3f,i. For the mixed odor source, the 
parameter 𝑟 was set to 4 because there were two odors in the mixture. As a result, only 
one gas spectrum belonging to the EBZD/BZD mixture was extracted, as shown in Figure 
3g. It could be explained that there were no separate spectra for the BZD and EBZD gas 
in the result matrix, 𝑉. For distinct odor sources, the component results after an NMF 
dimensionality reduction were distinct (Figure 3d,g). Additionally, the BZD and EBZD 
odor sources placed at the left-bottom corner were also visualized and localized, as shown 
in Figure S6. This confirmed that the NMF algorithm could extract the feature information 
(SERS spectra) of gases from the detection result matrix, 𝑉. 

The size of the odor source was estimated from the visualization result. The diame-
ters of the holes on the aluminum plate were altered (2.24, 3.25, 3.96, 4.43, and 4.8 mm) to 
obtain BZD odor sources of different sizes. The spot size in the visualization result varied 
proportionately with the hole size on the plate, as illustrated in Figure 4a–c. In the Gauss-
ian model, the parameters 𝜎  and 𝜎  varied with the gas spatial distribution. Therefore, 
these two values were utilized to estimate the spot size in the visualization result. The 
fitted diameter of the odor source was calculated using 𝜎  𝜎  2. Then, the fitted 
diameter was compared with the actual diameter of the hole, as depicted in Figure 4d. A 
linear regression was conducted to demonstrate the correlation between the fitted and 
actual diameters. An R2 value of 0.968 was obtained. Hence, the fitted diameter could be 
used to estimate the actual size of the odor source. 

 
Figure 4. The visualization result of the benzaldehyde odor source using hole diameters of (a) 2.24, 
(b) 3.25, and (c) 4.8 mm. (d) The linear regression between the actual diameter and the fitted diam-
eter. 

4.4. Visualization of Two BZD Odor Sources 
Two BZD odor sources were also simultaneously visualized using our proposed 

method. Three position patterns were defined for placing two BZD odor sources: left-bot-
tom_ left-up (LB_LU), left-bottom_center (LB_C), and left-bottom_right-up (LB_RU). The 
visualization results of the three position patterns are shown in Figure 5. When the 

Figure 4. The visualization result of the benzaldehyde odor source using hole diameters of (a) 2.24,
(b) 3.25, and (c) 4.8 mm. (d) The linear regression between the actual diameter and the fitted diameter.

4.4. Visualization of Two BZD Odor Sources

Two BZD odor sources were also simultaneously visualized using our proposed
method. Three position patterns were defined for placing two BZD odor sources: left-
bottom_ left-up (LB_LU), left-bottom_center (LB_C), and left-bottom_right-up (LB_RU).
The visualization results of the three position patterns are shown in Figure 5. When the
position patterns were LB_LU and LB_RU, the spatial distributions of the individual odor
sources were nearly identical. Furthermore, there was little interference between the
two odor sources because of the sufficient distance between them. Hence, the two odor
sources could be distinctly discerned from the visualization results in each case. Regarding
the LB_C position pattern, the area of the spatial distribution in the center was larger than
that in the left-bottom corner. In the case of one odor source, we observed that the gas
diffusion range of the odor source placed in the center was larger than that of the odor
source placed in the bottom-left corner. Additionally, the distance between these two odor
sources was closer compared with that in the other cases. Consequently, these two gas
distributions were almost overlapping, but their positions were still localized.
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4.5. Visualization and Identification of Two Distinct Odor Sources

The gas spatial distributions of the BZD and EBZD odor sources placed at different
positions were visualized using one SERS sensor array. The visualization result was
obtained using the processing method illustrated in Figure S7. The BZD and EBZD odor
sources were placed in the center and the left-bottom positions. The SERS spectra from
various spots were collected along the diagonal line of the sensor array, from the bottom-left
to the top-right corners (Figure 2c). The SERS spectra of the BZD, EBZD, and EBZD/BZD
gases were obtained. Thus, the detection result matrix, V, consisted of spectra information
for the BZD and EBZD gases. Matrix, V, was decomposed using the NMF model with a
parameter r of 4. The spectra of the BZD and EBZD gases were obtained in the feature
matrix, as shown in Figure 6a.
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Figure 6. (a) Non-negative matrix factorization (NMF) components were obtained when benzalde-
hyde (BZD) and 4-ethylbenzaldehyde (EBZD) were detected using one sensor array. NMF compo-
nents r1 and r2 strongly correspond to the BZD and EBZD SERS spectra, respectively. (b) The loss
value of the training and valid datasets when the convolutional neural network (CNN) model was
trained. (c) The confusion matrix result for the CNN model used for identifying the NMF components.
(d–f) The visualization results of both BZD and EBZD odor sources detected by one SERS sensor
array were obtained. The EBZD odor source was positioned in the left-bottom corner. The BZD odor
source was positioned at the (d) center, (e) left-upper corner, and (f) right-upper corner.
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To identify the component in the feature matrix result from the NMF model, a CNN
recognition model was trained using the feature matrix obtained from the NMF model
when one odor source was detected [46,47]. The trained CNN model was then used to
identify the component in the feature matrix obtained when two distinct odor sources
were detected. The spectra of the interference, BZD, and EBZD were labeled as 0, 1, and 2,
respectively. As the training progressed, the loss gradually decreased, and the accuracy
steadily improved, indicating that the model progressively enhanced its ability to fit the
data during the learning process (Figure 6b). The effective identification of the confusion
matrix result was obtained, as shown in Figure 6c, with a recognition accuracy of 98.21%.
Hence, the spectra of these two gases were correctly identified using the trained CNN
recognition model.

The concentration information of the gases was used to visualize the locations of the
odor sources. First, separate images of the gas spatial distributions were obtained for these
two gases, and then these two images were overlaid based on their corresponding positions
to create a visualization image showing both gases simultaneously. Consequently, the
identification and localization of two distinct odor sources were achieved, as depicted in
Figure 6d. In this visualization result, the blue spot in the center represents the spatial
distribution of the BZD gas, and the yellow spot represents the EBZD gas. Owing to
the relatively close physical proximity of the two odor sources, an overlapping of the
two spatial distributions was observed. In this overlapping section, we noted the emergence
of spectra resulting from the mixture of the two gases (Figure 2c). Furthermore, the gas
spatial distributions of these two odor sources placed in two other positions are shown in
Figure 6e,f. There was no interaction between the spatial distributions when the distance
between the two odor sources increased sufficiently.

This study’s limitations primarily involved two aspects: first, the presence of back-
ground peaks due to residual chemical agents on the sensor. These background peaks could
hinder the detection of characteristic gas peaks in the SERS spectra. Second, there was a
need to reduce the scanning time for the sensor array. In this study, spectral data were
collected at a rate of one spectrum per point within one second, resulting in 1296 points
collected across the array, thus requiring 1296 s for a complete array scan. However, for
scenarios requiring swift visualizations, the time taken for a single visualization could be
extensive, potentially not meeting the detection requirements.

5. Conclusions

In conclusion, a 2D SERS gas sensor array was constructed for identifying and visual-
izing the gas spatial distributions of BZD and EBZD odor sources. The SERS sensor with
high reproducibility was fabricated using the self-assembly based on the Marangoni effect.
The sensor array was placed above the odor source for gas adsorption. Then, the SERS
spectra of the gases were obtained by scanning the surface of the sensor array. Differences
in the spectra were observed at various positions. A detection result matrix was constructed
using these spectra data and decomposed using the NMF model. The output result of the
NMF model consisted of concentration and feature information for the detected gas. The
gas spatial distribution was visualized using the concentration information plotted in a
heatmap image. A Gaussian model was used to process this image for localizing the odor
source at different positions. Furthermore, the size of the BZD odor source was correctly
estimated using the final visualization result. A CNN recognition model was constructed to
identify the different components in the feature information. As a result, the BZD and EBZD
odor sources placed in different positions were simultaneously identified and localized
using a single sensor array. This work provided a feasible method for visualizing the gas
spatial distribution. Thus, it holds the potential application for identifying and exploring
the location of odor sources in various fields.

In our future endeavors, we aim to address two primary challenges. Firstly, to de-
velop SERS sensors with heightened sensitivity and devoid of distinct background Raman
characteristic peaks. Such sensors would enable a quicker acquisition of SERS spectra at
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a single point, primarily showcasing the spectra related to the detected gases, facilitating
rapid gas visualizations. Secondly, to increase the number of odor sources. While this
experiment successfully visualized two odor sources simultaneously, real-world scenarios
could involve multiple odors concurrently present in one location. Hence, identifying the
constituents within more complex gas mixtures poses a greater challenge.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s24030790/s1, Figure S1: The fabrication process of the surface-enhanced
Raman scattering (SERS) sensors, obtained by transferring the Ag nanoparticle (NP) monolayer film to
the glass substrate; Figure S2: Five position patterns of the fixed odor sources; Figure S3: The process
of gas evaporating from the odor source being adsorbed on the surface-enhanced Raman scattering
(SERS) sensor array. The constructed sensor array (ii) was scanned using our program-controlled X-Y
stage; Figure S4: The image of the program-controlled X-Y stage for the scanning system and SERS
spectra collection system; Figure S5: The detection of the odor sources with different sizes. The size
of the odor source was altered using an aluminum plate; Figure S6: The visualization results of the (a)
benzaldehyde (BZD) and (c) 4-ethylbenzaldehyde (EBZD) odor sources using a heatmap image. The
visualization results of the (b) BZD and (d) EBZD odor sources processed using the Gaussian fitting
model. These two odor sources were positioned in the left-bottom corner; Figure S7: A flowchart of
data processing to identify gases from the collected SRES spectra matrix and visualize the spatial
distribution of the specific gas; Table S1: Vibrational mode assignments for 4-ATP.
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