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Abstract: In diagnostic ultrasound imaging applications, preamplifiers are used as first-stage analog
front-end amplifiers for ultrasound transducers because they can amplify weak acoustic signals gen-
erated directly by ultrasound transducers. For emerging diagnostic ultrasound imaging applications,
different types of preamplifiers with specific design parameters and circuit topologies have been
developed, depending on the types of the ultrasound transducer. In particular, the design parameters
of the preamplifier, such as the gain, bandwidth, input- or output-referred noise components, and
power consumption, have a tradeoff relationship. Guidelines on the detailed design concept, design
parameters, and specific circuit design techniques of the preamplifier used for ultrasound transducers
are outlined in this paper, aiming to help circuit designers and academic researchers optimize the
performance of ultrasound transducers used in the diagnostic ultrasound imaging applications for
research directions.
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1. Introduction

Ultrasound systems are widely used in medical, nondestructive, photoacoustic, and
stimulation applications [1–3]. Recently, ultrasound systems have garnered increasing atten-
tion owing to new technologies such as capacitive micromachined ultrasonic transducers,
asynchronous specific integrated circuit (ASIC) fabrication processes, smartphone-based
ultrasound machines, photoacoustic imaging, and magnetic resonance-guided brain stimu-
lation [4–7].

In diagnostic ultrasound imaging applications, the ultrasound systems are categorized
into transmitters, receivers, and transducers [8–10]. Figure 1 shows the transducer, transmit-
ter, and receiver in the ultrasound system used to describe the locations of the components
of the preamplifier and time-gain compensation amplifier [11,12]. The computer-controlled
digital-to-analog converter (DAC) produces low-voltage single or multiple-cycle pulse sig-
nals [13,14]. High-voltage pulse signals, amplified by the power amplifier in the transmitter,
trigger the transducer through an expander or switch [15]. A limiter or switch protects
the receiver from high-voltage or high-power signals generated by the power amplifiers
because of the shared path between the transmitter and receiver [16].

The preamplifier is one of the first-stage receiver electronic devices after the transducer
that amplifies weak acoustic signals with fewer noise effects [17]. Considering a transducer
with low sensitivity requires a high input dynamic range of the preamplifier, the preampli-
fier used for ultrasound applications is a Class-A-type amplifier that continuously conducts
voltage and current [18]. This preamplifier operates continuously during pulse transmission
and echo reception; therefore, switches are utilized to block unwanted pulse signals and
reduce power consumption; switches in the IC are normally implemented using voltage-
controlled metal-oxide-semiconductor field-effect transistor (MOSFET) switches to save
occupied chip space [19,20]. The low-voltage, current, or power signals received from the
transducer are amplified by the preamplifier and time-gain-compensation amplifier (TGCA)
in the receiver and then digitized with an analog-to-digital converter (ADC) to obtain the
images [21]. The TGCA needs to amplify the weak signals further when the attenuation of
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the ultrasound signals is exponentially degraded, depending on the target distance [22].
In Figure 1, the transmitting and receiving beamforming components of the ultrasound
transducer array are excluded to simplify the description of the entire ultrasound system.
In a diagnostic photoacoustic system, the transmitter side is replaced by light-generating
sources such as lasers, light-emitting diodes, or radio frequency sources [23–25].
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Figure 1. Block diagram of the transducer and ultrasound transmitter and receiver used for diagnostic
ultrasound imaging applications.

The output of the capacitive micromachined ultrasonic transducer (CMUT) device is
current; thus, a transimpedance amplifier is used to convert the current generated from the
CMUT in the input to voltage in the preamplifier output [26]. Therefore, the preamplifiers
were designed as voltage and current (transimpedance) amplifiers for the piezoelectric
transducer and CMUT, respectively. The output of the piezoelectric transducer is a voltage;
therefore, a low-noise voltage operational amplifier was used [27]. The preamplifier, also
known as a low-noise amplifier (LNA), is used in piezoelectric transducers [26].

Section 2 describes the design parameters of the preamplifiers, such as voltage or
current gain, bandwidth, direct current (DC) power consumption, and input- or output-
referred noises, or noise figures. Section 3 presents the topology, design parameters, and
circuit design techniques of previously reported preamplifiers for specific diagnostic ultra-
sound imaging applications such as CMUT, piezoelectric transducer, and imaging. Section 4
discusses the design topologies and criteria for the currently developed preamplifiers used
for diagnostic ultrasound imaging applications and summarizes this review.

2. Design Parameters of the Preamplifiers for Ultrasound Transducer Types

The design parameters of preamplifiers for ultrasound transducer types are described
in this section. Figure 2 shows the relationship between the design parameters of the
preamplifiers used for diagnostic ultrasound imaging applications because design engineers
for ultrasound components or systems need to consider the trade-off relationship at the
design level. The design parameters of the preamplifiers were based on information from
several textbooks on analog circuits, ICs, amplifiers, and ultrasound systems [28–33]. These
design parameters are useful for circuit design engineers because some ultrasound systems
require specific performance parameters.

The gain of the preamplifier is an important parameter because the weak echo signal
generated by the transducer must be amplified. The voltage or current gain parameters
are the extent to which the input signals are amplified [34]. Owing to the limited space for
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intravascular ultrasound (IVUS) applications, most research has focused on developing
capacitive micromachined ultrasonic transducer devices with integrated circuits (IC) closely
attached between the CMUT and IC [35]. For IVUS areas, the small size ultrasound
transducers are required due to limited areas so the received echo signals are very weak
so the high gain of the preamplifier is preferable. The bandwidth of the preamplifier is
typically at least twice or higher than that of the transducer because the harmonic imaging
mode requires the use of second or higher-order harmonic components to improve the
image resolution [36]. The bandwidth can be increased while the gain reduces if the
preamplifier has an operational amplifier topology [37]. A preamplifier design with a high
gain has high power consumption because a high gain requires a high biasing current in
the preamplifier [38,39]. While a preamplifier with high linearity is desirable for producing
extremely weak acoustic signals from transducers, these signals affect the maximum gain
performance of the amplifier.
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Figure 2. Design parameters of the preamplifiers used for ultrasound transducers.

The input third-order intercept point (IIP3) or the output third-order intercept point
(OIP3) is the intercept point at which the component at the fundamental frequency and
third-order intermodulation distortion points meet [40]. They are useful parameters to
show the linearity of the preamplifiers. The higher the IIP3 or OIP3, the more linear the
preamplifier works. Therefore, the circuit designers can increase the voltage gain before the
intermodulation distortion is started [40]. In the harmonic imaging mode in the diagnostic
ultrasound machine, high linearity is preferable because the unwanted harmonics need to
be filtered out [26].

The direct current (DC) power consumption parameter was used because the pream-
plifier is a power-intensive electronic component when considering ultrasound receiver
construction in the wireless ultrasound machine [41,42]. In addition, considering the pream-
plifier needs to enhance the weak signals, it needs to obtain high gain while sacrificing DC
power consumption and occupied area [43,44]. For smartphone-based ultrasound systems
with array transducers, area and power consumption are critical issues owing to the limited
space and structures because unnecessary heat generation causes performance degradation
during stable operation [45].

The input- and output-referred noises are the noise voltage and currents that generate
the same output noises as the practical preamplifier generates if the ideal noise source is an
input signal of the noise-free preamplifier [28]. The output-referred noise voltage of the
preamplifier can be obtained by multiplying the gain and input-referred noise voltage of
the preamplifier. The parameters of the input- and output-referred noise currents indicate
the noise components of the preamplifier [46–48]—useful for demonstrating the noise
contribution when amplifying weak echo signals through the preamplifier. Instead of input-
or output-referred noise currents, a noise figure was used [49]. The preamplifier design is
important because the gain of the first-stage amplifier contributes to the noise current in
the receiver of the ultrasound system [50]. The noise figure (NF) equation is widely used in
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preamplifier design because it describes the noise contribution of the preamplifier [51]. As
shown in (1), A1 needs to be as high as possible to reduce NF at the preamplifier [52].

NF = NF1 +
NF1 − 1

A1
+ . . . +

NFn − 1
A1 . . . An−1

, (1)

where NF1 and NFn are the noise figures of the first- and n-stage preamplifiers, respectively;
A1 and An−1 are the gains of the first- and n − 1-stage preamplifiers, respectively.

The following section presents a detailed schematic of the preamplifiers used in
previously published articles on ultrasound applications.

3. Design Analysis of the Preamplifiers for Ultrasound Transducers

This section describes the design and schematic analysis of the design parameters of
preamplifiers for specific ultrasound transducers, such as CMUT, piezoelectric transducer,
and imaging. The labels and symbols in the articles are sometimes different from those in
the selected articles; therefore, all schematic diagrams of the preamplifiers in this review
paper were re-labeled and re-sketched, with some of the preamplifier designs also simplified
to understand the operating mechanism more clearly for academic ultrasound researchers
or design engineers. In the following sections, the same labels are used for input and
output. B, N, and P indicate the Bipolar, N-channel metal-oxide semiconductor (NMOS),
and P-channel metal-oxide-semiconductor (PMOS) transistors, respectively, while R, C,
and I represent the resistor and capacitor, respectively.

3.1. Preamplifiers for CMUT Applications

Figure 3 shows a schematic of the CMUT device preamplifier. The preamplifier was
constructed using a common-source amplifier (N1 and IDD1), followed by a source follower
(N2 and IDD2) with a feedback resistor (R1). The measured gain and bandwidth of the
preamplifier were 215 kΩ and 25 MHz, respectively [53].
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Figure 3. Preamplifier for CMUT device. Adapted with permission from Ref. [53]. Copyright
2009, IEEE.

Figure 4 shows a schematic of the operational amplifier with resistor feedback loops
(R2 and R3) of the CMUT device. The 0.8-µm CMOS process was used; thus, the DC supply
voltage is 5 V (VDD) [54]. This operational amplifier comprises two stages. In the first stage,
a differential cascade amplifier (B1, B2, N1, N2, and P1) is used. In the second stage, a source
follower (P2 or N3) was used to reduce the output impedance of the amplifier. A resistor
(R1) and a capacitor (C1) were used to reduce the phase shift of the frequency response [55].
The measured bandwidth, DC power consumption, and input noise voltage were 11 MHz,
2 mW, and 6.45 nV/

√
Hz, respectively [54].
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Figure 4. Operational amplifier with a resistor feedback loop for the CMUT device. Adapted with
permission from Ref. [54]. Copyright 2005, IEEE.

Figure 5 shows the schematic of the common-source amplifier followed by the source
follower with resistor feedback for CMUT array transducer applications. The 1.5-µm CMOS
process was used; thus, the DC power supply is 5 V [56]. MOSFET switches are used to
turn off the power [57]. The amplifier comprises a common-source amplifier (N1 and
P3), followed by a source follower (N2 and N4). A source follower was used to reduce
the impedance, thus increasing the amplifier bandwidth [57], which can be expressed
by Equation (2).

Bandwidth =
1

2πR1C1
, (2)

where C1 is the feedback loop capacitance combined with the input parasitic capacitance.
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The amplifier gain depends on the feedback resistance. The input-referred noise
is inversely proportional to the feedback resistance (R1); therefore, a large R1 value is
preferable [56]. However, the bandwidth is reduced. The bandwidth can be increased
by decreasing the feedback resistance (R1) and feedback loop capacitance combined with
the input parasitic capacitance (C1) [56]. However, the input-referred noise current is
proportional to the

√
4kT/R1; thus, a relatively large feedback resistor is desirable if the

input-referred noise current is an important design parameter [58]. The measured gain,
input-referred noise current, bandwidth, and DC power consumption were 4.3 kΩ, 1.2 to
2.1 mPa/

√
Hz, 10 MHz, and 4 mW, respectively [56].

Figure 6 shows a schematic of the common-source amplifier (N1), followed by a source
follower (N2 and N3) with a transistor feedback loop (N4 and N5) for the CMUT device.
The 0.18-µm CMOS process was used [59]. The source-connected NMOS transistors (N4
and N5) were used for the transistor feedback loop to function as resistances controlled by
the DC voltage (Vc). This topology is useful for reducing the chip area because physical
resistors require large chip space [60–62]. The measured transimpedance gain, bandwidth,
and input-referred noise are 951 dBΩ, 12 MHz, and 3.5 pA/

√
Hz, respectively [59].
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Figure 7a,b show the schematics of the operational amplifier with a resistor feedback
loop for CMUT device applications. The 0.18-µm CMOS process was used [63]. The
preamplifier was constructed using five operational amplifiers with a feedback resistor (R1)
and a Miller capacitor (C1), as shown in Figure 7b. The Miller capacitor compensates for
the pole and zero in the frequency response [64,65]. A current mirror (P1, P2, and P3) was
used to reduce the power supply noise [66]. The output nodes (R2 and C2) are the input
resistance and capacitance of the next stage of the electronics (ADC), respectively [63].
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Figure 7. (a) Operational amplifier and (b) operational amplifier with a resistor feedback loop for
CMUT. Adapted with permission from Ref. [63]. Copyright 2016, IEEE.

The input-referred current noise of the operational amplifier with resistor and capacitor
feedback loop can be expressed in Equation (3) [63].

˜ioutput
2 =

(
˜Voutput − 1

RCU//R1

)2

+ω2Cinput
2 ˜Voutput − 1 +

4kT
R1

+
4kT
RCU

, (3)

where RCU is the equivalent resistance of the CMUT and Cinput is the combined equivalent
capacitance of the CMUT and the input parasitic capacitance at the input port.

The input-referred current noise is inversely proportional to the feedback resistance
(R1) and input capacitance (Cinput). The measured bandwidth, DC power consumption, and
input-referred noise current were 4.5 MHz, 370 µW, and 1.5524 pA/

√
Hz, respectively [63].

Figure 8 shows a schematic of the operational amplifier with a feedback loop (R1 and
C1). The 0.18-µm CMOS process was used [67].
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Several MOSFET switches were used to reduce DC power consumption if needed.
Therefore, the active DC power consumption is 14.3 mW, whereas the inactive DC power
consumption is 1.5 mW [67]. The transimpedance gain of the preamplifier (AZ) is expressed
by Equation (4) [67].

Az =
Rf

1 + j2πfRfCf
·

(
Zinput

Zinput+Zfeedback

)
A

1 +
(

Zi
Zinput+Zfeedback

)
A

, (4)

where Zinput and Zfeedback are the input and feedback loop impedances, respectively; f and
A are the operating frequency and open-loop gain of the operational amplifier, respectively.

The width of the NMOS (N1 and N2 = 2.3 mm) was sufficiently large to obtain a high
current in the biasing circuit [67]. Different pairs and cascade stages were used to boost the
gain and reduce the power supply noise, respectively, to achieve the high transimpedance
gain (96.6 dBΩ) [67]. The Miller compensation capacitance (C2 = 5.4 pF) was used to
increase the bandwidth; thus, the measured −3 dB bandwidth was 5.2 MHz [67]. The
source follower (N6 = 135 µm/0.18 µm and N7 = 50 µm/0.63 µm) was used to reduce the
output impedance, thus reducing the signal reflection to the next-stage component [67].

If the open loop gain of the amplifier (A) is large, the gain of the operational amplifier
with feedback loop is dependent on the values of the resistance (R1 = 76 kΩ) and capacitance
(C1 = 0.45 pF). The NF of the operational amplifier with feedback can be expressed by
Equation (5) [67].

NF = 1 +
Rinput

R1
+

Ṽoutput
2

Ĩinput
2∣∣Zinput

∣∣·|Zfeedback|2
+

Ĩoutput
2

Ĩinput
2 +

2
∣∣∣Ṽoutput·Ĩoutput

∣∣∣
Ĩinput

2
·
∣∣Zinput

∣∣·|Zfeedback|
, (5)

where Rinput and R1 are the input and feedback loop resistances, respectively; Ĩinput, Ĩoutput,

and Ṽinput are the input, output, and input voltage currents, respectively.
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In Equation (5), a large feedback loop resistance (R1) is desirable to reduce the NF
value. The measured NF of the operational amplifier with a feedback loop was 10.3 dB at
3 MHz [67].

Figure 9 shows a schematic of the operational amplifier with a voltage-controlled
resistance (N5) for CMUT device applications.
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Voltage-controlled resistance was implemented using the NMOS transistor to save
space [69,70]. The resistance can be expressed using Equation (6) [68].

RN5 =
1

µNCOX
W
L (VC − VOUTPUT − VTH)

, (6)

where µN is the carrier mobility, Cox is the unit-area gate capacitance, W and L are the
channel width and length of the transistor, respectively, VC is the bias voltage, VOUPUT is
the output voltage, and VTH is the threshold voltage of the transistor.

The input-referred current noise of the amplifier can be expressed by Equation (7) [68].

ĩin2 = ω2 (Cin//CCU//CPR)
2(

∼
id
gm

)

2

+
(

∼
id
gm

)
2

(RCU//RN5)
+

4kT
RN5

+ ĩCU
2, (7)

where Cin and CPR are the input and parasitic interconnect capacitances of the amplifier,
respectively; CCU and RCU are the CMUT equivalent circuit capacitance and resistance,
respectively; gm is the transconductance; T is room temperature; and id and iCU are the
spectral densities of the current noise squares of the operational amplifier transistors and
CMUT, respectively.

The input-referred current noise of the preamplifier is proportional to the input and
parasitic interconnect capacitances of the preamplifier and the CMUT equivalent circuit
capacitance but is inversely proportional to the voltage-controlled resistance [68].
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The transimpedance gain of the preamplifier (AZ) is expressed in Equation (8) [68].

Az =
RN5ω0

2

s2 + ω0
Q s +ω02 , (8)

where ω0 and Q are the radian bandwidth and quality factor of the amplifier.
As shown in Equations (7) and (8), a high resistance (RN5) can lower the input-referred

current noise and increase the transimpedance gain of the preamplifier. The measured DC
power consumption, transimpedance gain, bandwidth, and input current noise density
were 6.6 mW, 3 MΩ, 20 MHz, and 90 fA/

√
Hz, respectively [68].

Figure 10 shows a schematic of the two-stage operational amplifier with a capacitive
feedback loop (C2 and C3) for the CMUT applications. The 0.35-µm CMOS process was
used; thus, the DC power supply (VDD) is 3.3 V [71]. In the first stage, an operational
amplifier was constructed using NMOS (N1) and PMOS (P1) transistors. In the second
stage, the source follower was constructed using NMOS (N2) and PMOS (P3) transistors.
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The operational amplifier comprises a capacitor feedback loop (C2 and C3). Therefore,
the transfer function of the amplifier with a capacitor feedback loop (IZ) is expressed as
Equation (9) [71].

Iz(s) =

 s2

C2Aω0gN2

C3(C1+C2)
(
ω0+

gN2
C3

) +
s

C2Aω0gN2
C3(C1+C2)

+ 1


−1

, (9)

where s is the complex operating frequency, ω0 is the radian bandwidth of the operational
amplifier, gN2 is the transconductance of the MOSFET of N2, A is the open-loop voltage
gain, and C1 is the combined capacitances of the CMUT and parasitic interconnection.
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The gain of the operational amplifier with a capacitor feedback loop can be expressed
by Equation (10) [71].

Az(s) =

(1 + C2
C1
)R1(1 + s

C2Aω0
C1

)

1 + s
C1Aω0gN2
C3(C1+C2)
ω0+

gN2
C3

+ s2
C1Aω0gN2
C3(C1+C2)

(10)

The measured −3 dB bandwidth, transimpedance gain, and DC power consumption
were 40 MHz, 200 kΩ, and 0.8 mW, respectively. The input-referred spectral density of the
amplifier current noise is expressed as Equation (11) [71].

Ĩinput
2 =

1(
1 + C3

C2

)2

(
4kT
R1

+ idb
2
)
+ω2(C1 + C2)

2
∼
id

gN2
, (11)

where k is a process-dependent constant, gm is the MOSFET transconductance, id is the
spectral density of the current noise square of the operational amplifier transistors, and idb
is the spectral density of the current noise square of the current-bias circuit.

The transconductance (gN2) and load resistance (R1) must be high to reduce the input-
referred spectral density of the amplifier current noise. The measured input referred noise
at 20 MHz was 0.31 pA/

√
Hz [71].

3.2. Preamplifiers for Piezoelectric Transducer Applications

Figure 11 shows a schematic of the operational amplifier, followed by a source follower
with a capacitor feedback loop for piezoelectric micromachined ultrasonic transducer
(PMUT) array applications. The source follower is constructed using NMOS (N3) and
PMOS (P3). The 0.13-µm CMOS process was used [72]. In the first stage, an operational
amplifier was constructed using NMOS (N1) and PMOS (P1) transistors. In the second
stage, a source follower was constructed using NMOS (N3) and PMOS (P3) transistors.
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The output of the operational amplifier with a capacitive feedback loop (C1) can be
simplified using Equation (12) if the open-loop gain of the amplifier is high [72].

Vout = QE/C1, (12)

where QE is the electric charge produced by the PMUT device and C1 is the feedback
loop capacitance.

The input-referred current noise of the amplifier is proportional to the input capac-
itance of the operational amplifier (Cin) and feedback capacitance (C1); thus, it can be
expressed using Equation (13) [72].

ĩin(s) =
sCin(C1 + Cin)

(
inn + inp

)(
gN1 + gP1

)
(1 − sC1

gN1+gP1
)

, (13)

where Cin is the electric charge produced by the PMUT device, gN1, and gP1 are the
transconductances of MOSFET N1 and P1, respectively, and inn and inp are the square root
mean square current noises of MOSFET N1 and P1, respectively.

The voltage gain, bandwidth, DC power consumption, and input referred noise of the
preamplifier were 21.8 dB, 22 MHz, 0.3 mW, and 7.1 nV/

√
Hz at 3 MHz, respectively [72].

Figure 12 shows a schematic of the low-noise amplifier (LNA) used for high-frequency
piezoelectric transducer applications. The 0.18-µm BiCMOS process was used [73]. The
LNA was constructed using a cascade amplifier (N1 and N3), followed by a common-source
amplifier (N4) with a resonant load (R3, C2, L2, L3, and R4) owing to its high-frequency
piezoelectric transducer characteristics [73].
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The voltage gain of the amplifier can be expressed as Equation (14) [73]:

AV =
gN1gN3C1

CESD + CgsN1

gN4

√
R4

2 + (ωL3)
2

ωC2 +
1√

R3
2+(ωL2)

2

, (14)
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where gN1, gN3, and gN4 are the transconductances of MOSFET N1, N3, and N4, respectively,
and CESD and CgsN1 are the ESD and gate-source parasitic capacitances of the MOSFET N1.

The voltage gain of the amplifier can be related to the load impedances (R3, R4, L2, L3,
and C2), transconductance (gN1, gN3, and gN4), ESD parasitic capacitance, and gate-source
parasitic capacitance of MOSFET N1. The measured voltage gain, bandwidth, and DC
power consumption of LNA were 24.08, 73, and 43.57 mW, respectively [73].

The noise figure (NF) of the preamplifier can be expressed using Equation (15) [73].

NF = 1 +
rN1 +

1
2gN1√(

1
ωC1

)2
+ (ωL1)

2 +

(
1

ω(C ESD+CgsN1)

)2
, (15)

where rN1 gate resistance of the MOSFET N1.
The NF of the LNA can be improved by a large transconductance (gN1) and low input,

ESD parasitic capacitance, and gate-source parasitic capacitance of MOSFET N1 (C1, CESD,
and CGSN1). The measured NF of the amplifier is 3.51 dB [73].

Figure 13 shows a schematic of the preamplifier used in piezoelectric transducer
applications. The acoustic signals from the ultrasound transducer were sent to the Input-1
port, with the common ground of the transducer connected to the Input-2 port [74]. The
voltage gain depends on the variable resistors (R1 and R2) and the transistor sizes (N1, P2,
N2, and P3). The measured gain, bandwidth, and NF of the preamplifier were 20, 75, and
10 dB, respectively [74].
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Figure 14 shows a schematic of an LNA. The 0.18-µm CMOS process was used; thus,
the DC supply voltage (VDD) is 3 V [75].
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The LNA is constructed using a three-stage common-source amplifier. The transistors
(N1 and P2) were biased to obtain the 600 µA current (IDD1) and 800 µA current (IDD2),
respectively [75]. Resistor (R1) can prevent leakage currents for long-cycle pulse signals
and capacitor C1 can be programmed with 6-dB steps [75]. Therefore, the gain of the LNA
(AI) can be expressed by Equation (16) [75].

AI = 1 +
C2

C1
(16)

The measured center frequency, bandwidth, and input-referred noise current were
13 MHz, 21 MHz, and 4 nA/

√
Hz [75].

Figure 15 shows a schematic of the variable LNA with a resistor feedback loop for the
piezoelectric transducer because the LNA topology is preferable for low impedance [76]. A
variable LNA with a resistor feedback loop was used because of the signal attenuation of
echo signals in deep areas [77]. The 0.18-µm CMOS process was used [77]. This two-stage
variable LNA structure had a feedback loop composed of two variable resistors (R1 and
R4). The first stage of the LNA is a cascade amplifier composed of an NMOS (N1 and N2)
and PMOS (P1, P2, and P3), and the second stage is the source follower (N4 and P5). A
variable Miller capacitor (C1) is used to increase the bandwidth by improving the phase
margins [78]. A MOSFET switch composed of transistors (N5 and P6) was used to reduce
the power consumption of the LNA during the period when the driving pulse signals
were applied.

The voltage gain of the LNA can be expressed as Equation (17) [77]:

AV = 1 +
R4

R1
(17)

The measured gain, bandwidth, and input-referred noise voltage of the variable LNA
with resistor feedback loop were 32 dB, 11 MHz, and 4.1 nV/

√
Hz, respectively [77].
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3.3. Preamplifier for Ultrasound Imaging Applications

Figure 16 shows a schematic of the LNA for ultrasound imaging applications. The
0.18-µm CMOS process was used [79]. The LNA was constructed using a three-stage
operational amplifier with feedback resistors (R7 and R8) and variable input resistors (R1
and R2 = 0.2, 0.4, 0.8, and 1.6 kΩ) [79]. The PMOS inputs were used to reduce the noise
of the preamplifier. The gain of the LNA was dependent on the variable resistors (R1, R2,
R7, and R8). The measured gain, bandwidth, OIP3, and input-referred noise current of the
LNA were 15.6 dB, 10 MHz, 2.64 Vp-p, and 6.3 nV/

√
Hz, respectively [79].
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4. Discussion and Conclusions

This review will guide the design characteristics of preamplifiers for ultrasound
transducer applications. For ultrasound applications, currently used most IC fabrication
processes are 0.13 µm, 0.18 µm, or 0.8 µm because the supply voltage of the 0.13 µm,
0.18 µm, and 0.8 µm IC fabrication processes are 1.8 V, 3.3 V, and 5 V, respectively. Below
the 0.13-µm process, the supply voltage is lower than 1.8 V; as a result, the maximum
achievable gain of the preamplifier could be limited even though high dynamic ranges of
the preamplifier are desirable. Therefore, a new IC fabrication process may not be desirable
even if the sizes of the new IC fabrication processes are smaller.

The primary design parameters of the preamplifier are gain, bandwidth, noise figure
(or input- or output-referred noise), power consumption, and IIP3 or OIP3 [80,81]. These
design parameters of the preamplifiers have a trade-off relationship; therefore, circuit
or system designers must consider the parameter specifications for the performance of
ultrasound transducers. For example, the bandwidth of a preamplifier should be larger
than that of an ultrasound transducer. The input-referred noise of the preamplifier must
be similar to or lower than that of the ultrasound transducer. The gain of the preamplifier
should be high if the sensitivity of the transducer used in the IVUS applications is low.
However, the bandwidth of the preamplifier for the operational amplifier type can be
increased if its gain of the preamplifier needs is decreased [82]. While a high biasing current
can increase the gain of the preamplifier, it causes unnecessary DC power consumption;
therefore, an appropriate current is desirable at the design level [83]. A preamplifier with
a wide bandwidth can increase the number of unwanted harmonic components of the
acoustic signals generated by the ultrasound transducer. While a high linearity of the
preamplifier can be obtained if a current-biasing circuit based on the MOSFET is used, it
causes high DC power consumption [84].

For CMUT device applications, a transimpedance amplifier—an operational am-
plifier with a feedback loop composed of resistors or capacitors—is preferred for high
impedances [85,86]. For piezoelectric devices, the LNA is preferable because of the low
impedance of the piezoelectric transducer [72].

To increase the gain of the preamplifier, circuit designers use a common-source ampli-
fier with a large width of the first transistor connected to the input port or use a cascade
topology to obtain a high current from the biasing circuit [28]. However, this causes rel-
atively high DC power consumption. In the last stage, the source follower is used to
reduce the output impedance, thus smoothly passing the amplified signal to the next-stage
amplifier or ADC. In an operational amplifier with a resistor feedback loop, the feedback
resistor affects the gain and bandwidth of the preamplifier.

For the input-referred noise or NF, the transconductance value of the MOSFET is im-
portant because it can affect the noise of the preamplifier [87]. For an operational amplifier
with a feedback resistor loop, the feedback resistor can affect the noise parameters [66].
In addition, the open-loop gain of the operational amplifier must be large to reduce the
input-referred noise [28]. MOSFET switches can be used to reduce power consumption
during the driving pulse period when transmitted signals are applied [88]. Instead of
resistors, voltage-controlled MOSFETs for amplifier design could help reduce the chip
area [88]. However, this scheme may require an integrated preamplifier design with a more
complex and accurate timing period after pulse transmission. In particular, this technique
can help reduce power consumption in wireless ultrasound systems. Miller capacitors in
the output port are sometimes used to increase the bandwidth by moving the pole and
zero locations [30]. An operational amplifier with a capacitive feedback loop was used
for the PUMT device, which has a lower impedance than that of the CMUT [72]. An LNA
with a resonant load was developed for high-frequency piezoelectric transducers [73]. The
LNA constructed using a three-stage common-source amplifier used resistors to prevent
leakage currents for a long-cycle transmission period and a capacitor to provide a 6-dB step
gain [77].
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Table 1 summarizes the design parameters of the previously published preamplifiers
used for ultrasound transducers. As shown in Table 1, the gain of the transimpedance
amplifier is expressed by dBΩ or kΩ units because the input is current and the output is
voltage. The input-referred noise (IRN) can be expressed by current or voltage units, and
the NF can be expressed on the dB scale. Topologies can be classified into common source,
operational amplifier, or low-noise amplifier types.

Table 1. Summary of the preamplifiers currently used for ultrasound transducer research.

Paper Gain Bandwidth DC Power
Consumption IIP3 or OIP3‘ IRN NF Topology Application

[53] 215 kΩ 25 MHz – – – –
Common-source amplifier and

source follower with a
feedback resistor

CMUT

[54] – 11 MHz 2 mW – 6.45 nV/
√

Hz – Operational amplifier with
resistor feedback CMUT

[56] 4.3 kΩ 10 MHz 4 mW – 2.1 mPa/
√

Hz –
Common-source amplifier and

source follower with a
feedback resistor

CMUT

[59] 95.1 dBΩ 12 MHz – – 3.5 pA/
√

Hz –
Common-source amplifier and

source follower with a transistor
feedback loop

CMUT

[63] – 4.5 MHz 0.37 mW – 1.5524
pA/

√
Hz – Operational amplifier with

resistor feedback CMUT

[67] 96.6 dBΩ 5.2 MHz 14.3 mW 618 mV
(OIP3) – 10.3 dB Operational amplifier with a

feedback loop CMUT

[68] 3 MΩ 20 MHz 6.6 mW – 90 fA/
√

Hz – Operational amplifier with
resistor feedback CMUT

[71] 200 kΩ 40 MHz 0.8 mW – 0.31 pA/
√

Hz – Operational amplifier with
capacitor feedback CMUT

[72] 21.8 dB 22 MHz 0.3 mW – 7.1 nV/
√

Hz – Operational amplifier with
resistor feedback

Piezoelectric
transducer

[73] 24.08 dB 73 MHz 43.57 mW −3.5 dBm
(IIP3) – 3.51 dB Low-noise amplifier with a

resonant circuit
Piezoelectric
transducer

[74] 20 dB 75 MHz – – – 10 dB Operational amplifier with
resistor feedback

Piezoelectric
transducer

[75] 69 dB 21 MHz – – 4 nA/
√

Hz – Low-noise amplifier Piezoelectric
transducer

[77] 32 dB 11 MHz – – 4.1 nV/
√

Hz – Variable low-noise amplifier with
resistor feedback

Piezoelectric
transducer

[79] 15.6 dB 10 MHz – 2.64 Vp-p
(OIP3) 6.3 nV/

√
Hz – Low-noise amplifier Imaging

While several review papers on IC components for ultrasound systems have been
published, they did not provide specific design guidelines for preamplifiers used in ultra-
sound transducer applications. Therefore, this is the first review paper of preamplifiers
to provide design guidelines for ultrasound transducer applications, such as capacitive
micromachined ultrasonic transducer (CMUT), piezoelectric transducer, and ultrasound
imaging applications.

In ultrasound imaging, preamplifiers are required to amplify weak acoustic signals
and obtain images for diagnostic purposes. However, their performance is limited because
of transistor requirements. Therefore, the design parameters of the gain, bandwidth, input-
or output-referred noise currents, and DC power consumption are described to explain the
design concepts of the preamplifiers because they have a trade-off relationship when de-
signing the preamplifier components used for diagnostic ultrasound imaging applications

Recently, with the emergence of new ultrasound applications such as photoacoustic
imaging, smartphone touch sensors, wireless ultrasound machines, brain stimulation, and
ultrasound-combined positron emission tomography, academic researchers have used
commercial components or system IC for these emerging applications. However, further
performance optimization is possible if ultrasound transducers with appropriate electronic
selection or a design topology that considers a trade-off relationship are developed. As
such, the knowledge of preamplifier design in this review paper is expected to be helpful
in this regard.
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Abbreviations

AC Alternating current
DC Direct current
ADC Analog-to-digital converter
DAC Digital-to-analog converter
CMUT Capacitive micromachined ultrasonic transducer
DAC Digital-to-analog converter
IIP3 Third-order input intercept point
OIP3 Third-order output intercept point
NMOS N-channel MOS
PMOS P-channel MOS
MOSFET Metal-oxide-semiconductor field-effect transistor
THD Total harmonic distortion
PMUT Piezoelectric micromachined ultrasonic transducer
TIA Transimpedance amplifier
LNA Low-noise amplifier
VGA Variable gain amplifier
PGA Programmable gain amplifier
TGCA Time gain compensation amplifier
CMOS Complementary Metal-oxide-semiconductor
IVUS Intravascular ultrasound system
SNR Signal-to-noise ratio
NF Noise figure
IC Integrated circuit
IRN Input-referred noise current
ASIC Asynchronous semiconductor integrated circuit
ESD Electrostatic discharge device
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