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Abstract: With the increasing demand for natural interactions, people have realized that an intuitive
Computer-Aided Design (CAD) interaction mode can reduce the complexity of CAD operation and
improve the design experience. Although interaction modes like gaze and gesture are compatible
with some complex CAD manipulations, they still require people to express their design intentions
physically. The brain contains design intentions implicitly and controls the corresponding body parts
that execute the task. Therefore, building an end-to-end channel between the brain and computer
as an auxiliary mode for CAD manipulation will allow people to send design intentions mentally
and make their interaction more intuitive. This work focuses on the 1-D translation scene and
studies a spatial visual imagery (SVI) paradigm to provide theoretical support for building an
electroencephalograph (EEG)-based brain–computer interface (BCI) for CAD manipulation. Based
on the analysis of three spatial EEG features related to SVI (e.g., common spatial patterns, cross-
correlation, and coherence), a multi-feature fusion-based discrimination model was built for SVI. The
average accuracy of the intent discrimination of 10 subjects was 86%, and the highest accuracy was
93%. The method proposed was verified to be feasible for discriminating the intentions of CAD object
translation with good classification performance. This work further proves the potential of BCI in
natural CAD manipulation.

Keywords: natural CAD manipulation; EEG-based interaction; SVI; spatial EEG features; multi-feature
fusion

1. Introduction

Computer-Aided Design (CAD) is well-developed, and its functions are very com-
plete. However, some CAD manipulations like translation, rotation, and zooming are still
performed with conventional devices like a mouse, keyboard, and so on, which are not con-
ducive to the natural expression of design intentions. At present, more and more intuitive
interactive modes have been applied to CAD manipulation [1–4], enabling designers to
interact with CAD more directly and naturally by distinguishing design intentions with
physiological signals. Basically, the brain produces design intentions and sends messages
to some corresponding parts like the hands and eyes, which eventually execute the task.
However, people still need to express their minds physically. These interaction modes are
still not intuitive enough. Thus, it is interesting to investigate whether a computer can
obtain design commands from the brain directly.

It is well known that manipulation intentions, especially some singular ones, are
directly related to certain brain activities [5,6]. Thus, it is probable that these manipulation
commands can be output from the brain directly [7]. It has been verified that some simple
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manipulations like horizontal translation and clockwise and counterclockwise rotation can
induce certain brain patterns [8,9]. Decoding commands from brain information could be a
complementary method for natural interaction. Therefore, the first step is to investigate
the feasibility of discriminating a manipulation intention from the brain directly before
support system development and further evaluation of this strategy.

The brain–computer interface (BCI) has been increasingly applied in daily life as
an intuitive interactive mode that outputs human intentions without the involvement of
the peripheral nervous system or muscle tissue [10,11]. In the research community, the
application of BCIs in desktop object controls like cursor movement and CAD manipulation
is very promising [12,13]. Designers can communicate directly with the computer using
their brains to realize the simple manipulation control of geometric objects in CAD.

Currently, steady-state visual evoked potential (SSVEP), P300, and motor imagery
(MI) are widely used in manipulation control [14,15]. However, both SSVEP and P300 are
external stimulation-induced-based EEG paradigms, which require users to focus on the
corresponding stimulus elements constantly. Users are prone to visual fatigue when staring
at the flashing interface. With regard to motor imagery [16,17], users are instructed to
imagine the movement of their right hands, left hands, feet, and other parts of their bodies
without executing the movement. Although motor imagery is an endogenous paradigm, it
also faces cognitive pressure problems due to the fact that the imagination of limb motion
itself is unrelated to CAD manipulation. Moreover, designing a product with CAD is a
time-consuming job that requires designers to sit in front of computers for several hours.
These mature BCI paradigms are prone to cause physical fatigue because designers have to
focus on the visual stimulus or imagine the movement of limbs for hours. These behaviors
have little relation to the design work, which wastes the designers’ energy in vain. Once
designers spend a lot of time on these unrelated behaviors, they cannot focus on design
work and express their innovative thinking well. Therefore, a more natural BCI paradigm
is essential for CAD manipulation.

Visual imagery (VI) is a mental imagery paradigm that only requires users to imagine
the corresponding scene from a third-person perspective. In this paradigm, additional
cognitive activity that is unrelated to the task is eliminated. VI is a better EEG-based inter-
active strategy for CAD manipulations. Designers only need to imagine the manipulation
scenes to express their intentions. At present, studies on VI mainly focus on some special
cases, such as specific image imagination [18], visual motor imagination [19], and so on.
Obviously, these conventional VI paradigms are still not suitable for CAD manipulations
due to their inappropriate imagination scenarios. Therefore, a VI paradigm that is suitable
for CAD manipulation is needed. Recently, some VI paradigms related to spatial cognition
have been proposed [20–22]. In these studies, participants were asked to imagine a scene
where an object moves in a given direction. The spatial visual imagery (SVI) paradigm
seems to be extremely fitting for some single CAD manipulations. Especially in CAD
assembly tasks, where translation and rotation manipulation are needed, designers could
output the commands by just imagining the spatial pattern, such as moving left/right or
rotating clockwise/counterclockwise. In this way, designers could express their intentions
directly from their brains without any extra behavior. However, the research into SVI is not
complete. Previous studies have not clearly explained the discrimination mechanism of
this paradigm. Thus, further research on SVI is extremely necessary.

Recently, some studies have pointed out that the spatial imagery-like perception of
motion is related to the dorsal stream that passes through the occipital, middle temporal,
and parietal lobes [23,24]. It is not clear whether there are some distinctive spatial EEG
patterns in the dorsal stream-related areas. Moreover, the feasibility of spatial feature-based
SVI discrimination has not been verified yet. Therefore, we attempt to study a spatial
feature-based discrimination strategy for SVI. Two SVI tasks, imagining objects moving
left and imagining objects moving right, are designed. An SVI experiment is conducted to
analyze the spatial features of EEG. Finally, a multi-input model containing spatial features
and a deep learning algorithm is built for EEG recognition.
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The rest of this paper is organized as follows. Section 2 introduces some work related
to this study. Section 3 shows the details of the SVI experiments. Section 4 depicts the
method for spatial feature extraction and gives the feature analysis. Section 5 presents
the discrimination model and its performance. Finally, Section 6 concludes this paper and
outlines our future work.

2. Related Work
2.1. Research on Spatial Visual Imagery (SVI) EEG

SVI is a suitable paradigm for CAD interaction where designers only need to imagine the
corresponding manipulation scenes. In recent years, several studies have shown that people
exhibit distinct patterns of brain activation when perceiving motions in different directions.
Consequently, some discriminating methods for the SVI paradigm have been proposed.

Teresa Sousa et al. studied three classes of spatial visual imagery patterns [20]. The
subjects in their experiment were asked to imagine a static dot, a dot with two opposing
motions in the vertical axis, and a dot with four opposing motions in vertical and horizontal
axes. They used the power spectral density (PSD) of six anterior electrodes as the features
and obtained a classification accuracy of 87.64%. Yuki Seto et al. conducted a VI experiment
where subjects were asked to imagine an arrow pointing in four directions (up, down, left, and
right) [25]. Fast Fourier Transform (FFT) and principal component analysis (PCA) were used
to extract features. A three-layer neural network was applied for classification. The study
achieved its best result of 55% accuracy when data from the O1 electrode were selected. Kenta
Tomonaga et al. conducted a similar experiment and used the same method to recognize
different SVI tasks [26]. Notably, a better accuracy (above 60%) was achieved when the
electrodes located in the occipital and parietal lobes were selected. K. Koizumi et al. proposed
views on SVI from a high-frequency perspective [27]. Subjects were asked to imagine the
movement of a drone in three planes (up/down, left/right, and forward/backward). Then,
the PSD features in the gamma band were extracted, and a support vector machine (SVM)
was used for classification. An accuracy of 84.6% was obtained when the prefrontal cortex
electrodes were selected. However, participants were also asked to read silently in the
experiment, which may have induced some EMG components.

Thomas Emmerling et al. applied fMRI to study the SVI paradigm [28]. Two groups
of experiments were conducted in their study. One group of subjects imagined motion
in the left, right, up, and down directions, and the other group imagined motion in the
four diagonal directions. The average classification accuracy was around 50%. Only two
subjects who imagined diagonal motion had results higher than 80%. The highest accuracy
was achieved in the V3 and V4 regions, which are located in the occipital lobe. The authors
concluded that V3 and V4 seem to be predominant areas for decoding the direction of
motion during SVI. M. Serdar Bascil et al. conducted a 1-D SVI experiment, where subjects
were required to imagine the horizontal motion of a cursor (moving left or moving right) [9].
Average signal power and power difference were applied to extract EEG features in the
alpha band (8–12.5 Hz) and beta band (13–30 Hz) from 18 electrodes across all brain regions.
Then, PCA was used to reduce the feature dimension to obtain the effective feature. Finally,
LVQ, MLNN, and PNN were used for pattern recognition. The result illustrated that the
alpha and beta power levels in the right occipital lobe were significantly higher when the
subject imagined the left motion, and vice versa. Results of only two subjects were given
in their studies. The average recognition accuracy was 93.05%. They also set a group for
a 2-D experiment, where the subjects were required to imagine the motion of a cursor in
four directions (up, down, left, and right) [29]. The PSD feature of EEG was extracted in
the 2-D experiment. Then, PCA and ICA methods were applied to reduce the dimension of
the PSD feature, and a 70-dimensional compressed feature was obtained. LS-SVM, LVQ,
MLNN, and PNN were applied for classification. The average accuracy of the 2-D task was
89.83%. However, a significant EEG pattern was not observed in the 2-D experiment. Also,
the feature extracted with PCA and ICA methods was less interpretable.
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As mentioned above, spectrum features and dimensionality reduction algorithms
have been widely applied in SVI studies. Only frequency domain information has been
investigated in the previous studies. Although the PCA algorithm can be used to obtain
more effective features, it is highly dependent on the characteristics of individual data. Thus,
PCA is prone to overfitting in the case of insufficient data, resulting in poor transferability
of the recognition model. Therefore, more effective features need to be explored. In general,
no unified conclusion has been reached in the current studies on SVI in the community of
EEG recognition.

2.2. Research on the Spatial Features of Imagery-Related EEG

As endogenous EEG paradigms, VI and MI can be collectively referred to as mental
tasks. Event-related desynchronization (ERD) phenomenon occurs on the contralateral
sensorimotor cortex [30], which has been proven to be a significant topological pattern of
MI. According to the characteristics of ERD, some studies extracted the spatial features of
MI EEG signals and achieved excellent classification [31–33]. Previous studies indicate that
SVI is related to the dorsal stream, which can be seen as a special spatial pattern. Thus,
these spatial features, which are fitting for MI classification, likely apply to SVI as well.

Common Spatial Pattern (CSP) is one of the most commonly used spatial feature
extraction methods [34]. A set of spatial filters is obtained with the diagonalization of a
matrix, which is applied to projecting the original EEG data into a common space where the
variance difference between the two classes of projected data is maximized. A Filter Bank
CSP (FBCSP) method was proposed by Kai Keng Ang et al. [35], which filters the original
EEG into several frequency bands and calculates the CSP feature of each band. Then, some
discriminative features are extracted with feature selection methods. Rongrong Fu et al.
proposed a sparse CSP method [36]. Sparse processing and iterative search models are used
in CSP to eliminate the influence of irrelevant electrodes. Neethu Robinson et al. combined
CSP with wavelet [37]. High-resolution decomposition of EEG and high-temporal location
can be realized with the Wavelet-CSP method.

Functional connectivity (FC) is another kind of effective spatial feature of EEG signals.
The phase lag index (PLI) was calculated as the functional connectivity value, and an
accuracy of 94% was obtained in the previous work [38]. Yijun Wang et al. calculated
the phase locking value (PLV) of EEG signals collected in the primary motor area (M1)
(local scale) and SMA (large scale) as functional connectivity features. They achieved a
left/right-hand imagery classification with an accuracy of 87.02% [39]. In the community of
signal processing, high coherence between two EEG signals implies high cooperation and
synchronization between underlying brain regions within a certain frequency band [40].
Coherence has been selected as the FC index in many cases of EEG recognition. Fali Li et al.
applied coherence-based FC to show the different electrode linkage patterns of various
MIs [41]. Correlations between different electrodes are also used as the FC feature. Linear
correlation has been used for MI classification [42]. However, correlation FC is prone to be
affected by the volume conduction effect [43], which may result in poor performance.

In the research community of EEG, few people used spatial features to interpret the SVI
paradigm. It remains to be verified whether the spatial features of SVI EEG are recognizable
and how to realize the pattern recognition with these features.

3. Experiment
3.1. Purpose of the Experiment

The poor naturalness of the conventional CAD interaction mode causes a high design
load, which impacts the innovative thinking of CAD users badly.

Assembly is one of the most important CAD tasks, in which the designed parts are
fitted together with manipulations like translation, rotation, and scale [44]. The scenes
of objects moving tend to appear in designers’ minds when they want to output CAD
assembly commands like translation. During this period, some visuospatial information is
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processed by the brain and may induce some special brain activities related to SVI. Thus,
some assembly commands may be obtained by recognizing SVI EEG directly.

As mentioned above, SVI may be a good solution that designers can use to intuitively
express manipulation intention. To study a suitable SVI paradigm for CAD manipulation
and verify the feasibility of single-trial discrimination, an experiment for SVI EEG collection
was conducted in this work. Considering that translation manipulation is commonly seen in
assembly tasks, a “screw assembly” operation task was set as the experiment scene, as this
task mainly includes translation work. In this way, SVI EEG induced by real-world CAD
manipulation can be obtained. In this experiment, subjects were asked to imagine a screw
moving toward a hole part in the cue direction. The assembly scene is shown in Figure 1.
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Figure 1. A screw assembly scene in the CAD environment.

3.2. Experiment Details
3.2.1. Experimental Protocol

In this experiment, a moving stimulus was used. The first reason is that the controlled
object is moving continuously when a user gives the control commands in the practical
application. The second reason is that most subjects claimed that they could obtain better
visual imaginations with moving stimuli in the preliminary experiment. The stimulus
interface is shown in Figure 2, where the screw is initially located at the central initial
position. Figure 2a is the left motion stimulus and Figure 2b is the right motion stimulus.
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Figure 2. Experiment stimulus: (a) left motion stimulus and (b) right motion stimulus.

The motion velocity of the screw was set to 100 pixels per second. Subjects were given
4500 ms for visual imaging in each trial. The distance between the screw and the object
part was adjusted to 450 pixels. Thus, the screw could just reach the object part at the end
of the stimulus.
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A schedule diagram of the experiment is shown in Figure 3. At the beginning of
each trial, a calibration interface with a central cross appears for 1000 ms. The subjects
are required to focus on the center position. Then, a semantic cue appears for 1000 ms to
indicate the motion direction of the screw in the trial. The stimulus duration is 4500 ms.
The subjects are supposed to execute SVI tasks with their eyes fixed at the center of the
screen. To eliminate artifact influence, the subjects are not allowed to move their bodies
when they are imagining. The left task and right task are given randomly. At the end of
each trial, a blank interface appears for 2000 ms, allowing the subjects to rest their eyes.
One trial of the experiment lasts for 7500 ms. Eight rounds of experiments are conducted
for each subject. Each round contains 20 trials, including ten left and ten right motion
imagination tasks. A total of 160 samples, comprising 80 right SVI tasks and 80 left SVI
tasks, are collected.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 23 
 

 

  
(a) (b) 

Figure 2. Experiment stimulus: (a) left motion stimulus and (b) right motion stimulus. 

The motion velocity of the screw was set to 100 pixels per second. Subjects were given 
4500 ms for visual imaging in each trial. The distance between the screw and the object 
part was adjusted to 450 pixels. Thus, the screw could just reach the object part at the end 
of the stimulus.  

A schedule diagram of the experiment is shown in Figure 3. At the beginning of each 
trial, a calibration interface with a central cross appears for 1000 ms. The subjects are re-
quired to focus on the center position. Then, a semantic cue appears for 1000 ms to indicate 
the motion direction of the screw in the trial. The stimulus duration is 4500 ms. The sub-
jects are supposed to execute SVI tasks with their eyes fixed at the center of the screen. To 
eliminate artifact influence, the subjects are not allowed to move their bodies when they 
are imagining. The left task and right task are given randomly. At the end of each trial, a 
blank interface appears for 2000 ms, allowing the subjects to rest their eyes. One trial of 
the experiment lasts for 7500 ms. Eight rounds of experiments are conducted for each sub-
ject. Each round contains 20 trials, including ten left and ten right motion imagination 
tasks. A total of 160 samples, comprising 80 right SVI tasks and 80 left SVI tasks, are col-
lected. 

1000ms 1000ms 4500ms
Time / (ms)

left . . .

2000ms 1000ms

Focus on 
the center

Direction
cue

Execution 
of SVI

Calm down 
and rest

Calibration Cue Task stimulus Blank for rest A new trial

 
Figure 3. Schedule diagram of the experiment. 

3.2.2. Implementation of the Experiment 
The experiment paradigm procedure was implemented with E-Prime in this work. 

The stimuli interface was made with Psychtoolbox 3.0. A cube screen with a resolution of 

Figure 3. Schedule diagram of the experiment.

3.2.2. Implementation of the Experiment

The experiment paradigm procedure was implemented with E-Prime in this work.
The stimuli interface was made with Psychtoolbox 3.0. A cube screen with a resolution of
1280 × 1024 was used to present the paradigm to the subjects. For the acquisition module,
a 64-electrodes Neuroscan electroencephalograph (including a pair of mastoid reference
electrodes) and a Synamps2 amplifier (Compumedics Neuroscan, Charlotte, NC, USA)
were used to collect the EEG signals.

The EEG signals were converted into digital signals and stored in a computer with
CURRY 8 software. In this work, the sampling rate was set to 500 Hz. The left and
right mastoid electrodes were selected as the reference electrodes. The vertical EOG and
horizontal EOG were monitored to eliminate the artifacts caused by eye movements. To
slice the data epoch, special marks were set for the stimuli and stored with the EEG signals
together. E-prime was able to send the TTL marks to CURRY 8 via a parallel interface line
when stimuli were presented.

3.2.3. Subjects and Environment

Referring to the subject number in the previous studies [45,46], ten subjects, including
7 males and 3 females, participated in this experiment. They ranged in age from 21 to 26.
All subjects were mentally healthy and had normal vision or corrected-to-normal vision.
They filled out a Vividness of Visual Imagery Questionnaire (VVIQ) [47] before formal
experiments to evaluate the clearness of the imagination they could achieve. Considering
all subjects are Chinese, the VVIQ was translated into Chinese correctly. The VVIQ scores
are given in Table 1. The full score of the VVIQ is 80. Here, all the subjects scored above
48 (past 60%), which indicated that they were able to imagine a scene relatively clearly.
Additionally, all subjects were asked to write down what kinds of SVI they had executed
actually in the experiment, and the details of their imaginations are shown in Table 2. It is
normal for different subjects to have different strategies.
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Table 1. VVIQ scores of ten subjects.

ID 1 2 3 4 5 6 7 8 9 10

Score 58 72 66 70 59 68 54 58 70 56

Table 2. Imagination strategies of different subjects.

ID Strategy

1 Imagine the movement of the screw itself
2 Imagine the movement of the screw itself
3 Imagine big arrows following the screw
4 Imagine the movement of the screw itself
5 Imagine the movement of the screw itself
6 Imagine an extending strap following the screw
7 Imagine the movement of the screw itself
8 Imagine a series of arrows following the screw
9 Imagine the movement of the screw itself
10 Imagine the movement of the screw itself

Before starting the experiment, each subject completed a practice task to ensure that
they could achieve a clear imagination.

3.2.4. Data Acquisition and Preprocessing

Original EEG signals were collected with the amplifier and then converted into digital
data. Data and mark numbers were received and stored simultaneously.

The original data were re-referred with CURRY 8 first. Here, the left and right mastoid
electrodes were selected as the reference. To eliminate the EOG, EMG, and other artifacts,
ICA was used to make blind signal separation with EEGLAB [48] and EEG was divided
into several independent components. Then, these significant artifact components were
removed. With the assistance of mark reference, the data epochs were obtained by slicing
the EEG with a 4500 ms time window. Thus, each epoch contained 2250 data frames.

4. Feature Extraction of SVI

EEG data were collected in the experiment and required further processing to realize
recognition. The procedure of EEG recognition is shown in the left part of Figure 4.
Particularly, feature extraction is an essential session because effective EEG features can not
only enhance the performance of the classification model but also reveal some significant
patterns associated with the corresponding brain activities. The right part of Figure 4 shows
the procedure of feature extraction. Firstly, the selection of features is determined based on
three aspects. Drawing on previous knowledge, it is necessary to determine which feature
domains, frequency bands, and brain regions are used to extract features. Secondly, the
extracted features are analyzed with statistical methods to verify their significance. Finally,
these features are used to build a classification model.
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4.1. Spatial Feature Extraction for SVI
4.1.1. A Conduction Pathway-Based Hypothesis for Feature Extraction

In the research community of visual cortices, two typical conduction theories called
“ventral pathway (VP)” and “dorsal pathway (DP)” have been proposed. Both VP and DP
originate in the occipital lobes to obtain visual information. But these two paths terminate
in different regions, determining their different functions. VP terminates in the temporal
lobe, while DP terminates in the parietal lobe. Previous studies indicate that VP is mainly
relative to object recognition [49], color perception [50], and so on. DP is mainly activated
in cases like spatial information processing [51], direction perception [52], and so on.

DP originates in the early visual cortex V1/V2. Then, it arrives at motion area V5/MT,
which is located at the intersection of the occipital lobe, parietal lobe, and temporal lobe.
The V5/MT area is mainly responsible for processing complex visual motion stimuli.
Finally, DP terminates in the inferior parietal area, which participates selectively in the
processing of visuospatial information [51].

In the SVI task, subjects were asked to imagine a screw moving in a fixed direction
and try to project this virtual scene on the screen. Previous work has pointed out that some
regions like MT of DP are extremely associated with the sense of direction. In the SVI task
of this work, subjects perceived the direction of motion (left and right). Therefore, the lobes
located at DP may be recruited in SVI tasks. Although the vision pathway mechanism has
been shown in many studies, it remains unclear whether the EEG features extracted in the
visuospatial perception regions in two SVI tasks are considerably different and whether
these features can be used for EEG discrimination. Therefore, a hypothesis that there may
be some evident differences between the EEG features in the DP area in different SVI tasks
is proposed in this work.

Among these regions related to DP, V5/MT and the parietal lobe with visuospatial
information processing abilities may be crucial parts of SVI EEG processing. Because DP
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involves the cooperation of several brain regions, it is necessary to investigate the rela-
tionship of EEG collected with different electrodes. Particularly, spatial EEG features are
mostly used to represent EEG relationships between different regions. Among the existing
spatial features, CSP is a method used to enhance the difference in multi-electrode data
distribution between two classes by mapping data with a matrix called a CSP filter. Func-
tional connectivity values like cross-correlation and coherence can indicate the relationship
between different electrodes. Therefore, CSP, cross-correlation, and coherence are selected
to verify our hypothesis with feature analysis.

Furthermore, it is necessary to discard redundant data before feature extraction. Con-
sidering that SVI-related EEG mainly exists in the occipital and parietal lobes, data from
these two positions were selected as the input of feature extraction. Twenty-eight electrodes
including TP7, TP8, CP1–CP6, CPZ, P1–P8, PZ, PO3–PO8, POz, O1, O2, and Oz were
selected for feature extraction. To find the band of interest, the original EEG was filtered
into δ (0.75–4.5 Hz), θ (4–8 Hz), α (8–12.5 Hz), and β (12–28 Hz) and processed with the
proposed method, respectively. An FIR digital band-pass filter with a bandwidth of 3 dB
was applied for filtering. Previous research indicated that visual imagery may be related
to the alpha band EEG [53,54], so EEG signals in the alpha band were selected for data
analysis of our work.

4.1.2. CSP Features of SVI

CSP is a data-driven EEG feature extraction method that can be divided into two
parts. The first part is training the CSP filter with EEG data from different SVI tasks. In
this part, covariance matrices of the different classes of EEG are calculated first. Then,
these covariance matrices are joint diagonalized and whitened to obtain a mapping matrix,
commonly referred to as a CSP filter or spatial filter. In the second part, different classes
of EEG signals are projected into a common space where the sum of the eigenvalues of
different classes of projected EEG is 1. Thus, the variance difference in the projected data is
enhanced. The application condition of CSP is that the distribution of EEG signals collected
from several electrodes should be significantly different in various imagination tasks, which
implies that the EEG topographic patterns are supposed to be distinctive in different tasks.

The calculation process of the CSP filter is referred to in this work. The CSP features
are calculated with the following formulas.

Z1 = WE1 (1)

Z2 = WE2 (2)

f1 = log(1 + var(Z1)) (3)

f2 = log(1 + var(Z2)) (4)

where E1 and E2 denote two EEG signals of different electrodes. W is the CSP filter. Here,
the original trained CSP filter is in the shape of 28 × 28 because 28 electrodes are selected.
According to the previous work, CSP features obtained with the first few lines and the last
few lines of CSP filters are distinctive [55], and the number of selected CSP filters typically
ranges from 2~6 [56]. Thus, only the first three rows and the last three rows are selected in
this work after offline testing, as these six filters showed the best performance. Therefore,
the final shape of W is 6 × 28. Z1 and Z2 are projected data in the common space. Finally,
the variances of Z1 and Z2 are calculated and converted into CSP features logarithmically
(f 1 and f 2).

4.1.3. Cross-Correlation (CC)-Based FC Features of SVI

During the visual imagination process, EEG signals are always induced and trans-
ported to other related regions, which form a specific signal stream in the brain. Thus, there
may be some time lags between the EEG signals of various electrodes. Cross-correlation
is a frequently used method in the temporal analysis of two potentially related signals,
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which gives a function for time lag and relational degree. When the EEG stream goes
through two electrodes sequentially, the signals of these two electrodes may exhibit strong
cross-correlation. Considering that conductive patterns may vary in different SVI tasks,
cross-correlation is applied in this work. To build an FC network, the peak value of the func-
tion is selected as the connectivity value [57]. The scope of the time lag is set to 4 s, which
is high enough to observe the conductive relation of every electrode couple. The formula is
given as follows, where x(t) and y(t) are two signals and fc is the connectivity value.

f c = max(
∫ +∞

−∞
x(t)y(t + τ)dt),τ ∈ [−4, 4] (5)

4.1.4. Coherence-Based FC Features of SVI

The coherence value of each pair of selected channels is calculated with Formula (6).
Then, a brain network is constructed with the coherence connectivity. The phase lag can
be evaluated with coherence. A high coherence indicates that the phase lag between two
signals is relatively constant and the connection between these two signals is relatively
strong. Thus, the coherence value is an effective index to investigate the phase correlation
of SVI EEG signals.

Cxy( f ) =

∣∣Pxy( f )
∣∣2

Pxx( f )Pyy( f )
(6)

where x(t) and y(t) denote the EEG signals of two different channels. Pxy(f ) is the cross-
spectral density of x(t) and y(t) at frequency f. Pxx(f ) and Pyy(f ) are the auto-spectral
densities of x(t) and y(t). Cxy(f ) is the coherence result of x(t) and y(t) at frequency f.
Coherence values of 8, 9, 10, 11, and 12 Hz are calculated, respectively, and then their
average value is selected as the final connectivity index. Finally, a 28 × 28 coherence matrix
is obtained.

4.2. Analysis of Spatial Features for SVI

Three spatial features including CSP features, coherence FC, and cross-correlation
FC, are used in this work. The analysis is combined with conduction pathway theory to
determine if these features have significant differences in various SVI cases.

4.2.1. Analysis of CSP Features

One CSP feature consists of six feature values in this work. A t-test (α = 0.05) is used
to analyze if these feature values are significantly different between the two tasks. The
result is shown in Table 3. Sixty values were tested, and forty-four (73.3%) of them are
significantly different between the two tasks.

As introduced in Section 4.1.2, a spatial filter is obtained in the process of CSP feature
extraction. This spatial filter consists of a group of weight vectors. The dimension of these
vectors matches the number of electrodes. Here, the active degree of each electrode could
be represented by the corresponding weight in the vector [58]. Some researchers selected
channels of interest according to the weights [59,60]. CSP features obtained with the first
vector and the last vector are usually the most distinctive [55]. Thus, the topological graphs
of the first and the last weight vectors are selected to analyze the SVI EEG pattern, which is
shown in Figure 5. The deep red part and deep blue part denote high positive and negative
values of weights. The green part denotes weight, which is close to zero. For each subject,
the left maps show the electrodes of interest in the left motion imagination task, and vice
versa. Additionally, the topological graphs of 60 electrodes are also given as a contrast to
eliminate the influence of electrodes in other regions.
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Table 3. The t-test result of CSP features.

ID f1 f2 f3 f4 f5 f6

1 p = 2.6 × 10−8

h = 1
p = 5.5 × 10−1

h = 0
p = 7.0 × 10−1

h = 0
p = 1.8 × 10−1

h = 0
p = 3.5 × 10−5

h = 1
p = 3.4 × 10−12

h = 1

2 p = 8.4 × 10−12

h = 1
p = 1.4 × 10−3

h = 1
p = 4.0 × 10−2

h = 1
p = 5.8 × 10−4

h = 1
p = 8.6 × 10−4

h = 1
p = 9.2 × 10−6

h = 1

3 p = 1.6 × 10−1

h = 0
p = 2.5 × 10−3

h = 1
p = 2.5 × 10−3

h = 1
p = 9.6 × 10−2

h = 0
p = 2.1 × 10−3

h = 1
p = 5.2 × 10−4

h = 1

4 p = 2.3 × 10−4

h = 1
p = 2.9 × 10−2

h = 1
p = 1.7 × 10−2

h = 1
p = 6.5 × 10−1

h = 0
p = 1.7 × 10−1

h = 0
p = 1.2 × 10−5

h = 1

5 p = 1.3 × 10−4

h = 1
p = 4.3 × 10−6

h = 1
p = 1.4 × 10−1

h = 0
p = 5.3 × 10−1

h = 0
p = 1.8 × 10−3

h = 1
p = 2.3 × 10−4

h = 1

6 p = 2.0 × 10−5

h = 1
p = 9.8 × 10−5

h = 1
p = 5.2 × 10−1

h = 0
p = 1.8 × 10−1

h = 0
p = 9.4 × 10−3

h = 1
p = 1.3 × 10−5

h = 1

7 p = 4.9 × 10−4

h = 1
p = 6.2 × 10−6

h = 1
p = 3.8 × 10−2

h = 1
p = 3.7 × 10−2

h = 1
p = 5.5 × 10−3

h = 1
p = 1.7 × 10−2

h = 1

8 p = 4.4 × 10−3

h = 1
p = 1.1 × 10−1

h = 0
p = 1.5 × 10−3

h = 1
p = 4.5 × 10−2

h = 1
p = 1.9 × 10−1

h = 0
p = 8.0 × 10−8

h = 1

9 p = 1.3 × 10−6

h = 1
p = 4.5 × 10−3

h = 1
p = 3.4 × 10−1

h = 0
p = 9.3 × 10−1

h = 0
p = 3.1 × 10−4

h = 1
p = 1.1 × 10−5

h = 1

10 p = 5.1 × 10−4

h = 1
p = 9.9 × 10−2

h = 0
p = 1.5 × 10−1

h = 0
p = 7.1 × 10−1

h = 0
p = 4.5 × 10−4

h = 1
p = 9.5 × 10−4

h = 1
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Figure 5. Topological maps of CSP filters.

There is little difference between the CSP weight distribution in the 28-electrode
map and the 60-electrode map. High weights (points in deep red or deep blue) appear
in the occipital lobe and parietal lobe for almost all subjects. However, these regions of
interest vary with subjects, and no certain electrode of interest is obtained according to
the distribution of CSP weights. But it is evident that most high weights appear in the
intersection of the occipital lobe, parietal lobe, and temporal lobe (PO5, PO6, PO7, PO8,
P7, and P8 electrodes), and the parietal lobe (PZ, P1, P2, P3, P4, CPZ, CP1, CP2, CP3, and
CP4). This intersection corresponds to the V5/MT region [61]. Thus, it is shown that some
special EEG patterns may exist in the visuospatial pathway regions.
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4.2.2. Analysis of Cross-Correlation Features

A t-test was applied to observe the difference in cross-correlation features between the
two SVI cases. Firstly, the t-test results (h = 1 or 0) of each pair of electrodes were determined.
Then, only those with significant connectivity edges were retained (h = 1, p < 0.01). Here, the
remaining edges were defined as significant edges. Significant differences were observed
in the cross-correlation networks of eight subjects. The topographical maps of edges with
significant differences are shown in Figure 6, where only significant edges are shown. To
evaluate which area is the most distinctive in these two SVI tasks, the significant node
degree of each electrode was obtained by calculating the number of significant edges of
each electrode.
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Figure 6. Topographical maps of significant cross-correlation edges.

According to Figures 6 and 7, the significant edges mainly involve the linkage of PO8
and parietal lobes except for subject 4, subject 5, and subject 10. The right middle temporal
lobe (V5/MT in the right hemisphere) is covered by the PO8 electrode, which indicates that
cross-correlation features between the visual motion area and parietal lobes are significantly
different in the two tasks. This result, to some extent, verifies our hypothesis.

To show the difference in cross-correlation features obtained in the region of interest
between the two tasks, the summation of significant edge values between PO8 and parietal
electrodes including (PZ, P1-P6, CPZ, and CP1–CP6) was conducted. Before analyzing
the edges with a t-test, the edge values were normalized to [0, 1] using the min–max
normalization method. Then, the insignificant edges were discarded with a t-test. Finally,
the summation of significant edges between PO8 and the parietal lobe was obtained.
The summation values of subjects vary due to different numbers of significant edges for
different individuals.

According to Figure 8, the summation of the PO8-parietal cross-correlation connectiv-
ity values is higher in the left SVI case for subjects 1, 2, 6, and 9. However, the opposite
results are obtained for subject 3. The result implies that the cross-correlation feature has
great classification potential for left/right SVI.
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4.2.3. Analysis of Coherence Features

The topographic maps of coherence FC and the t-test results are shown in Figure 9.
The topographic maps with a green edge (h-edge) present connectivity values that are
significantly different in the two SVI tasks (h = 1, p < 0.01). The other two topographic
maps present the coherence values of signals in two cases. A deep red edge indicates a high
positive connectivity value and a deep blue edge indicates a high negative connectivity
value. Here, only the edges with significant differences between the two tasks are retained.
Effective coherence features of five subjects are obtained in this work.

According to the h-edge maps, most linkages between the lateral occipital lobes and
parietal lobes are significantly different. However, no uniform result is obtained because
the coherence distributions of different individuals vary. For subjects 2, 6, and 9, their
coherence connectivity values of the right lateral occipital lobes (P8, PO8) and parietal lobes
(CPZ, CP1, CP2, CP3, CP4) are stronger in the left SVI task. The connectivity values of
the left lateral occipital lobes (PO7) and parietal lobes are stronger in the right SVI task.
However, the opposite results are observed for subject 3 and subject 5.

Previous studies have pointed out that the MT/V5 area provides the strongest sensory
signal in response to changes in the direction of translational motion, and the right inferior
parietal lobe (rIPL) may be involved in the processing of signals related to orienting of
attention [62]. It was found that the right V5/MT (middle temporal) area and the rIPL were
activated when a subject perceived the left hemifield stimulation. For the right hemifield
stimulation, the left V5/MT area and the rIPL were activated. Our statistical result indicates
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that different coherence distributions exist in the dorsal pathway area. Although previous
work and our work have no direct relationship, both indicate that electrophysiological
properties are different in the dorsal pathway area when people perceive different direction
information. Using the coherence feature collected from visual motion-related lobes and
parietal lobes, it is feasible to discriminate the intention of some subjects, which also
supports our hypothesis.
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5. Spatial Feature-Based Discrimination Model for SVI
5.1. Structure of Discrimination Model

In this work, three spatial features of SVI EEG are tested, and a neural network-
based single-trial discrimination model is proposed. Considering these three features have
different structures, a multi-feature fusion model (MFFM) is designed to satisfy the multiple
feature inputs.

The model training process and model testing process are shown in Figure 10. The
training process is shown in the upper part and the testing process is shown in the lower
part. The coherence features and cross-correlation features are calculated directly with
the processed data. When calculating CSP features, a CSP filter is trained first with the
training data. Then, the CSP features for training and testing are extracted with the CSP
filter. Finally, a neural network for SVI discrimination is trained with the extracted features
in the training process and evaluated in the testing process. This model uses the original
EEG data as input and decodes the users’ SVI intention (imagine motion in left or right).
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5.2. Selective Kernel Network (SKN)-Based SVI Discrimination Model

One key issue for single-trial discrimination in this study is the heterogeneity in the
multi-feature inputs. As mentioned in Section 4.1, the shape of the functional connectivity
features is 28 × 28, and the CSP feature is a 1-D feature with the shape of 1 × 6. It is not
reasonable to combine these features directly. Therefore, it is necessary to adjust the dimen-
sions of features without losing useful information. A neural network (NN) is an effective
model for multi-heterogenous inputs. Useful information can be extracted with convo-
lution operation from high-dimensional features. Dimension reduction can be achieved
with the forward propagation mechanism. When processed with networks, heterogeneous
features are transformed into some abstract features with reduced heterogeneity. Therefore,
a convolutional neural network with parallel inputs is built to realize proper feature fusion.

Another problem is that effective edge features of functional connectivity maps are
difficult to detect because they are small and discrete in FC maps. In the CNN model,
different information can be obtained with kernels of different sizes. Considering the
complicated distribution of edges in FC maps, it is necessary to capture more information
under multiple receptive fields to obtain affluent features to improve classification accuracy.
Furthermore, the weights of multi-scale features are adaptively adjusted to strengthen
the effective features and diminish the redundant ones. The selective kernel network
(SKN) is a novel multi-scale attention mechanism that can be used to learn the adaptive
weights for convolutional layers with different kernels [63]. In this work, the SKN module
is embedded in the CNN structure with multiple inputs to obtain multi-scale features and
assign adaptive weights to these features. The structure of the MFFM is shown in Figure 11.

Three features including coherence, cross-correlation, and CSP are the inputs of the
model. This model outputs the intention of imagination (motion in left/right) ultimately.
There are three modules in this structure, including the SKN module for coherence features,
the SKN module for cross-correlation features, and a feature fusion module. In the first
module, a 32 × 5 × 5 kernel set and a 32 × 7 × 7 kernel set are selected to capture the
edge information on the coherence feature map. Then, two sets of features in the first
layer are fed into the weight training module to obtain the adaptive weights for each
kernel. Two group features are weighted by multiplying them with the weights in the
channel dimension. Finally, these two feature sets are added, and the accumulated feature
is processed with an 8 × 5 × 5 kernel set. The SKN structure for cross-correlation features is
the same as that of the coherence features. All processed 2-D deep features are expanded in
the Full-Connect (FC) layer. However, it is still unreasonable to make a feature combination
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directly due to the huge difference between the dimension of the CSP feature and that of
the expanded FC feature. Therefore, the dimension of expanded FC features extracted
with the CNN is reduced using several dense layers. Three dense layers are applied in the
model. The numbers of neurons in the three layers are 1024, 256, and 8, respectively. A
hidden layer with eight elements is applied for the CSP features. In the fusion module,
three deep features are concatenated directly. Then, a hidden layer with eight neurons and
a softmax layer with two neurons are set to obtain the final result.
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The expanded structure of SKN is shown in Figure 12. Here, matrix E with the shape
of 28 × 28 denotes the FC input (coherence map or cross-correlation map). Then, the K1
(32 × 5 × 5) and K2 (32 × 7 × 7) kernel sets are applied in the convolutional layer to obtain
the C1 and C2 feature sets. Then, C1 and C2 are added using an element-wise summation to
obtain the mixing feature set (32 × 28 × 28).

C = C1 + C2 (7)

Then, a global average pooling layer is used to obtain a 1 × 32 vector s, which contains
the channel information of the mixed feature. Vector s is calculated with Formula (8). Here,
both H and W are 28, which denotes the spatial dimension of the feature in each channel.

s = Fgp(C) =

H
∑

j=1

W
∑

i=1
C(i, j)

H × W
(8)

Then, s is converted to z with Formula (9), where W denotes a mapping matrix with
the shape of 32 × 32, β denotes the batch normalization, and δ denotes the ReLU function.
The dimension of z is selected as 32, referring to the previous work.

z = Ff c(s) = δ(β(Ws)) (9)

z is multiplied with mapping matrix M1 and M2 and then converted into two weight
vectors W1

′ and W2
′. The dimensions of W1

′ and W2
′ are the same as the number of feature

channels. Then, a softmax mechanism is applied on W1
′ and W2

′ to obtain the ultimate weight
vectors W1 and W2. Here, w1c and w2c denote the c-th element of W1 and W2, and m1c and
m2c denote the c-th vector of M1 and M2. The softmax layer is shown in Formula (10).
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w2c =
em2cz

em1cz + em2cz (10)

w1c + w2c = 1 (11)
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5.3. Data Processing

In this work, data sets of 10 subjects are available. Each data set consists of the left SVI
EEG and the right SVI EEG. The training set accounts for 75%, and the testing set accounts
for 25%. A four-fold cross-validation was used to evaluate the discrimination performance
of spatial features of SVI EEG.

The parameters of the model implementation are shown in Table 4. Here, two dropout
layers are set at the fully connected layers to prevent overfitting. Feature extraction was
implemented with Matlab2020. Model training and testing were implemented with the
Keras toolkit in Python 3.7.

Table 4. Parameters of model implementation.

Parameter Value

Ratio of training set to testing set 3:1
Optimizer Adam

Loss function Binary crossentropy
Learning rate 5 × 10−4

Dropout value 0.2
Training epochs 400

The purpose of this study is to prove whether the spatial features of SVI EEG are
distinctive and construct a feasible SVI discrimination model to realize good classification.
The multi-feature fusion model (MFFM) was trained with the three features mentioned in
Section 4.1. To evaluate the performance of a single spatial feature, the single-input model
was also tested in this work. In particular, an SVM classifier was selected for single CSP
features due to their low dimensionality. In addition to the spatial features, some other
features were also tested as a comparison. The “Original data (OD)+CNN” method is used
to make a comparison between the spatial features and original data. The original data
filtered in the alpha band were used as the input of the “Original data (OD)+CNN” method.
“PSD+SVM” and “HHT Marginal Spectrum (HHTMS)+SVM” were tested to compare the
spatial features with frequency energy features. All the energy features were extracted with
data in the alpha band.
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5.4. Discrimination Performance

The classification results of the different methods are shown in Table 5. The best
accuracy of each subject is in bold. No good classification accuracy was obtained when
the original data or the frequency energy features were taken as the inputs. The t-test was
conducted to evaluate whether the classification results of the spatial input methods and the
other methods are significantly different. The t-test result is given in Table 6. Here, only the
difference between the result of “OD+CNN” and “Coherence+SKN” is not significant due
to the invalid coherence features of some subjects. In general, the accuracy is significantly
higher when the spatial features are used for classification. The best accuracy of each
subject is obtained with spatial inputs. The best accuracy in this experiment reaches 0.93.
As a result, it is found that the spatial information of SVI EEG is identifiable and more
effective for single-trial discrimination compared with the original data and conventional
frequency features.

Table 5. Classification accuracy of different methods.

ID OD+
CNN

PSD+
SVM

HHTMS+
SVM

CSP+
SVM

Cross-
Correlation+

SKN

Coherence+
SKN

Three
Inputs+
MFFM

1 0.70 0.68 0.52 0.85 0.84 0.75 0.87
2 0.75 0.72 0.62 0.87 0.87 0.84 0.93
3 0.76 0.68 0.65 0.75 0.78 0.84 0.86
4 0.68 0.73 0.66 0.87 0.74 0.65 0.75
5 0.60 0.70 0.65 0.76 0.75 0.78 0.83
6 0.70 0.70 0.68 0.81 0.82 0.88 0.92
7 0.72 0.67 0.66 0.79 0.72 0.59 0.63
8 0.68 0.61 0.60 0.82 0.71 0.66 0.73
9 0.80 0.69 0.62 0.84 0.83 0.83 0.88

10 0.63 0.55 0.58 0.80 0.78 0.68 0.76
Average 0.70 0.67 0.62 0.82 0.78 0.75 0.82

Table 6. p-values of the t-test of different methods (α = 0.05).

Method CSP+
SVM

Cross-Correlation+
SKN

Coherence+
SKN

Multi-Input+
MFFM

OD+CNN 1.08 × 10−4 1.30 × 10−3 0.17 4.90 × 10−3

PSD+SVM 3.57 × 10−6 2.13 × 10−5 3.93 × 10−2 6.45 × 10−4

HHTMS+SVM 2.00 × 10−8 3.14 × 10−8 1.90 × 10−3 2.20 × 10−5

Although good classification accuracy is obtained with spatial SVI features, the multi-
input results and single coherence input results of subjects 4, 7, 8, and 10 are not ideal. The
correlation value of “Coherence+SKN” accuracy and “Three-input+MFFM” accuracy is
0.95, which means that the poor accuracy of multi-inputs may be mainly caused by the
invalid coherence features.

To evaluate the performance of the classifiers, five metrics including accuracy, area
under the curve (AUC), precision, recall rate, and the F-measure value are calculated, and
the results are shown in Table 7. Here, the classifiers of the best-performing methods are
used to calculate the metrics. These classifiers perform well, and all of the average metrics
are above 80%, which proves that the discrimination models used in this study are feasible
in SVI tasks.

Overall, a good result is obtained by combining these spatial features and the proposed
classification model. Compared with conventional frequency features like OD, PSD, and
HHTMS, spatial features show good performance and robustness in the single-trial test.
This can be attributed to the fact that a subject’s EEG frequency energy (similar to PSD) does
not have a significant difference under different SVI tasks. Thus, the classification result is
not ideal when using frequency features. According to Section 4.2, most subjects can obtain
stable spatial feature patterns. The spatial patterns in the same data set are consistent. For
an individual, these spatial patterns are significantly different between classes and change
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little within classes. This is why spatial features perform well and robustly in the single
trial test. However, according to the analysis of features, not all the subjects obtained good
spatial features, and no uniform spatial pattern was obtained among all subjects. This
means that every time a new user uses SVI, feature calibration is needed, which causes
poor transferring performance of the system.

Concerning the proposed MFFM, this model integrates three spatial features reasonably
with a deep learning structure. According to Table 7, MFFM performs better than single-
feature-based classification (CSP+SVM), as the complementary property of three features is
fully utilized by fusion. However, the deep learning model is prone to overfitting problems
because of its large parameter structure. Once the covariance in the feature is high or there are
not enough samples, MFFM may perform even worse than the simple classifier.

Table 7. Evaluation metrics of the classifiers with the best performance.

ID Method Accuracy AUC Precision Recall F-Measure

1 MFFM 0.87 0.87 0.85 0.85 0.85
2 MFFM 0.93 0.93 0.91 0.91 0.91
3 MFFM 0.86 0.84 0.83 0.83 0.83
4 CSP+SVM 0.87 0.86 0.85 0.85 0.85
5 MFFM 0.83 0.83 0.82 0.82 0.82
6 MFFM 0.92 0.92 0.90 0.90 0.90
7 CSP+SVM 0.79 0.79 0.78 0.78 0.78
8 CSP+SVM 0.82 0.80 0.81 0.81 0.80
9 MFFM 0.88 0.88 0.87 0.87 0.87

10 CSP+SVM 0.80 0.79 0.78 0.78 0.78
Average -- 0.86 0.85 0.84 0.84 0.84

6. Conclusions

In this work, we studied an SVI-based EEG discrimination method for CAD ma-
nipulations. This paradigm can be used to realize 1-D translation manipulation, which
allows designers to send their commands to the CAD manipulation system mentally and
intuitively. A screw assembly experiment was conducted, and three types of spatial fea-
tures including CSP features, cross-correlation peak-based FC, and coherence-based FC
were analyzed. The statistical results verified our hypothesis that features extracted in
the visuospatial perception area can be different in various SVI cases. Finally, feasible
classification models were built for these EEG features. The method proposed provides
theoretical support for discriminating the intention of CAD object translation with good
classification performance.

The EEG-based interaction mode proposed in this work can be used to output designers’
intention of a single translation in the CAD environment. In this way, we could build a direct
“end to end” interaction between CAD and the brain to overcome the redundant operations
of other models and make designers express intentions more intuitively. Moreover, the SVI
paradigm is more intuitional and natural than convenient BCI paradigms, and we verified the
feasibility of spatial features and built a classification model that performs well. Thus, our
findings provided some theoretical support for subsequent research on BCI improvement.

However, some limitations still exist in our work. Firstly, the sample size of subjects
in the experiment is relatively small. Although this data size is enough to support our
findings, we need to recruit more subjects (especially females) and collect more data sets to
make our model more robust. Secondly, EEG is a non-stationary signal, which varies from
individual to individual. In addition to increasing the number of subjects, we also need to
explore more features in the future as a supplement to improve the discrimination results.

In the future, we will build an online system based on the findings of this work and
evaluate its performance. To put our findings into real-world CAD applications, our next
challenge is to develop an asynchronous BCI [64] into which our feature extraction methods
and the trained model are embedded. We also want to connect the online BCI system to
CAD with a high ITR (Information Translate Rate). Moreover, as an important factor in
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interaction, the user experience cannot be ignored. We will record some indicators like
blood oxygenation and task complement time to evaluate the long-term usability of the
practical application. Furthermore, only the SVI of translation manipulation is studied
in this work, while real-world CAD requires more commands. Thus, some other CAD
manipulation functions like rotation and zooming are expected to be realized with EEG
recognition in our future work.
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