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Abstract: In order to improve the accuracy and convergence speed of the steering law under the
conditions of high dynamics, high bandwidth, and a small deflection angle, and in an effort to improve
attitude measurement and control accuracy of the spacecraft, a spacecraft attitude measurement
and control method based on variable speed magnetically suspended control sensitive gyroscopes
(VSMSCSGs) and the fractional-order zeroing neural network (FO-ZNN) steering law is proposed.
First, a VSMSCSG configuration is designed to realize attitude measurement and control integration
in which the VSMSCSGs are employed as both actuators and attitude-rate sensors. Second, a novel
adaptive steering law using FO-ZNN is designed. The matrix pseudoinverses are replaced by FO-
ZNN outputs, which solves the problem of accuracy degradation in the traditional pseudoinverse
steering laws due to the complexity of matrix pseudoinverse operations under high dynamics
conditions. In addition, the convergence and robustness of the FO-ZNN are proven. The results
show that the proposed FO-ZNN converges faster than the traditional zeroing neural network under
external disturbances. Finally, a new weighting function containing rotor deflection angles is added
to the steering law to ensure that the saturation of the rotor deflection angles can be avoided. Semi-
physical simulation results demonstrate the correctness and superiority of the proposed method.

Keywords: variable speed magnetically suspended control sensitive gyroscope; fractional-order
zeroing neural network; steering law; spacecraft attitude measurement and control integration

1. Introduction

Spacecraft attitude maneuvering and measurement are affected by micro-vibrations in
space, and vibration suppression becomes more difficult when the bandwidth of vibration
is high [1,2]. A VSMSCSG [3] is a novel inertial device for spacecraft attitude control and
measurement. The rotor of the VSMSCSG is driven by a Lorentz force magnetic bearing
(LFMB) [4], enabling the VSMSCSG to simultaneously measure and control spacecraft atti-
tude in a suitable configuration. The rotor has a two-degree-of-freedom (DOF) micro-gimbal
moment output capability; the bandwidth of the moment can be up to 100 Hz, which has
great advantages in terms of spacecraft micro-vibration suppression. In addition, the VSM-
SCSG has a two-degree-of-freedom attitude measurement capability. In order to coordinate
the control of each VSMSCSG in a given configuration so that the configuration outputs the
desired moment for attitude control, it is necessary to design a high-performance steering
law for the VSMSCSG configuration under high bandwidth conditions.

Li [5] proposed an integrated method of spacecraft attitude measurement and control
using a VSMSCSG configuration; however, since this configuration contained only four
VSMSCSGs, the attitude measurement accuracy was limited, and the computation was
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complex. In addition, the study did not involve the design of the steering laws, which
affects the accuracy of the obtained attitude control.

Existing steering laws can be categorized into frame angle steering laws, frame an-
gular velocity steering laws, and frame angular acceleration steering laws. The frame
angular velocity steering laws are the most intensively studied, such as the Penrose–Moore
pseudoinverse steering laws [6,7], the pseudoinverse steering law with zero motion [8], the
gradient-type steering law [9], and the singular robust inverse steering law [10].

Xia [11] presented a steering law for a pyramidal single gimbal control moment gyro
system for spacecraft attitude control. Wang [12] proposed a new strategy for solving the
singularity problem, which reveals the structural properties in terms of the upper and
lower bounds of the flywheel governing speed. Xia [13] proposed an adaptive nonlinear
pseudoinverse reversal law to effectively suppress the effect of rotor tilt saturation on
the sensitive gyro cluster [14]. Zhang [15] designed an anti-saturation steering law based
on the pseudoinverse; he added a weight parameter to the steering law to avoid the
angle saturation.

The above steering laws solve the pseudoinverse of the Jacobian matrix to obtain the
frame angular velocity, which is simple and easy to implement. However, they inevitably
involve pseudoinverse solutions of time-varying matrices, which are more complicated to
solve due to the high bandwidth of the VSMSCSG at output motion and because its Jacobian
matrix consists of a series of small quantities with highly time-varying bandwidths.

Some research focuses on solving the steering law question with neural networks.
Zhong [16] proposed a steering law using a radial basis function (RBF) neural network
which enables the single gimbal control moment gyroscopes to avoid singularity. Wei [17]
designed a recurrent neural network to reduce the error due to the pseudoinverse operation
in the steering law. However, when the rotor deflection bandwidth is high, the moment
error caused by rotational speed deviation, sensor error, mounting error, etc. is difficult
to avoid. In addition, since the deflection angle of a VSMSCSG is limited to ±2◦ [18],
traditional steering laws inevitably cause the saturation of the rotor deflection angle,
resulting in output moment limitation. Existing steering laws have limitations in solving
these problems.

Some studies focus on tackling the time-varying matrix pseudoinversion problem
with zeroing neural networks [19,20]. Hu [21] designed two zeroing neural networks to
solve the inverse problem of time-varying matrices. He improved the activation function
of the ZNN and proved that the activation function can accelerate the convergence of the
ZNN while also improving the robustness of the network. Lin [22] proposed two novel
nonlinearly activated recurrent neural networks with finite-time convergence. Predrag [23]
proposed an integration-enhanced noise-tolerant zeroing neural network to approximate
time-varying outer inverse with a prescribed range and null space. Si [24] proposed a
finite-time convergent nonconvex zeroing neural network model with a faster convergence
rate than the original zeroing neural network model.

These studies show that the zeroing neural network has outstanding advantages in
solving time-varying matrix pseudoinversion problems. However, these ZNNs do not
address the issues of convergence accuracy and speed under high bandwidth conditions
and cannot be directly applied to VSMSCSG steering law design [25]. When used in
VSMSCSG steering law, zeroing neural networks need to be optimally designed. Fractional-
order differentiation is widely used in control applications due to its fast convergence and
memory characteristics [26,27], which provide a feasible way to improve the convergence
performance of zeroing neural networks.

In order to solve the above problems, a fractional-order zeroing neural network steer-
ing law is proposed in this paper. A VSMSCSG configuration is designed to realize attitude
measurement and control simultaneously. Compared to [5], the attitude measurement
accuracy is improved and the computation is simplified due to the additional VSMSCSG
in the configuration. A fractional-order activation function is designed for the first time
to accelerate the convergence speed of the network. The convergence and robustness of
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the proposed network are proven. An adaptive zeroing neural network steering law is
developed to replace the matrix pseudoinverse with the output of the FO-ZNN. Based on
this, a weighting matrix with a nonlinear function is added to the steering law to ensure
that saturation can be avoided by de-deflecting the other degrees of freedom when the
angle is close to saturation. The semi-physical simulation results show that the proposed
zeroing neural network steering law has good performance in spacecraft attitude control.

2. Attitude Measurement and Control Method Using VSMSCSG Configuration
2.1. The Structure and Principle of the VSMSCSG

The VSMSCSG structure is shown in Figure 1, where OXgYgZg is the LFMB coordinate
system and is connected to the LFMB stator, O is the centroid of the rotor, and OXrYrZr is
the rotor coordinate system and is tied up with the rotor. The rotor deflects at an angle of α
around OXg and an angle of β around OYg. The synthetic deflection of the rotor is around
OXr. Ω is the rotor speed.
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The relationship between the control moment Mg output by LFMB and the rotor
deflection angles can be expressed as [5]
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where Mx and My represent the moments along Xg- and Yg-axes, respectively; Jr and Jz
are the rotor radial inertia moment and axial inertia moment, respectively; N represents
the number of turns of the LFMB coils; B represents the magnetic density at the coil; L
represents the coil length perpendicular to the magnetic field; lm represents the radius of
LFMB stator; and Iα and Iβ represent the control current through the Xg- and Yg-axis coils
of the LFMB, respectively [5].

It can be seen from (1) that the VSMSCSG can output a three-degree-of-freedom control
moment by changing the rotor deflection angle and the rotor speed, and it can calculate
two-degree-of-freedom angle information by simultaneously detecting the currents in the
LFMB coils.

2.2. Attitude Measurement and Control Integration Method

The VSMSCSG configuration is shown in Figure 2, where ObXbYbZb is the spacecraft
body’s coordinate, and ObXb, ObYb, and ObZb are the roll, yaw, and pitch axes, respectively.
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The configuration is composed of 5 VSMSCSGs. The rotor of VSMSCSG 5 does not
deflect. O1Zg1, O2Zg2, O3Zg3, and O4Zg4 coincide with ObYb, −ObXb, −ObYb, and ObXb,
respectively. The angle between the O1Xr1 and O1Xg1, O2Xr2 and O2Xg2, O3Xr3 and O3Xg3,
and O4Xr4 and O4Xg4 axes is σ.

The angular momentum of the VSMSCSG configuration in the spacecraft body coordi-
nate system can be expressed as

H =
5

∑
i=1

Cb
giC

g
rihi (2)

where H is the configuration of the angular momentum, Cg
ri is the transformation ma-

trix from the ith rotor coordinate system to the ith LFMB coordinate system, Cb
gi is the

transformation matrix from the ith LFMB coordinate system to the spacecraft body’s co-
ordinate system, and hi is the projection of the ith rotor angular momentum in the rotor
coordinate system [5].

The angular momentum associated with the rotor deflection angular velocity is set as
a disturbance. The rotor angular momentum vector is approximately equivalent to

hi ≈ JzΩi

cos αi sin βi
− sin αi

cos αi cos βi

 (3)

Since the rotor of VSMSCSG 5 does not deflect, its angular momentum can be expressed
as h5 =

[
0 0 JzΩ5

]T. Supposing that σ = 45◦, the output moment can be expressed in
three parts:

uα = A
.
α (4)

uβ = B
.
β (5)

uΩ = C
.

Ω (6)

Combining (1)–(3) yields, one has
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.
H =


−JzΩ1 cos α1 JzΩ2 sin α2 cos β2 kJzΩ3 cos α3 − JzΩ4 sin α4 cos β4

−JzΩ1 sin α1 cos β1 − JzΩ2 cos α2 JzΩ3 sin α3 cos β3 JzΩ4 cos α4

JzΩ1 cos α1 JzΩ2 cos α2 JzΩ3 cos α3 JzΩ4 cos α4




.
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.
α2
.
α3
.
α4

+



−JzΩ1 cos β1 cos α1 JzΩ2 sin β2 cos α1 . . .

. . . JzΩ3 cos β3 cos α3 − JzΩ4 sin β4 cos α4

−JzΩ1 sin β1 cos α1 − JzΩ2 cos β2 cos α2 . . .

. . . JzΩ3 sin β3 cos α3 JzΩ4 cos β4 cos α4

JzΩ1 cos β1 cos α1 JzΩ2 cos β2 cos α2 . . .

. . . JzΩ3 cos β3 cos α3 JzΩ4 cos β4 cos α4





.
β1
.
β2
.
β3
.
β4



+



Jz cos α1 sin β1 − Jz sin α1 − Jz cos α2 cos β2 . . .

. . . − Jz cos α3 sin β3 + Jz sin α1 Jz cos α4 cos β4 0

Jz cos α1 cos β1 Jz cos α2 sin β2 − Jz sin α2 . . .

. . . − Jz cos α3 cos β3 − Jz cos α2 sin β2 + Jz sin α4 0

Jz cos α1 sin β1 + Jz sin α1 Jz cos α2 sin β2 + Jz sin α2 . . .

. . . Jz cos α3 sin β3 + Jz sin α3 Jz cos α4 sin β4 + Jz sin α4 Jz





.
Ω1
.
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.

Ω3
.

Ω4
.
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where Ωi is the rotor speed of the ith VSMSCSG. It can be obtained from (4)–(7) that

A =

−JzΩ1 cos α1 JzΩ2 sin α2 cos β2 kJzΩ3 cos α3 − JzΩ4 sin α4 cos β4
−JzΩ1 sin α1 cos β1 − JzΩ2 cos α2 JzΩ3 sin α3 cos β3 JzΩ4 cos α4

JzΩ1 cos α1 JzΩ2 cos α2 JzΩ3 cos α3 JzΩ4 cos α4

 (8)

B =



−JzΩ1 cos β1 cos α1 JzΩ2 sin β2 cos α1 . . .
. . . JzΩ3 cos β3 cos α3 − JzΩ4 sin β4 cos α4
−JzΩ1 sin β1 cos α1 − JzΩ2 cos β2 cos α2 . . .
. . . JzΩ3 sin β3 cos α3 JzΩ4 cos β4 cos α4

JzΩ1 cos β1 cos α1 JzΩ2 cos β2 cos α2 . . .
. . . JzΩ3 cos β3 cos α3 JzΩ4 cos β4 cos α4

 (9)

C =



Jz cos α1 sin β1 − Jz sin α1 − Jz cos α2 cos β2 . . .
. . . − Jz cos α3 sin β3 + Jz sin α1 Jz cos α4 cos β4 0

Jz cos α1 cos β1 Jz cos α2 sin β2 − Jz sin α2 . . .
. . . − Jz cos α3 cos β3 − Jz cos α2 sin β2 + Jz sin α4 0

Jz cos α1 sin β1 + Jz sin α1 Jz cos α2 sin β2 + Jz sin α2 . . .
. . . Jz cos α3 sin β3 + Jz sin α3 Jz cos α4 sin β4 + Jz sin α4 Jz

 (10)

The three-axis attitude of the spacecraft can be obtained by utilizing the current infor-
mation from the LFMB coils of VSMSCSG 1~VSMSCSG 5. From (1), as for the VSMSCSG
1~VSMSCSG 4, one has M1x = JzΩ1

( .
β1 + ωx

)
+ (Jz − Jr)ωy

( .
β1 + ωx

)
+ Jr

( ..
α1 +

.
ωz
)

M1y = −JzΩ1
( .
α1 + ωz

)
− (Jz − Jr)ωy

( .
α1 + ωz

)
+ Jr

( ..
β1 +

.
ωx

) (11)

 M2x = JzΩ2

( .
β2 + ωy

)
+ (Jz − Jr)(−ωx)

( .
β2 + ωy

)
+ Jr

( ..
α2 +

.
ωz
)

M2y = −JzΩ2
( .
α2 + ωz

)
− (Jz − Jr)(−ωx)

( .
α2 + ωz

)
+ Jr

( ..
β2 +

.
ωy

) (12)

 M3x = JzΩ3

( .
β3 − ωx

)
+ (Jz − Jr)

(
−ωy

)( .
β3 − ωx

)
+ Jr

( ..
α3 +

.
ωz
)

M3y = −JzΩ3
( .
α3 + ωz

)
− (Jz − Jr)

(
−ωy

)( .
α3 + ωz

)
+ Jr

( ..
β3 −

.
ωx

) (13)

 M4x = JzΩ4

( .
β4 − ωy

)
+ (Jz − Jr)ωx

( .
β4 − ωy

)
+ Jr

( ..
α4 +

.
ωz
)

M4y = −JzΩ4
( .
α4 + ωz

)
− (Jz − Jr)ωx

( .
α4 + ωz

)
+ Jr

( ..
β4 −

.
ωy

) (14)

As for VSMSCSG 5, one has{
M5x = Jr

.
ωx + JzΩωy

M5y = Jr
.

ωy − JzΩωx
(15)
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where ω = [ωx ωy ωz]T represents the three-axis rotational angular velocity of spacecraft.
Combining (10)–(13) yields

M1x − M3x = (Jz − Jr)
( .

β1 +
.
β3

)
· ωy + Jz(Ω1 + Ω3) · ωx + Jz

( .
β1Ω1 −

.
β3Ω3

)
+ Jr

( ..
α1 −

..
α3
)

M2x − M4x = −(Jz − Jr)
( .

β2 +
.
β4

)
· ωx + Jz(Ω2 + Ω4) · ωy + Jz

( .
β2Ω2 −

.
β4Ω4

)
+ Jr

( ..
α2 −

..
α4
) (16)

There are two unknowns and two equations in (15), which means that ωx and ωy
can be solved. Then, from (10) and (14), one can calculate ωz. Compared to [5], the
attitude measurement computation is simplified. Thus, we have realized the integration of
three-axis attitude measurement and control for the spacecraft.

The spacecraft dynamics equation can be written as

(J0 + ∆J)
.

ω + ω × (J0 + ∆J)ω = u + Td (17)

where J0 represents the rotational inertia matrix of the spacecraft, ∆J represents the un-
known disturbance in rotational inertia, and Td represents the external disturbance [5].
Moreover, u =

[
ux uy uz

]T represents the attitude control moment which can be written as

u = uα + uβ + uΩ = −(
.

Hb + ω × Hb

)
(18)

3. Design of Fractional-Order Zeroing Neural Network Steering Law
3.1. Construction of Fractional-Order Zeroing Neural Network and Analysis of Its
Convergence Performance

The traditional zeroing neural network can be expressed as

MT(t)M(t)
.

X(t) = −
(

.
M

T
(t)M(t) + MT(t)

.
M(t)

)
X(t)

+
.

M
T
(t)− F

(
MT(t)M(t)X(t)− MT(t)

) (19)

where M(t) ∈ Rm×n is a dynamic full rank matrix and X(t) ∈ Rn×m is the the pseudoinverse
of M(t) as well as being output of the neural network. F(·) : Rn×m → Rn×m represents a
matrix mapping.

The error matrix E(t) is defined as

E(t) = MT(t)M(t)X(t)− MT(t) (20)

The activation function can be expressed as

dE(t)
dt

= −F(E(t)) (21)

It has been proven that when F(E(t)) is a monotone singular function, the output of
the zeroing neural network can approach the pseudoinverse solution [28].

A feasible high-performance finite-time activation function (FTAF) can be expressed as

F(E(t)) = −β1sgnv(E(t))− β2E(t) (22)

where β1 > 0 , β2 > 0 , v ∈ (0, 1).
In this paper, a fractional-order zeroing neural network is proposed to improve the

approximation speed and robustness of the network.
The fractional-order finite-time activation function (FOFTAF) is designed as follows:

dE
dt

= −β1Drsgnv(E(t))− β2E(t) (23)
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Thus, the fractional-order zeroing neural network can be expressed as

MT(t)M(t)
.

X(t) = −
(

.
M

T
(t)M(t) + MT(t)

.
M(t)

)
X(t)

+
.

M
T
(t)− β1Drsgnv(F(MT(t)M(t)X(t)− MT(t)

))
−β2

(
F
(
MT(t)M(t)X(t)− MT(t)

)) (24)

Theorem 1. The fractional-order zeroing neural network is asymptotically stable, its output
will converge to the theoretical pseudoinverse under bounded disturbance, and the network error
is bounded.

Proof. According to the definition of RL fractional-order differentiation

RL
0 Dr

t f (t) =
1

Γ(r)

∫ t

0
(t − τ)r−1 f (τ)dτ (25)

where r is the differential order satisfying r ∈ (0, 1). One has

Γ(r) =
∫ ∞

0
e−ttr−1dt (26)

If v ≥ −1, one has
RL
0 Dr

t tv =
Γ(1 + v)

Γ(1 + v − r)
tv−r (27)

Choosing element eij(t) of E(t) as the object of study, one has

deij(t)
dt

= −β1Drsgnv(eij(t)
)
− β2eij(t) (28)

where

sgnv(eij
)
=


∣∣eij
∣∣v eij > 0

0 eij = 0

−
∣∣eij
∣∣v eij < 0

(29)

Suppose a bounded disturbance ∆(t) is added to the model:

dE(t)
dt

= −β1Drsgnv(E(t))− β2E(t) + ∆(t) (30)

Vectorize the matrix as

.
e(t) = −β1Drsgnv(e(t))− β2e(t) + δ(t) (31)

where e(t) := vec(E(t)) ∈ Rmn×1, δ(t) := vec(∆(t)) ∈ Rmn×1.
Suppose the following Lyapunov function:

V =
1
2

e2 (32)

.
V = e(t)T .

e(t) = e(t)T(−β1Drsgnv(e(t))− β2e(t) + δ(t)) (33)
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Since the fractional-order activation function is a monotone odd function, one has

.
V =

mn
∑

i=1
ei(t)

(
−β1

Γ(v+1)
Γ(v−r+1) ei(t)

v−r − β2ei(t) + δi(t)
)

=
mn
∑

i=1

(
−β1

Γ(v+1)
Γ(v−r+1) |ei(t)|1+v−r − β2|ei(t)|2 + ei(t)δi(t)

)
≤

mn
∑

i=1

(
−β1

Γ(v+1)
Γ(v−r+1) |ei(t)|1+v−r − β2|ei(t)|2 + ei(t)|δ(t)|

) (34)

Suppose that

g(ei(t)) =
mn

∑
i=1

(
−β1

Γ(v + 1)
Γ(v − r + 1)

|ei(t)|1+v−r − β2|ei(t)|2
)

(35)

h(ei) =
mn

∑
i=1

(ei|δ|) (36)

If |ei(t)| = 0 holds for ∀i ∈ {1, 2, . . . , mn}, one has
.

V ≤ 0, which means the fractional-
order zeroing neural network is asymptotically stable and its output will converge to the
theoretical pseudoinverse under bounded disturbance.

If there exists |ei(t)| ̸= 0, since g(ei) is an even function and has a maximum value of 0,
there must exist a maximum value K for g(ei(t)) + h(ei(t)) that satisfies K ≥ 0 when |δ(t)|
is bounded, which means

.
V ≤ K. In this case, the error norm ∥E(t)∥F may not converge

to 0. However, with the increasing value of |ei(t)|, there must exist a certain time instant t
which satisfies

.
V = 0; thus, |ei(t)| remains in a steady state. Therefore, there is an upper

bound on the model error under bounded disturbance, and when the disturbance is 0, it is
obvious that

.
V ≤ 0. □

Theorem 2. The FO-ZNN will converge to the theoretical pseudoinverse globally in finite time.

t =
1

β2(1 + r − v)
ln

β2Γ(v − r + 1)
∣∣eij(0)

∣∣1+r−v
+ β1Γ(v + 1)

β1Γ(v + 1)

which is smaller than that of ZNN using FTAF.

Proof. If eij > 0, one has

deij
dt = −β1Dreij

v − β2eij

= −β1
Γ(v+1)

Γ(v−r+1) eij
v−r − β2eij

(37)

That means

eij
r−v deij

dt
+ β2eij

1+r−v + β1
Γ(v + 1)

Γ(v − r + 1)
= 0 (38)

Supposing that z = eij
1+r−v, (36) can be rewritten as

dz
dt

+ β2(1 + r − v)z + β1(1 + r − v)
Γ(v + 1)

Γ(v − r + 1)
= 0 (39)

One has the following:

z(t) =
(

z(0) + β1Γ(v+1)
β2Γ(v−r+1)

)
exp(−β2(1 + r − v)t)

− β1Γ(v+1)
β2Γ(v−r+1)

(40)
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Supposing that z(t+) = 0 when t = t+, one has

t+ =
1

β2(1 + r − v)
ln

β2Γ(v − r + 1)
∣∣eij(0)

∣∣1+r−v
+ β1Γ(v + 1)

β1Γ(v + 1)
(41)

Similarly, if eij ≤ 0, one has

tp = t+ = t− =
1

β2(1 + r − v)
ln

β2Γ(v − r + 1)
∣∣−eij(0)

∣∣1+r−v
+ β1Γ(v + 1)

β1Γ(v + 1)
(42)

According to the literature, the convergence time of the traditional dynamic equation is

tt =
1

β2(1 − vt)
ln

β2
∣∣eij(0)

∣∣1−vt + β1

β1
(43)

where vt ∈ (0, 1). When choosing the same β1 and β2, suppose that 1 + r − v = 1 − vt; that
is, v − r = vt. For ∀vt ∈ (0, 1), there must exist r ∈ (0, 1) satisfying v ∈ (1, 2).

One has

tp − tt =
1

β2(1 − vt)
ln

β2
Γ(1+vt)
Γ(1+v)

∣∣eij(0)
∣∣1−vt + β1

β2
∣∣eij(0)

∣∣1−vt + β1
(44)

As can be seen in Figure 3, the gamma function has a range of (0, 1] when x ∈ [1, 2]
and a range of (1, ∞) when x ∈ (2, ∞). It can be determined that Γ(1+vt)

Γ(1+v) < 1. According to

the properties of the gamma function, since Γ(1+vt)
Γ(1+v) < 1, one has

0 <
β2

Γ(1+vt)
Γ(1+v)

∣∣eij(0)
∣∣1−vt + β1

β2
∣∣eij(0)

∣∣1−vt + β1
< 1 (45)

which means tp < tt. □
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3.2. Design of VSMSCSG Adaptive Fractional-Order Zeroing Neural Network Steering Law

The control system diagram is shown in Figure 4. The control moment command
given by the adaptive controller is divided into two parts by the high-pass filter and the
low-pass filter. The fractional-order zeroing neural network steering law is used to derive
the desired deflection angles and rotor speeds. The saturation of the rotor deflecting angles
can be avoided by de-deflecting the other degrees of freedom when the angle is close to
saturation. The sliding mode control is used in the attitude maneuver.
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Since the rotor deflection angle of VSMSCSG is limited to ±2◦, which is not conducive
to the integration of attitude control and vibration suppression, a VSMSCSG adaptive
control law based on deflection compensation is designed in this paper. The X-direction
deflection is the main moment, and a nonlinear term is added to avoid rotor deflection
saturation. The Y-direction deflection moment is the compensation moment. This mo-
ment is introduced when the deflection in the X-direction is saturated to compensate for
the moment.

In this section, we design an adaptive fractional-order zeroing neural network steering
law. First, in order to avoid saturation of the rotor deflection speed, a weighting matrix is
designed as follows:

G =

g1 0 0
0 g2 0
0 0 g3

 (46)

where gi = 1 − e−ρi ||αi |−σ|2 e−ρi ||βi |−σ|2 , i = 1, 2, 3. σ is the extreme value of the rotor
deflection angle, and ρi is the weighting parameter. Thus, (4) can be rewritten as

.
α = XAGHu (47)

AT(t)A(t)
.

XA(t) = −
(

.
A

T
(t)A(t) + AT(t)

.
A(t)

)
X(t)

+
.

A
T
(t)− β1Dr1sgnv1

(
F
(
AT(t)A(t)X(t)− AT(t)

))
−β2

(
F
(
AT(t)A(t)XA(t)− AT(t)

)) (48)

where H is a high-pass filter and can be expressed as

H =
s

s + λ
(49)

Similarly, one has
.
β = XB

(
GHu − A

.
α
)

(50)

BT(t)B(t)
.

XB(t) = −
(

.
B

T
(t)B(t) + BT(t)

.
B(t)

)
X(t)

+
.
B

T
(t)− β1Dr2sgnv2

(
F
(
BT(t)B(t)X(t)− BT(t)

))
−β2

(
F
(
BT(t)B(t)XB(t)− BT(t)

)) (51)

.
Ω = Xc(I − H)u (52)
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CT(t)C(t)
.

XC(t) = −
(

.
C

T
(t)C(t) + CT(t)

.
C(t)

)
X(t)

+
.
C

T
(t)− β1Dr3sgnv3

(
F
(

CT(t)C(t)X(t)− CT(t)
))

−β2

(
F
(

CT(t)C(t)XC(t)− CT(t)
)) (53)

where
.
α =

[ .
α1

.
α2

.
α3

.
α4
]T ,

.
β =

[ .
β1

.
β2

.
β3

.
β4

]T
gives the rotor deflection angular velocities,

.
Ω =

[ .
Ω1

.
Ω2

.
Ω3

.
Ω4

.
Ω5

]T
gives the rotor speeds of the VSMSCSGs and the bias momentum

wheel, and u′ satisfies
u′ = −

.
Hb (54)

Equations (46)–(53) comprise the definition of the designed steering law.

4. Semi-Physical Simulation and Discussion
4.1. Comparative Simulation of Zeroing Neural Network Convergence Performance

As for the simulation conditions, the VSMSCSG system parameters obtained from
experiments and the parameter settings of the controller and the steering law based on
FO-ZNN are shown in Table 1. The target attitude angle is set as [0; 0; 0], and the initial
attitude angle is set as [−30; 20; 40]◦.

Table 1. The parameter setting of the VSMSCSG system and the controller.

Parameter Value Parameter Value

Jx
(
kg · m2 ) 0.0097 Ω (r/min) 5000

Jy
(
kg · m2 ) 0.0097 fm (Hz ) 140

Jz
(
kg · m2 ) 0.0166 m (kg ) 8.95

Ωmin (r/min ) 4200 λ 0.7
Ωmax (r/min ) 5800 β1 1

ωc (Hz ) 0.2 β2 5
v 1.5 r 0.6

A sinusoid disturbance with an amplitude of 0.08 N·m and a frequency of 20 Hz and
another one with an amplitude of 0.05 N·m and a frequency of 55 Hz are applied to the roll
axis of the spacecraft.

Furthermore, a sinusoid disturbance with an amplitude of 0.015 N·m and a frequency
of 60 Hz and another one with an amplitude of 0.04 N·m and a frequency of 45 Hz are
applied to the pitch axis.

Finally, the yaw axis is subjected to a sinusoidal disturbance with an amplitude of
0.025 N·m and a frequency of 80 Hz and another one with an amplitude of 0.03 N·m and a
frequency of 50 Hz.

The simulation comparison consists of three parts. First, we compared the convergence
performance of the zeroing neural network using the proposed FOFTAF and traditional
FTAF. Second, we compared the attitude control and measurement accuracy of the space-
craft controlled by the two zeroing neural network steering laws. Finally, we experimentally
verified the VSMSCSG’s performance to support the above simulations.

First, the convergence accuracy and speed of zeroing neural networks using FTAF and
FOFTAF as activation functions are compared through digital simulations.

Assume that ∥E(t)∥F = ∥e(t)∥2 =

√
mn
∑

i=1
e2

i (t) is the neural network error. The error

convergence rate between the output of the zeroing neural network using FTAF as the
activation function (i.e., the traditional method) and the matrix inverse is shown in Figure 5.



Sensors 2024, 24, 766 12 of 18

Sensors 2024, 24, x FOR PEER REVIEW 12 of 19 
 

 

Furthermore, a sinusoid disturbance with an amplitude of 0.015 N·m and a frequency 
of 60 Hz and another one with an amplitude of 0.04 N·m and a frequency of 45 Hz are 
applied to the pitch axis. 

Finally, the yaw axis is subjected to a sinusoidal disturbance with an amplitude of 
0.025 N·m and a frequency of 80 Hz and another one with an amplitude of 0.03 N·m and 
a frequency of 50 Hz. 

The simulation comparison consists of three parts. First, we compared the conver-
gence performance of the zeroing neural network using the proposed FOFTAF and tradi-
tional FTAF. Second, we compared the attitude control and measurement accuracy of the 
spacecraft controlled by the two zeroing neural network steering laws. Finally, we exper-
imentally verified the VSMSCSG’s performance to support the above simulations. 

First, the convergence accuracy and speed of zeroing neural networks using FTAF 
and FOFTAF as activation functions are compared through digital simulations. 

Table 1. The parameter setting of the VSMSCSG system and the controller. 

Parameter Value Parameter Value 
xJ  (

2kg m⋅ ) 0.0097 Ω  (r/min) 5000 
yJ  (

2kg m⋅ ) 0.0097 mf  ( H z ) 140 

zJ  (
2kg m⋅ ) 0.0166 m  ( kg ) 8.95 

minΩ  ( r / min ) 4200 λ  0.7 
maxΩ  ( r / min ) 5800 1β  1 

cω  ( Hz ) 0.2 2β  5 
v 1.5 r 0.6 

Assume that 
( ) ( ) ( )2

2
1

mn

iF
i

E t e t e t
=

= = 
 is the neural network error. The error con-

vergence rate between the output of the zeroing neural network using FTAF as the activation 
function (i.e., the traditional method) and the matrix inverse is shown in Figure 5. 

0 0.2 0.4 0.6 0.8 1
t/s

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1
t/s

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1
t/s

0

50

100
ǁEA(t)ǁF ǁEB(t)ǁF ǁEC(t)ǁF 

- 10-6−610−710 −410

 
Figure 5. Error convergence curves using FTAF as the activation function. 

As can be seen in Figure 5, when FTAF is used as the activation function, the errors 
reach the target 0 point at 0.2 s and remain stable after that. The ranges of ( )E t  are 
sequentially listed as follows: 5 × 10−7, 7.5 × 10−7, 1.1 × 10−3. 

As can be seen in Figure 6, when FOFTAF is used as the activation function, the errors 
reach the target 0 point at 0.1 s and remain stable after that, which is twice as fast as the 
FTAF method. The ranges of ( )E t  are sequentially listed as follows: 2.5 × 10−7, 4 × 10−7, 
8 × 10−4; these ranges are reduced by 50%, 46.7%, and 27.3%, respectively, compared with 
those produced by the FTAF method. 

Figure 5. Error convergence curves using FTAF as the activation function.

As can be seen in Figure 5, when FTAF is used as the activation function, the errors
reach the target 0 point at 0.2 s and remain stable after that. The ranges of ∥E(t)∥ are
sequentially listed as follows: 5 × 10−7, 7.5 × 10−7, 1.1 × 10−3.

As can be seen in Figure 6, when FOFTAF is used as the activation function, the errors
reach the target 0 point at 0.1 s and remain stable after that, which is twice as fast as the
FTAF method. The ranges of ∥E(t)∥ are sequentially listed as follows: 2.5 × 10−7, 4 × 10−7,
8 × 10−4; these ranges are reduced by 50%, 46.7%, and 27.3%, respectively, compared with
those produced by the FTAF method.
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Through the above simulation, it can be concluded that the convergence speed and
convergence accuracy of fractional-order zeroing neural network are superior to the tradi-
tional one. This provides a basis for the performance advantages of fractional-order zeroing
neural network steering law.

4.2. Comparison of Spacecraft Attitude Control and Measurement Accuracy and Rotor Deflection
Angles Saturation

Second, comparative simulations are carried out between the attitude control and
measurement accuracy of the spacecraft controlled by the two zeroing neural network
steering laws. The three-axis attitude comparison curves of the spacecraft are shown in
Figure 7, in which (a) is the spacecraft attitude controlled by the fractional-order zeroing
neural network steering law and (b) is the spacecraft attitude controlled by the traditional
zeroing neural network steering law.
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by the traditional zeroing neural network steering law.

It can be seen from Figure 7 that at 20 s, the three-axis attitude angles controlled by
two steering laws reach the target 0 point and remain stable after that. However, when the
spacecraft attitude is stable, the fluctuation range of the three-axis attitude angles controlled
by the traditional steering law is [−2 × 10−4◦, 2.5 × 10−4◦]. In comparison, the fluctuation
range of the three-axis attitude angles controlled by the fractional-order zeroing neural
network steering law is [−1 × 10−4◦, 1.5 × 10−4◦], which is reduced by more than 40%.
This is because the error of the fractional-order zeroing neural network steering law is
smaller than that of the traditional one.

The attitude angular velocity measurement error is shown in Figure 8. It can be
determined that after the spacecraft attitude stabilization, the three-axis measurement
error ranges of the method used in [5] are sequentially listed as follows: ±3.8 × 10−14◦/s,
±4 × 10−14◦/s, ±5 × 10−14◦/s; the three-axis measurement error ranges of the method
proposed in this paper are sequentially listed as follows: ±1.8 × 10−14◦/s, ±5.1 × 10−15◦/s,
±8 × 10−15◦/s, which are reduced by 52.6%, 87.3%, and 84%, respectively. The above
results show that the proposed method improves the measurement accuracy of spacecraft
attitude angular velocity.
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According to (46)–(53), the adaptive steering law proposed in this paper can avoid
the saturation of the VSMSCSG rotor deflection angle. The rotor deflection angles of four
VSMSCSGs controlled by the traditional steering law are shown in Figure 9.



Sensors 2024, 24, 766 14 of 18

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19 
 

 

10−14°/s, ±5 × 10−14°/s; the three-axis measurement error ranges of the method proposed in 
this paper are sequentially listed as follows: ±1.8 × 10−14°/s, ±5.1 × 10−15°/s, ±8 × 10−15°/s, 
which are reduced by 52.6%, 87.3%, and 84%, respectively. The above results show that 
the proposed method improves the measurement accuracy of spacecraft attitude angular 
velocity. 

-5

-4

-5

-14

-14

-14

4
0

5
0

5
0

 

-14

-15

-14

-2

-5

-1

2
0

5
0

1

0

 
(a) (b) 

Figure 8. The three-axis attitude angular velocity measurement error curves of the spacecraft. (a) 
method used in [5]; (b) method proposed in this paper. 

According to (46)–(53), the adaptive steering law proposed in this paper can avoid 
the saturation of the VSMSCSG rotor deflection angle. The rotor deflection angles of four 
VSMSCSGs controlled by the traditional steering law are shown in Figure 9. 

-2

-2
-1

-2

2
0

1
0

0
2

0

2
1

 
Figure 9. The rotor deflection angles of 4 VSMSCSGs controlled by the traditional steering law. 

It can be seen in Figure 9 that due to the lack of an adaptive law, when the spacecraft 
maneuvers, the rotor deflection angles exceed the limiting amplitude by 2°. 

The rotor deflection angles of the four VSMSCSGs controlled by the fractional-order 
zeroing neural network steering law are shown in Figure 10. 
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It can be seen in Figure 9 that due to the lack of an adaptive law, when the spacecraft
maneuvers, the rotor deflection angles exceed the limiting amplitude by 2◦.

The rotor deflection angles of the four VSMSCSGs controlled by the fractional-order
zeroing neural network steering law are shown in Figure 10.
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It can be seen in Figure 10 that when the spacecraft maneuvers, the two-degree-of-
freedom rotor deflection angles are always within the limiting amplitude. As can be seen
in Figure 11, VSMSCSGs can output the attitude control moments through changing the
rotor speeds, and the speeds change within a stable range.
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Figure 11. Rotor speeds of VSMSCSGs and flywheel.

From the above simulation, it can be determined that the proposed fractional-order
zeroing neural network steering law has better performance in spacecraft attitude control
and measurement and anti-saturation control of the rotors compared to the traditional
steering laws.

4.3. High-Bandwidth Moment Output Verification Test

The elements of the three time-varying matrices A, B and C and the control moment
of the spacecraft are shown in Figure 12.
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As can be seen in Figure 12, due to the existence of high-frequency disturbance, the
bandwidth of the spacecraft’s three-axis control moment is very high, resulting in each
Jacobian matrix element being a high-frequency variable, which proves that it is both
feasible and necessary to use the fractional-order zeroing neural network to perform matrix
inversion. Since the control moment has a high bandwidth, it is necessary to demonstrate
that the VSMSCSG can output a high bandwidth control moment.

In this study, a validation experiment was conducted to demonstrate that the VSM-
SCSG rotor is capable of outputting two degrees of freedom with a high bandwidth as the
micro-frame moment and one degree of freedom with a low bandwidth as the flywheel
moment. Figure 13 shows the VSMSCSG laboratory setup. The rotor deflects at a frequency
of 100 Hz; meanwhile, the rotor speed changes from 4000 r/min to 3200 r/min.
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Figure 14 demonstrates that the VSMSCSG rotor can deflect at a high bandwidth up
to 100 Hz to output the micro-frame moment. At the same time, the rotor can change
speeds to output the flywheel moment and remains stable throughout the process. These
results prove the feasibility of using a VSMSCSG configuration to realize micro-vibration
suppression of the spacecraft.
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5. Conclusions

In this paper, a fractional-order zeroing neural network steering law is proposed.
First, a VSMSCSG configuration is designed to realize attitude measurement and control
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integration. A fractional-order activation function is designed to accelerate the conver-
gence speed of the network. Second, an adaptive zeroing neural network steering law
is developed to replace the matrix pseudoinverse with the output of the FO-ZNN, and a
weighting matrix with a nonlinear function is added to the steering law to ensure that the
saturation and instability of the rotor spin velocity are avoided. The proposed method can
be used in spacecraft attitude measurement and control integration. The simulation results
demonstrate the correctness and superiority of the proposed method.
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