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Abstract: Deep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in
image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI recon-
struction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing
patient safety, facilitating efficient workflows, and contributing to the validity of research studies and
clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI
reconstruction methods. Conventional methods rely on manual feature engineering to capture com-
plex patterns and are usually computationally demanding due to their iterative nature. Conversely,
DL methods use neural networks with hundreds of thousands of parameters and automatically
learn relevant features and representations directly from the data. Nevertheless, there are some
limitations to DL-based techniques concerning MRI reconstruction tasks, such as the need for large,
labeled datasets, the possibility of overfitting, and the complexity of model training. Researchers
are striving to develop DL models that are more efficient, adaptable, and capable of providing
valuable information for medical practitioners. We provide a comprehensive overview of the current
developments and clinical uses by focusing on state-of-the-art DL architectures and tools used in
MRI reconstruction. This study has three objectives. Our main objective is to describe how various
DL designs have changed over time and talk about cutting-edge tactics, including their advantages
and disadvantages. Hence, data pre- and post-processing approaches are assessed using publicly
available MRI datasets and source codes. Secondly, this work aims to provide an extensive overview
of the ongoing research on transformers and deep convolutional neural networks for rapid MRI
reconstruction. Thirdly, we discuss several network training strategies, like supervised, unsupervised,
transfer learning, and federated learning for rapid and efficient MRI reconstruction. Consequently,
this article provides significant resources for future improvement of MRI data pre-processing and
fast image reconstruction.

Keywords: deep learning; 3D MRI; transfer learning; federated learning; Swin transformer; MRI
datasets; DL tools

1. Introduction

Magnetic resonance imaging is an advanced non-invasive medical imaging method
with high resolution, which, together with contrast mechanisms, can visualize the anatomy
and function of the body [1]. It contributes to medical research and smart healthcare by
yielding high-quality reconstructed images without using harmful radiation [2]. However,
the image acquisition time [3] of MRI is markedly longer than that of computed tomog-
raphy. This increases the MRI costs and generates artifacts caused by patient movement.
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Accelerating MRI acquisition is required to improve patient experiences, enhance clinical
workflow efficiency, and enable new imaging capabilities.

Parallel imaging (PI) [4] and compressed sensing (CS) [5] are the two most popular
approaches for accelerating MRI acquisition. PI techniques [6,7] offer significant advantages
in terms of the scan time reduction and patient comfort while maintaining or improving
the image quality. However, they also come with some trade-offs, including the need for
calibration data, potential reductions in the signal-to-noise ratio, and sensitivity to various
factors that can introduce artifacts. CS-MRI reconstruction works by exploiting the inherent
sparsity or compressibility of the underlying image in a certain transform domain. The
key idea is to acquire only a subset of k-space data points, typically through significant
undersampling, and then reconstruct the full image using a mathematical optimization
process. The effectiveness of CS is influenced by the choice of the sparsity transformation
domain. The optimal transformation may vary for different types of images and anatomies.
In real-time applications, iterative optimization algorithms used in CS reconstruction may
face challenges in meeting computational requirements. The combination of CS and PI is a
powerful strategy for accelerating MRI scans while preserving the image quality [8,9]. It is
particularly valuable in scenarios where significant scan time reductions are required, such
as dynamic imaging, functional MRI, or imaging of pediatric or uncooperative patients.
However, combining CS and PI may increase sensitivity to certain artifacts, such as residual
aliasing artifacts and noise amplification, especially at very high acceleration factors. PI
approaches raise the localized noise that has an impact on the reconstruction accuracy and
CS depends on the right choice of the regularization penalty and the relevant influences.

Deep learning (DL) has been applied successfully in medical imaging [10,11] such as
reconstruction [12], classification [13], segmentation [14], and detection [15]. Conventional
feature-extraction approaches require human intervention, and DL directly analyzes the
image data. DL-based MRI reconstruction strategies could enhance the flexibility without
lessening the image quality. The advantages of deep learning in MRI image reconstruction
include the improved reconstruction speed, reduced artifacts, and enhanced image quality,
but there are still issues with speed and accuracy. It is also necessary to conduct more
research to comprehend the underlying mechanisms of this method. This paper provides
a thorough summary of current developments in deep MRI reconstruction to identify
these difficulties. In addition, this study examines the field’s opportunities and problems
and provides insights into its potential future growth. This review intends to improve
knowledge of deep MRI reconstruction and provide an outline for potential studies in this
area. However, few studies have reviewed DL-based applications for MRI. Ahishakiye
et al. [16] gathered records using DL, image reconstruction, medical imaging, open software,
and open imaging data keywords. Montalt-Tordera et al. [17] described existing machine
learning (ML) algorithms and their clinical applications. Zhang et al. [18] focused on the
mathematical expression of DL algorithms. He et al. [19] analyzed the performance of
several contemporary unsupervised learning algorithms, and Knoll et al. [20] reviewed
the most significant ML algorithms for parallel imaging based on linear and non-linear
approaches. Here, we discuss not only conventional ML-based MRI reconstruction methods
but also advanced training strategies—such as the Swin transformer, transfer learning, and
federated learning—for rapid and efficient MRI reconstruction.

The objectives of this article are the following:

• Provide an overview of state-of-the-art DL-based MRI reconstruction techniques,
including their advantages and disadvantages.

• Describe the potential of transfer learning (TL), and federated learning (FL) approaches
for reducing computation complexity and addressing data scarcity and privacy issues
in rapid MRI reconstruction.

• Discuss the advantages and challenges of transformer-based (widely used in nat-
ural language processing) networks in image capture, information matching, and
reconstruction.
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• Review the utilities of DL tools, medical-imaging competitions, and open-source codes
in MRI.

• Describe publicly available k-space and image datasets for MRI reconstruction and
analysis.

The remainder of this article is organized as follows. In Sections 2 and 3, we explain
the survey methodology and several DL frameworks. The DL-based MRI reconstruction
methods are reviewed in Section 4. The MRI datasets and open-source codes are described
in Section 5. The DL-based MRI reconstruction concerns and future perspectives in this
field are set out in Section 6. Finally, the conclusion of this systematic review is described
in Section 7.

2. Motivation and Methodology

DL networks have successfully recovered MRIs from undersampled measurements
by utilizing their capacity to learn efficient models from training data. The trained model
is used to reconstruct high-quality images from new, unseen test data. This development
generated great attention in relation to DL MRI reconstruction, which prompted continuous
improvements in network designs, data augmentation methods, regularization strategies,
and loss functions. A fascinating summary of the publishing analysis from January 2017
to November 2023 that focuses on the application of DL models in MRI reconstruction is
provided in Figure 1. It reveals the number of annual publications found from the PubMed
dataset using five different keywords: deep learning (DL), deep learning-based compressed
sensing (DL-CS), deep learning-based parallel imaging (DL-PI), federated learning (FL), and
transformer-based MRI reconstruction. These findings show that deep MRI reconstruction
performance and generalization are constantly being improved. Deep reconstruction
networks, however, are still a developing area of study. Researchers often overlook crucial
aspects, like quantitative mapping, super resolution, and magnetic resonance fingerprinting,
in favor of focusing largely on DL- and CS-based MRI reconstruction models [21]. This work
explores the state-of-the-art of fast and efficient MRI reconstruction using DL algorithms
on undersampled k-space datasets.
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The preferred reporting items for systematic reviews and meta-analyses (PRISMA) [22]
structure and methodology are used to identify the pertinent research articles that are il-
lustrated in Figure 2. The four main phases are: (i) identification: articles collected from
various sources; (ii) screening: duplicate and insufficient articles eliminated; (iii) eligibility:
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analysis of the articles to determine their suitability for review and exclude unsuitable
articles; and (iv) inclusion: selection of articles to be included in the study. We examined
documents located electronically using four sets of keywords: (i) compressed sensing MRI,
deep learning, and magnetic resonance image reconstruction; (ii) federated learning, trans-
fer learning, and magnetic resonance imaging; (iii) Swin transformer, attention mechanism,
and medical imaging; and (iv) MRI reconstruction in GitHub, deep learning tools, and MRI
data. We performed searches of the Google Scholar, Scopus, Web of Science, PubMed, and
MDPI databases and in other journals.
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3. DL Frameworks and Tools
3.1. DL Architectures

Deep neural networks (DNNs) are used for medical-image reconstruction, quality
enhancement, feature mapping, contrast transformation, classification of tumors or cancer
types, and segmentation for detecting normal and abnormal tissues. Deep architectures can
extract features from data in place of conventional hand-crafting feature extraction algo-
rithms. DL can reconstruct high-quality images from undersampled data via discovering
complex mappings using undersampled k-space data and fully sampled images. Several
DL architectures used for MRI reconstruction are described below.

A convolutional neural network (CNN) [23] (Figure 3a) is an efficient approach to
DNNs that is particularly effective in image processing and computer vision (CV) tasks. It
consists of a set of convolutional layers and applies convolution operations to the input
data. These operations involve sliding small filters (kernels) over the input image to learn
local features. Through these convolution operations, the network captures low-level
features (e.g., edges, textures) in the early layers and progressively more abstract and
complex features in the deeper layers. The convolutional layers produce feature maps
that represent learned patterns and features in the input data. Thus, CNNs automatically
learn hierarchical representations of features in images, making them well-suited for tasks
related to images and videos. CNNs have been widely successful in tasks such as image
reconstruction, classification, object detection, and segmentation. Google, Microsoft, and
Facebook have established research groups to examine novel CNN designs [24]. A CNN
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deals with raw images and, in some cases, minimizes the data pre-processing tasks. The
AlexNet [25], ResNet [26], Squeeze-MNet [27], and Unet [28] networks are typically used
in computer vision tasks. However, a CNN needs a large dataset and several layers to
understand the global context or relationships between latent features in an image [29].

A recurrent neural network (RNN) [30] (Figure 3b) is a type of artificial neural network
(ANN) in which the connections between nodes create a directed graph over time, which
is used in sequential data processing. In general, RNNs are applied to sequential data,
but they are not the primary choice for sequential image processing. Images are spatial
data and the sequential dependencies in pixel values vary across an image. In this case,
image data are treated as a time series (e.g., frames of a medical imaging sequence), and
RNNs are applied to capture temporal dependencies and variations over time. In MRI
reconstruction, RNNs are employed to dynamically adjust the sampling pattern during
the acquisition process. However, RNNs are prone to vanishing and exploding gradient
problems during training. Long sequences can result in vanishing gradients, where the
gradients become very small and hinder learning. Conversely, exploding gradients can
cause instability during training. Recently, advanced recurrent architectures, such as
long short-term memory (LSTM) and gated recurrent units (GRUs) have been developed
to address some of the issues associated with traditional RNNs. Deep RNNs [31] and
ConvLSTM [32] models are typically used for image reconstruction and classification.
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A generative adversarial network (GAN) [33] (Figure 3c) is more realistic than a CNN
and does not require pre-processing. Conversely, this model is more complex than other
models, e.g., CNNs and RNNs. A GAN comprises a discriminator and a generator. Given a
random variable input, the generator produces data samples. The probability of a particular
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sample coming from the true dataset is estimated by the discriminator. In the context of
MRI reconstruction, GANs can be used to generate realistic and high-quality images from
undersampled or noisy MRI data. The generator learns to fill in missing information, gener-
ating images that closely resemble the fully sampled counterparts. The discriminator plays
a crucial role in distinguishing between generated (reconstructed) images and real images.
The discriminator’s objective is to minimize the binary cross-entropy loss function. It
learns to assign high probabilities to real images and low probabilities to generated images.
The loss is backpropagated through the discriminator to update its parameters. However,
training GANs can be unstable, and finding the right balance between the generator and
discriminator can be challenging. The training process is sensitive to hyperparameters, and
achieving convergence can be difficult. RadialGAN [34] and StarGAN [35] are the most
popular GAN architectures.

Encoder–decoder architectures [36] (Figure 3d) are indeed a common and powerful
design pattern in various DL applications, including computer vision and natural language
processing. These architectures are particularly prevalent in tasks that involve transforming
one type of data into another, such as image-to-image translation, sequence-to-sequence
tasks, and generative models. The general structure of an encoder–decoder architecture
consists of two main components. These encoder–decoder architectures showcase the flexi-
bility and adaptability of the framework for various image reconstruction tasks. Depending
on the specific requirements of a task, researchers and practitioners choose or design ar-
chitectures that best suit the characteristics of the data and the goals of the reconstruction.
These architectures are designed to learn the mapping between undersampled or corrupted
MRI data and fully sampled or high-quality images. Variations of these architectures [37]
are commonly used in the field of medical imaging for tasks like MRI denoising, super-
resolution, and artifact correction. However, encoder–decoder architectures may lose fine
details during the encoding and decoding process. This can be problematic for tasks that
require precise details, such as fine-grained image generation. A variational autoencoder
(VAE) [38] is used for MRI reconstruction.

The transformer [39] (Figure 3e) was developed recently and is popular in natural
language processing (NLP) based on its even-deeper mapping, sequence-to-sequence model
design and adaptive self-attention. Unlike traditional RNN-based models, which process
the input sequence sequentially, the transformer is able to process the entire sequence in
parallel. The transformer consists of two main modules: the encoder and the decoder.
The encoder discovers the input sequence and generates a set of hidden representations,
while the decoder uses those representations to generate the output sequence. Both the
encoder and the decoder consist of multiple layers of self-attention and feedforward neural
networks. One of the key advantages of the transformer is its ability to handle long-range
dependencies in the input sequence and its computational efficiency. It has been used for
image analysis in terms of object detection [40] and image recognition [41]. The transformer
is used in MRI in a variety of ways [42], given its superior capability in image reconstruction
and synthesis, as shown in natural images. However, transformers involve a quadratic
self-attention mechanism, making them computationally expensive for large inputs. This
complexity can be a limitation, particularly when dealing with high-resolution images.

3.2. DL Tools

DL tools are used to develop models for generating good results. Several popular
open-access DL tools used in MRI processing are listed in Table 1. Among them, TensorFlow
and PyTorch are widely used.
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Table 1. Deep learning tools.

Ref. Tool Name Description

[43] Deeplearning4j Distributed deep learning library that allows for training models on Java
interoperating with the Python environment.

[44] Julia A flexible and dynamic framework that is more suitable for scientific and
numerical computing.

[45] Keras A Python-based library that is integrated with TensorFlow and used in different
ML algorithms.

[46] MatConvNet A MATLAB toolbox used for image reconstruction, segmentation, and classification
by CNN.

[47] MS cognitive toolkit Describes DNNs as a series of computationally directed graphs, where leaf nodes
represent input parameters and other nodes indicate matrix operation.

[48] Neural designer Data mining tool that was developed by the Artelnics company used in NNs.
[49] PyTorch Developed by Facebook, works on complex data and is easy to learn.

[50] Scikit-image Applied for histogram equalization of the input images on various image processing
algorithms.

[51] Sigpy The signal processing package operates on multi-dimensional array plotting and MRI
reconstruction.

[52] TensorFlow Open-source Python framework developed by Google Brain Team that is the most
used tool for developing deep learning models.

[53] TensorFlow Federated (TFF) An open-source framework developed by Google, TFF provides tools for FL. It allows
developers to implement federated models and train them across distributed devices.

[54] PySyft PySyft is a flexible and powerful library for encrypted privacy-preserving ML. It
extends PyTorch and TensorFlow to enable the security of FL.

[55] Substra
In 2016, a multi-partner research project developed this FL framework. It concentrates
on the medical industry to protect patient privacy and data ownership. It is currently
utilized by the pharmaceutical industry for drug discovery.

3.3. Network Training Strategies
3.3.1. Supervised and Unsupervised Learning

Supervised learning is a common technique used in medical image analysis, including
the analysis of MRI data. In supervised learning, a machine learning model is trained
on a labeled dataset, where each input (in this case, an MRI image) is associated with a
corresponding output (typically, a label or annotation). The model learns to map inputs
to outputs by identifying patterns and relationships in the training data. Supervised
learning in MRI has been applied to a wide range of tasks, including tumor detection and
segmentation, disease classification, image registration, and more. It has the potential to
significantly enhance the accuracy and efficiency of medical image analysis. However, it
also requires large and high-quality labeled datasets and careful validation to ensure its
reliability in clinical practice.

Unlike supervised learning, where the algorithm is provided with labeled training
data (input–output pairs), unsupervised learning [56] involves working with unlabeled
data. The goal of this learning is to find patterns, structures, or representations in the data
without specific guidance regarding the output. Unsupervised learning methods [57,58] are
particularly valuable when dealing with large and complex MRI datasets, as they can reveal
hidden structures and patterns within the data without the need for extensive manual
labeling. Real-time 3D MRI reconstruction from cine-MRI using unsupervised networks
involves leveraging neural networks to reconstruct dynamic 3D MRI volumes from a
sequence of 2D images acquired over time (cine-MRI) [59]. However, the interpretation
of the results obtained from unsupervised learning can be more challenging and often
requires domain expertise to make meaningful clinical inferences. These methods are an
essential part of the toolkit for researchers and clinicians working with MRI data.

Semi-supervised learning [60] is a machine learning paradigm that combines elements
of both supervised and unsupervised learning. It is particularly useful when you have
access to a small amount of labeled data and a large amount of unlabeled data. It is espe-
cially valuable in scenarios where acquiring large amounts of labeled data is challenging.
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This learning can leverage the available labeled data to improve the model performance on
tasks such as classification, segmentation, or regression. Semi-supervised learning in MRI
analysis offers the advantage of leveraging both labeled and unlabeled data to enhance
model performance. By combining the strengths of supervised and unsupervised learning,
semi-supervised approaches have the potential to improve the accuracy and robustness of
MRI-based diagnostic and analysis tasks.

Self-supervised learning [61] is an emerging and powerful technique for training
machine learning models, especially in scenarios where obtaining labeled data is challeng-
ing or expensive. Self-supervised learning is a type of unsupervised learning where the
data itself provide supervision for training. This learning in MRI analysis leverages the
inherent structure and properties of MRI data to guide the training process, making it a
valuable approach for improving the quality of MRI images, enhancing data availability,
and addressing various challenges in MRI research and clinical applications. It is an area of
active research with the potential to significantly impact the field of medical imaging.

3.3.2. Transfer Learning

Transfer learning (TL) [62] is the process of learning a new activity more effectively
by transferring the knowledge acquired in one or more source tasks and applying it to the
learning of a related target task. The development of methods for knowledge transfer is a
step toward making ML as effective as human learning. Using information from the source
task, TL aims to enhance learning in the target task. To improve DL network performance,
the model complexity is typically increased by raising the architecture’s numbers of layers
and nodes. Multiple model parameters must be accurately learned using a large amount of
training data. The performance of a model’s reconstruction is typically improved by adding
training data. However, because preserving k-space data is not part of the typical clinical
flow, it is challenging to obtain patient raw data for training the network. Consequently, the
generalizability of a network based on a few samples needs to be improved. Figure 4 shows
a diagram of TL, in which the trained model uses the input and reference brain images for
learning. After training, it shares the learning knowledge (weights) with a different model
to reconstruct an image of a knee.
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A TL strategy addresses the lack of data issues during network training for rapid
MRI [63]. For single-channel MRI reconstruction, Arshad et al. [64] assessed a trained
Unet on MRIs with different magnetic field strengths, anatomical variations, and under-
sampling masks. However, none of the studies described above have made use of the
generalization ability of multi-channel MRI reconstruction models. The generalizability of
a TL-based model for sub-sampled multi-channel MRI reconstruction using GAN has been
evaluated [65,66]. Park et al. [67] reported a blended TL technique for both the pre-training
and target compressed cardiac cine MRI datasets to mitigate data-privacy concerns. Dy-
namic dictionaries based on the TL approach [68] employed a limited number of training
samples and prior knowledge about the unknown signal to precisely rebuild the image
by transferring the existing sample information to the unknown sample. By learning the
relationship between the navigator and data slices, Gulamhussene et al. [69] suggested
a unique time-resolved four-dimensional (4D) MRI framework based on the same acqui-
sition scheme. In TL, network training is carried out in a domain with many accessible
datasets, and information obtained by the trained network is subsequently transferred to a
different domain with undersampled data. However, the performance of TL depends on
the availability of diverse and representative data during pre-training. If the pre-training
data lack diversity in terms of the imaging conditions, patient demographics, or pathology,
the transferred knowledge may not effectively address the complexities of the target MRI
reconstruction task.

3.3.3. Federated Learning

Deep networks frequently need large amounts of diversely matched data, which
can be labor- and cost-intensive to obtain. Furthermore, retaining patients’ data raises
privacy concerns, making it challenging to share the information with other institutions.
This problem is addressed by the recently developed FL framework [70], which enables
the cooperative and distributed training of DL-based techniques. In FL, data are stored
locally, and statistical models are trained across segmented data centers or remote devices,
e.g., smartphones or hospitals. The training of diverse and possibly large networks poses
unexpected problems that call for a fundamental change from conventional methods for
large-scale DL, remote optimization, and confidentiality data analysis. To create a global
model, a cloud server communicates explicitly with each institution on a regular basis
before sharing the data with all the institutions. Each organization uses and maintains its
own set of personal information. FL algorithms communicate only about model parameters
or update gradients rather than sending actual training data, alleviating privacy concerns.
Figure 5 shows communication between global (server side) and local models among
several institutions during training. Local models learn from local data and share their
weights with the global model.

Li et al. [71] proposed an FL strategy in which shared local model weights are adapted
via a randomization procedure while a decentralized iterative optimization process is
applied. Their FL framework encompasses two domain algorithms based on the systemic
heterogeneity of functional MRI distributions from various sites. Domain shifts between
sites in current FL-based MRI reconstruction efforts have not been investigated extensively.
To increase the homogeneity of latent-space interpretations in reconstruction approaches,
adversarial connectivity between the source and destination sites was suggested by Guo
et al. [72]. Feng et al. [73] concentrated on the confidentiality of multi-institutional informa-
tion in MRI image reconstruction by using the domain shift. Their reconstruction models
were divided into a global encoder (used at all sites) and local decoders (individually
trained at each site). Elmas et al. [74] suggested a two-stage reconstruction method that
involves relating the imaging operator input and cross-site adaptation of a generative MRI
baseline. A continuous adversarial model that creates a high-quality image from low-
dimensional dependent variables generated by a mapper captures global MRI knowledge.
By allowing various institutions to collaborate without having to combine local data, FL
can increase data privacy. However, the domain shift of MRI methods can markedly reduce
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the FL model performance. Levac et al. [75] explored FL for MRI reconstruction by training
global models across several clients (data sites) with local scans through employing end-to-
end unrolled DL models. An algorithm, FedPR [76], was presented to learn federated visual
prompts in the global prompt null space for MRI reconstruction. The review article [77]
emphasized the difficulties of using FL in applications related to medical imaging and
offered suggestions for future developments. The generalizability of models trained using
FL is inadequate [78]; its improvement is a focus of research.
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4. MRI Reconstruction Methods

In MRI, the k-space is a mathematical representation of the raw data acquired during
the imaging process. During an MRI scan, the imaging process involves the use of strong
magnetic fields and radiofrequency pulses to excite and manipulate hydrogen nuclei in the
body. The resulting signals, known as echoes, are detected by the MRI machine. The raw
data collected during an MRI scan can be represented in two domains: the spatial domain
(image space) and the frequency domain (k-space). The spatial domain corresponds to the
actual image space, while the k-space represents the spatial frequency information. The
reconstructed image is generated from the transformed k-space data. Different regions of
the k-space contribute to different image features. The center of the k-space contains low-
frequency information that corresponds to the overall structure of the image, while the outer
regions contain high-frequency details. Understanding the k-space is crucial for optimizing
MRI acquisition parameters, designing efficient pulse sequences, and developing advanced
reconstruction techniques. It is also relevant in the context of techniques such as parallel
imaging, compressed sensing, and machine learning-based reconstruction methods that
leverage k-space data for accelerated imaging. In general, the Fourier space or k-space
describes the data acquired from the MRI scanner, and is denoted by:

I = IFFT(K) (1)

where I is the reconstructed image, IFFT is the inverse fast Fourier transform, and K is the
k-space data. In case of PI-MRI, the acquired data from multiple coils are combined to
reconstruct the image [79]. Let Sc(p, q) represent the sensitivity profile of the c-th coil and
Kc(u, v) represent the k-space data acquired by the c-th coil. The combined k-space data
K(u,v) are obtained by weighting and summing the data from each coil:

K(u, v) = ∑c Sc(p, q)· Kc(u, v) (2)
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The final reconstructed image Irec(p, q) is obtained by applying the IFFT to the com-
bined k-space data:

Irec(p, q) =
x

K(u, v)· e2πi(up+vq)du dv (3)

Acquiring data across the entire k-space in MRI can be time-consuming. The time
required for data acquisition is influenced by factors such as the number of phase-encoding
steps, the repetition time, and the field of view. To address this issue and reduce scan times,
various acceleration techniques are employed, and undersampling is one of the commonly
used approaches. Undersampling involves acquiring only a subset of the k-space data,
allowing for faster image acquisition. This can be expressed as:

I = IFFT (K·M) (4)

In this case, M is an undersampled distribution that generates an undersampled
k-space via element-wise multiplication with a fully sampled k-space. In PI-MRI, under-
sampled k-space data Kunder(u, v) are obtained via element-wise multiplication of the mask
M(u,v) with the fully sampled k-space data:

Kunder(u, v) = K(u, v)·M(u, v) (5)

Then, several approaches are used for reconstructing images from this undersampled
k-space. DL is one of the vital approaches for generating high-quality images from un-
dersampled data. DL methods emphasize real-time MRI reconstruction and accelerated
imaging techniques to reduce scan times and enhance patient comfort for both the PI- and
CS-MRI. Advanced DL architectures, including CNNs, RNNs, attention mechanisms, and
generative models (GANs and VAEs), are continuing to be explored for improved MRI
reconstruction. A DL model is trained by both fully and partially sampled k-space data
with corresponding images. Two training approaches are used in DL: supervised and
unsupervised. Reinforcement learning (RL) [80] is also used in MRI processing. Image
reconstruction methods using DL are classified as single- or multi-domain.

4.1. Single Domain Approach

A single-domain method is a reconstruction architecture that uses a single NN; an
image space or k-space domain. Figure 6a–c show the functionality of an NN of the three-
single-domains methodology. The usability of the image domain (Figure 6a) is similar to
that of DL-based conventional (non-medical) image processing. Several image enhancement
operations—such as denoising, super-resolution, and de-aliasing—can be performed using
prior knowledge from large training datasets. The image is first reconstructed from zero-
filled k-space data via IFFT and then a DL approach is applied to this reconstructed image. A
deep cascade CNN architecture [81] independently reconstructs dynamic sequences of two-
dimensional (2D) myocardial MRIs from every frame. Yang et al. [82] combined adversarial
and innovative content losses but calculated the FFT of magnitude images instead of MRI
raw data. Quan et al. [83] measured the cyclic loss using an autoencoder and GAN-based
fully residual network, but only with training datasets. To discriminate between channels
and lessen the background noise, Li et al. [84] presented a channel attention mechanism that
combines dilated residual networks with a GAN. Phase-contrast MRI reconstruction [85]
encodes low-frequency sections in the phase direction, although high frequencies are
essential for storing image edges. K-space sampling strategies [86] play a crucial role in
MRI and directly impact the quality and efficiency of image reconstruction. The k-space
represents the spatial frequency information of the imaged object and is sampled during
the MRI data acquisition process. Cartesian and non-Cartesian (random, Poisson-disc) are
some common k-space sampling strategies [87]. A new sample pattern that combines the
random and non-random frequencies of the phase direction was proposed by Hossain
et al. [88]. Additionally, they developed an enhanced fully dense NN, which employs
attention gates to eliminate redundant features. A U-net-based fused attentive-GAN [89]
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and super-resolution-GAN [90] have been applied to local fusion feature blocks to increase
the image resolution. These methods enable only qualitative measurement of reconstructed
images. Pixel-wise maps of reconstructed single-coil knee images based on VAE were
reported [91], although perceptual mapping is important for the contextual and edge
details of an image. To restore the fine details and eliminate noise, both global and local
viewpoints are proposed by Gao et al. [92] but have high computing requirements and
limited generalization to unknown data and imaging settings. However, the increased
resolution hampers a full diagnosis of parts, which is essential for radiology.

The DL model in the sensor domain (Figure 6b) is used to estimate the abandoned
frequencies. Multiple-slice k-space learning [93] interpolates a k-space based on different
adjacent slices but does not recombine the features of these slices. An adaptive CNN [94]
applies a residual encoder–decoder network using complementary information of spa-
tially adjacent slices. However, this method is sensitive to changes in noise levels and
acquisition specifications. K-space learning [95] uses a fully data-driven technique for
k-space interpolation based on the low-rank Hankel matrix method [96] that interpolates
the adjacent slices independently. The active MRI k-space [97] is trained using a fixed
number of low frequencies but overlooks the issues of MRI phase-encoding sampling.
RAKI [98] is a scan-specific approach that trains both linear and non-linear components
based on the ResNet architecture, but it uses fixed learning rates that are not ideal for all
situations. LORAKI [99] used RNNs to restore lost k-space data based on a scan-specific
approach that trains the autocalibration signal by updating the weight for each k-space
input data; as a result, this method requires more time for computation. Using a recurrent
variational network, high-fidelity multi-coil MRI restoration is proposed [100], but it needs
more memory during training to gather gradients for back-propagation for computing the
loss function.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 6. Single-domain MRI reconstruction methods: (a) image domain, (b) k-space domain, and 
(c) direct mapping. IFFT, inverse fast Fourier transformation. 

The transformation of under-sampled k-space data into uncorrupted images can be 
learned directly (Figure 6c). Zhu et al. [101] performed training using a large database of 
paired synthesized undersampled input data via a feed-forward DNN with fully con-
nected layers and reconstructed the desired output images. Due to the large memory re-
quirements of the fully connected layers, this method recovered images without interpo-
lating the missing k-space samples. As a result, the images reconstructed using this 
method have noise and artifacts. Additionally, it is suitable only for relatively small im-
ages. By addressing this issue, an end-to-end MRI reconstruction (ETER-net) [102] pro-
posed an architecture based on the RNN. Compared to fully connected architectures, this 
proposed scheme reconstructs images from k-space data with fewer parameters using the 
Cartesian trajectory. However, the RNN used in the ETER-net included characteristics 
only in the horizontal and vertical dimensions, which could affect performance. 

4.2. Multi Domain Approach 
A cross-domain (Figure 7a) method operates in both the frequency and image do-

mains. The frequency/sensor domain network attempts to estimate the unacquired fre-
quencies; subsequently, the network of the spatial domain performs the image enhance-
ment operation. KIKI-net [103] and hybrid-cascade-net [104] encapsulate data-consistency 
layers to train both domains. Hybrid-cascade-net applied six CNN blocks: two for the 
sensor domain and four for the next domain. By contrast, KIKI-net used four CNNs, and 
each network contained 100 convolutional layers and was trained independently to gen-
erate random sampling points in the k-space. However, they used magnitude images from 
an undersampled k-space as input instead of raw k-space data, which could have an im-
pact on performance. Dynamic cardiac MRI sequences were reconstructed by combining 
the temporal sequence dependencies [105]. The dual-domain cascade [106] reconstructs 
one image per channel via the sum-of-squares method using four Unets in each channel. 

Figure 6. Single-domain MRI reconstruction methods: (a) image domain, (b) k-space domain, and
(c) direct mapping. IFFT, inverse fast Fourier transformation.



Sensors 2024, 24, 753 13 of 26

The transformation of under-sampled k-space data into uncorrupted images can be
learned directly (Figure 6c). Zhu et al. [101] performed training using a large database of
paired synthesized undersampled input data via a feed-forward DNN with fully connected
layers and reconstructed the desired output images. Due to the large memory requirements
of the fully connected layers, this method recovered images without interpolating the
missing k-space samples. As a result, the images reconstructed using this method have noise
and artifacts. Additionally, it is suitable only for relatively small images. By addressing this
issue, an end-to-end MRI reconstruction (ETER-net) [102] proposed an architecture based
on the RNN. Compared to fully connected architectures, this proposed scheme reconstructs
images from k-space data with fewer parameters using the Cartesian trajectory. However,
the RNN used in the ETER-net included characteristics only in the horizontal and vertical
dimensions, which could affect performance.

4.2. Multi Domain Approach

A cross-domain (Figure 7a) method operates in both the frequency and image domains.
The frequency/sensor domain network attempts to estimate the unacquired frequencies;
subsequently, the network of the spatial domain performs the image enhancement oper-
ation. KIKI-net [103] and hybrid-cascade-net [104] encapsulate data-consistency layers
to train both domains. Hybrid-cascade-net applied six CNN blocks: two for the sensor
domain and four for the next domain. By contrast, KIKI-net used four CNNs, and each
network contained 100 convolutional layers and was trained independently to generate
random sampling points in the k-space. However, they used magnitude images from an
undersampled k-space as input instead of raw k-space data, which could have an impact on
performance. Dynamic cardiac MRI sequences were reconstructed by combining the tem-
poral sequence dependencies [105]. The dual-domain cascade [106] reconstructs one image
per channel via the sum-of-squares method using four Unets in each channel. The correla-
tion between the image and frequency domains with variable consistency is described by a
dual-domain deep lattice network [107]. IKWI-net [108] accepts both zero-filled k-space
and images as input by applying four CNNs in the image, k-space, wavelet, and image
domains. Multi-domain-CNN [109] used ResNet for k-space interpolation via multiple
convolutional kernels and then a Unet was applied to reconstruct radial cardiac MRI. Ran
et al. [110] developed the MRI dual-domain network (MD-Recon-Net) to investigate the
implicit connection between spatial data and the k-space, but it restricted extrapolation
to unknown data and imaging circumstances. The double-domain GAN [111] method
preserves structural features and eliminate aliasing artifacts, but it is limited to clinical
usability validation. Although these multi-domain models reconstructed high-quality
images until now, they require a long time to train raw and image data. Figure 7 shows the
operation of an NN as a component of a multi-domain methodology.

The iterative unrolled optimization method (Figure 7b) translates the measured k-space
to the appropriate reconstructed image via unrolling iterations. The image transformation,
sparsity-promoting functions, regularization parameters, and update rates can be viewed
explicitly or implicitly, and back-propagation is used to fit them during training. Compared
to conventional optimization, this method is more suited for learning image features.
Model learning [112] gradually reduces the constraints using three convolutional layers in
each primal–dual network block. A deep unrolling network [113] employs a variational
architecture to capture image redundancy, which is built up of interleaved CNN blocks. A
dense RNN [114] uses a multi-coil fastMRI knee dataset by applying a smaller number of
iterations than the proximal gradient descent. However, over-imposing sparsity or penalties
can produce cartoons or staircase artifacts. Jain et al. [115] developed an ideal representation
of the magnitude and phase information in the data by using complex-valued operations
on an iterative optimization network for MRI reconstruction, but it restricted extrapolation
to unknown data and imaging circumstances. Non-trivial normalization methods and
hyper-parameters must be selected carefully for optimization-based techniques. Due to the
iteration, the reconstruction rates of these methods are typically slow.
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4.3. Transformer-Based Reconstruction

Because convolutions are efficient feature extractors, CNNs have long held a privileged
place in CV. The GAN-based model and many DL-based MRI reconstruction techniques
are based on CNNs. Convolution, which is locally sensitive and independent of distance,
provides the foundation for CNN feature extraction. CNNs’ receptive fields are constrained
by the network depth and convolutional kernel. A large convolutional kernel increases
the computing costs significantly, and a deep network can result in gradient vanishing.
A transformer [116] is an NN architecture introduced in 2017. It was originally designed
for machine translation but has since been applied to a wide range of NLP tasks, such as
language modeling, summarization, and question-answering. Numerous studies have used
a vision transformer or its modifications for MRI reconstruction after it demonstrated good
performance in the CV sector. For instance, a Swin transformer reconstruction network
was the foundation of a cascade framework created by Huang et al. [117] that considerably
improved the image quality. The disadvantage of 2D convolution (Conv2D) and the
concept of multi-head self-attention (MSA) are shown in Figure 8A [117]. The advantage of
shifted windows-based multi-head self-attention (W-MSA/SW-MSA) is shown in Figure 8B.
Conv2D lacks long-range dependency and is locally sensitive. The receptive fields of MSA
and (S)WMSA are greater than those of Conv2D. W-MSA and SW-MSA are alternatively
used in Swin transformers and executed in shifted windows; MSA operates in the entire
image space.

Zhou et al. [118] suggested a combined image and k-space domain self-supervised
learning method, which improved the reconstruction outcomes, to train a transformer in a
self-supervised strategy. To accomplish the zero-shot reconstruction of undersampled data
via optimizing the network parameters and latent and noisy variables, an unsupervised
MRI reconstruction approach based on a zero-shot learning adversarial transformer was
developed by Korkmaz et al. [119]. Liu et al. [120] used a deep data consistency block and a
spatial attention selection module to restore MRI images with missing data recovered, but it
lacked generalization and needed high processing costs. For the network to be as consistent
as possible with undersampled MRI data, a transformer and a contrastive training strategy
were merged. Huang et al. [121] created an edge-enhanced GAN-based Swin transformer
network and a texture-enhanced GAN-based Swin transformer network to capitalize on
the advantages of the transformer and GAN architectures for MRI reconstruction. Lyu
et al. [122] used a multi-view GAN transformer to recreate the cardiac MRI, but it is not
appropriate for PI and necessitates a lot of network settings. There are challenges when
using transformer-based models for image reconstruction, such as handling high-resolution
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images and maintaining the spatial coherence of the output. Nonetheless, recent research
has indicated that transformer-based models have potential for image reconstruction.
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4.4. DL-Based 3D Reconstruction

DL-based three-dimensional (3D) reconstruction techniques [123,124] leverage NNs to
infer the 3D structure of objects or scenes from 2D images or other input data. Recently,
these techniques have gained popularity in CV and computer graphics due to their ability to
generate detailed and accurate 3D shapes. DL-based techniques [125,126] are applied in the
reconstruction of 3D MRI data to enhance the speed, quality, and efficiency of the imaging
process. 3D CNNs [127,128] are used to directly learn the mapping from undersampled or
corrupted MRI data to fully sampled or high-quality images. VAEs are trained to generate
realistic 3D MRI volumes and subsequently used for reconstruction tasks [129]. GANs
provide a way to enhance the resolution of 3D MRI volumes by leveraging advancements
in 2D GAN super-resolution techniques [130]. The effect of this model is contingent on the
ability of the 2D GAN to effectively learn and generate high-quality, realistic details in the
MRI slices. The hybrid model [131] combining VAE and GAN tried to generate high-quality
and realistic 3D MRI volumes while also ensuring that the generated volumes adhered to
the distribution learned by the VAE. Recurrent GAN [132] is employed to capture temporal
dependencies in dynamic MRI sequences, aiding in the reconstruction of moving structures.
Attention mechanisms, such as self-attention or transformer-based architectures [133], are
applied to capture long-range dependencies in 3D MRI data, improving the reconstruction
quality. It is worth noting that the choice of the specific technique depends on the charac-
teristics of the MRI data, such as whether the data are static or dynamic, fully sampled or
undersampled, and the imaging modality (e.g., structural, functional, or diffusion MRI).
Researchers continue to explore new architectures and methods to further advance the field
of deep learning-based 3D MRI reconstruction.

5. Datasets and Source Codes

In this section, we describe the publicly available open-source codes of several DL-
based MRI reconstruction methods and their datasets.

5.1. Datasets

When applying DL algorithms to a given area, data scarcity is a typical issue, and it
is exacerbated in the case of medical image interpretation. Most researchers employing
DL approaches to medical image analysis algorithms are computer scientists. Medical
data are typically owned by institutions, which are unable to make them public due to
privacy and ethics concerns. A major challenge in DL research is the large size of public
datasets, especially those of MRI. Several protocols are used to store medical data. The
brain imaging data structure (BIDS) and neuroimaging informatics technology initiative
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(NIFTI) are standards for MRI brain datasets. The digital imaging and communications in
medicine (DICOM) protocol is commonly used to store, transmit, process, and display med-
ical images. The International Society for Magnetic Resonance in Medicine (ISMRM) [134]
provides an MRI raw data standard. The performance and accuracy of a DL-based al-
gorithm depend on proper data collection and preprocessing. Several institutions and
academics have organized DL-based medical image analysis competitions [135,136] to
encourage computer-assisted medical image processing. Additionally, they have published
medical imaging datasets for a variety of purposes. The medical image computing and
computer-assisted intervention (MICCAI) [135] is an organization that aimed at identifying
the underlying technologies in a wide range of applications, promoting their technical
and clinical validation, and collaborating with physicians and medical associations to set
evaluation criteria. FastMRI [136] provides fully sampled single- and multi-coil MRI raw
knee and brain data, and DICOM images obtained using 1.5 and 3 Tesla (T) magnetic fields.
OpenNeuro [137] contains MRI and electroencephalography (EEG) neuroimages based on
the BIDS protocol. The Autism Brain Imaging Data Exchange (ABIDE) [138] contains func-
tional MRI data. The Open Access Series of Imaging Studies (OASIS) [139] contains brain
MRI data created at Washington University. The Human Connectome Project (HCP) [140]
provides brain MRIs obtained using four imaging modalities with 3 and 7 T magnets.
Calgary-Campinas [141] offers T1-weighted brain MRI datasets obtained using 1.5 and 3 T
magnets. Brain tumor segmentation (Brats) [142] stores T1 and T2 brain MR images focused
on glioma segmentation. Mridata [143] contains fully sampled complex-valued k-space raw
knee data from several vendors. IXI [144] stores T1, T2, PD, and diffusion tensor imaging
(DTI) brain MRIs in NIFTI format. The Internet Brain Segmentation Repository (IBSR) [145]
contains T1-weighted MRI brain images. The main objective of the Brats, OASIS and
IXI datasets is image segmentation, but they are also used for MRI reconstruction tasks.
However, many of the DL-based MRI reconstruction methods simulate k-space data from
the FFT of images instead of MRI raw data.

5.2. Open-Source Codes

Several DL-based open-source codes have been implemented to reconstruct MRI,
most in Python programming languages. Table 2 lists the open-source codes of DNNs for
MRI reconstruction together with the network type, DL tool, datasets, and input domain.
Among them, some methods are used for motion artifact correction.

Table 2. Open-source codes for MRI reconstruction.

Ref. Network DL Tool Dataset Domain

[146] RL PyTorch v0.3.1 fastMRI knee Image
[147] GAN TensorFlow v1.4 Mridata Image
[148] RNN PyTorch v0.4 Mridata Dual/cross
[149] RL PyTorch v0.3 fastMRI Sensor

[150] CNN MatConvNet
v1.0-beta24 Mridata Sensor

[151] CNN TensorFlow
v1.11

Calgary-Campinas-
359 Dual/cross

[152] CNN TensorFlow v1.7 Private knee and
brain data Iterative

[153] CNN Keras v2.0.4 OASIS brain data Image

[154] VAE TensorFlow
v1.15 Globus [155] Iterative

[156] CNN TensorFlow v2.8 fastMRI, OASIS Benchmarking
[157] CNN PyTorch v0.3 IBSR-18 Iterative

[158] Densely attention
CNN TensorFlow v2.4 Brats, fastMRI, IXI Image

[159] Residual attention
CNN TensorFlow v2.4 Calgary-Campinas Dual/cross
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Table 2. Cont.

Ref. Network DL Tool Dataset Domain

[160] Swin Transformer PyTorch v1.9 Calgary-Campinas,
Brats Iterative

[161] TL, GAN TensorFlow v2.3 Calgary-Campinas,
Mridata Image

[162] FL PyTorch v1.1 ABIDE -
[163] FL PyTorch v1.7 fastMRI, Brats -
[164] Encoder-decoder PyTorch v0.2 FastMRI knee Image
[165] GAN TensorFlow v1.7 Brain data Image

[166] Encoder-decoder TensorFlow,
PyTorch IXI, fastMRI Benchmarking

[167] VAE TensorFlow
v1.14 HCP 3D Imaging

[168] VAE-GAN PyTorch v0.4 Brats 3D Imaging

[169] Unet TensorFlow v2.0
Private MRI brain

data
Motion artifact

correction
[170] Stacked Unet TensorFlow v2.3

[171] CNN MatConvNet
v1.0-beta 19

6. Implementation Challenges and Future Perspectives

Deep learning architectures have demonstrated remarkable capabilities in various
clinical applications, including MRI image reconstruction. State-of-the-art DL models are
often designed to address specific intents in clinical scenarios, providing improvements
in accuracy, speed, and overall diagnostic capabilities. DNNs, VAEs, and GANs have
accelerated the MRI acquisition times for clinical scans, reducing patient discomfort and
improving the overall workflow efficiency. CNNs with attention mechanisms and U-net
architectures have enhanced spatial resolution in MRI reconstructions, providing detailed
images for the improved visualization of anatomical structures. Autoencoders and CNNs
with residual connections have reduced the noise in MRI images, particularly in low signal-
to-noise ratio (SNR) scenarios, to improve the image quality and diagnostic confidence.
CNNs with attention mechanisms and GANs have mitigated the common artifacts in
MRI, such as motion artifacts, aliasing artifacts, and susceptibility artifacts, to enhance
diagnostic accuracy. The CycleGANs and U-net variants have generated MRI-like images
from other imaging modalities (e.g., computed tomography) or synthesizing different MRI
contrasts, aiding in multi-modal image analysis and clinical decision-making. RNNs and 3D
CNNs have facilitated real-time reconstruction for dynamic imaging (e.g., cardiac imaging)
and improved the temporal resolution of functional MRI (fMRI) studies. These clinical
applications showcase the versatility of state-of-the-art DL architectures in addressing
various tasks in relation to MRI reconstruction.

Despite technological breakthroughs in DL for MRI reconstruction, many challenges
remain to be overcome [17]. Quantitative measurements such as the structural similarity
index, mean-squared error, root-mean-squared error, and peak signal-to-noise ratio are
frequently used to assess the performance of a network. However, in clinical applications,
prospectively acquired data reconstructed using DL need to be evaluated for qualitative
image quality, diagnostic scoring, and measurement of clinical metrics such as the im-
age distortion, edge sharpness, and motion artifacts fidelity. In MRI, various artifacts
can occur that may affect image quality and interpretation. Aliasing artifacts, motion
artifacts, chemical shift artifacts, susceptibility artifacts, and radiofrequency artifacts are
some common artifacts in MRI. These artifacts can arise from a range of sources, including
patient-related factors, hardware issues, and imaging parameters. It is important to note
that artifact mitigation strategies may vary depending on the specific MRI sequence and
clinical scenario. DL models may have trouble with intricate artifacts that considerably
deviate from the distribution of the training data. Model performance on artifacts can be
enhanced by including a variety of artifacts in the training data, utilizing loss functions
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that are data-specific. Some studies employed only magnitude data, whereas others trained
distinct networks for magnitude and phase data [172] or split the real and imaginary com-
ponents into two channels [173]. These procedures do not always preserve the data’s phase
information. The development of complex-valued networks [174] is a focus of research.
It is difficult to compare methodologies and assess their robustness and generalizability
because most studies report results obtained using their own datasets. The generalizability
of DL models is constrained by their requirement for large, labeled training datasets, which
can be difficult to acquire. Techniques for domain adaptation, transfer learning, and data
augmentation can overcome the lack of data and enhance generalization. Because imag-
ing features vary between scanners and methods, models that were trained on particular
datasets may not perform well when applied to data from those other scanners or processes.
Generalization across various imaging contexts can be improved through model ensemble
approaches, federated learning, and domain-specific normalization techniques. DL simula-
tions lack interpretability, transparency, and the capacity to offer thorough justifications for
the outcomes of their estimations or reconstructions. Attention mechanisms, interpretabil-
ity strategies, and incorporation with clinical information or rule-based algorithms are a
few explainable AI techniques that can improve interpretability and produce explicable
outputs. The lack of integration with the clinical environment is a barrier to successful
DL reconstructions in MRI because of their computational complexity. A reduction in the
number of computational resources needed can be achieved using model compression
approaches, effective network topologies, and hardware acceleration. Concerns about the
robustness and dependability of DL models are raised due to the possibility of adversarial
attacks. Model robustness against adversarial attacks can be improved through adversarial
training, input preprocessing (such as denoising and smoothing), and defensive methods
(such as detection and certification). Hyperparameter settings affect DL model perfor-
mance, necessitating careful tweaking. Effective hyperparameter tweaking can improve
model performance.

We highlighted potential directions and trends of DL in MRI reconstruction based
on current research and advancements. Figure 1 shows that this field is ever-evolving
and that there have been fresh advancements implemented in the interim. As DL-based
MRI reconstruction techniques grow and demonstrate their effectiveness in research set-
tings, there is a likelihood of increased adoption in clinical practice. Advancements in
computational power and algorithm efficiency may enable real-time MRI reconstruction
for dynamic imaging applications, such as cardiac imaging and functional MRI (fMRI).
This could significantly improve the ability to monitor physiological processes in real time.
DL-based reconstruction may be integrated with other imaging modalities, such as positron
emission tomography (PET) or computed tomography (CT), to provide comprehensive
and fused imaging information. This integration could enhance diagnostic capabilities and
improve patient care. Future models may focus on improving robustness to variations in
imaging protocols and scanner types. This could facilitate the deployment of DL-based
reconstruction techniques across diverse clinical environments with minimal tuning. DL
models may continue to be developed to handle multi-contrast imaging scenarios efficiently.
Diffusion-weighted MRI (DW-MRI) [175] is a specialized MRI technique that measures the
diffusion of water molecules within tissues. The diffusion model [176] in this context helps
to capture the spatial distribution and characteristics of water diffusion, which is particu-
larly relevant in applications such as diffusion tensor imaging (DTI) and diffusion-weighted
imaging. The ability to reconstruct different contrasts from the same acquired data could
streamline imaging protocols and improve diagnostic information. Standardization efforts
and collaborative initiatives across research institutions, industry, and regulatory bodies
may emerge to establish guidelines and best practices for the development and deployment
of DL-based MRI reconstruction.



Sensors 2024, 24, 753 19 of 26

7. Conclusions

This systematic review of deep learning-based compressed sensing MRI reconstruction
reveals a growing body of literature exploring the synergies between deep learning method-
ologies and compressed sensing techniques. The integration of these two approaches shows
promising results in addressing challenges associated with accelerated MRI scans, includ-
ing reduced acquisition times and improved reconstruction quality. The reviewed studies
demonstrate that deep learning models, such as CNNs and GANs, contribute to the efficient
reconstruction of high-quality images from undersampled k-space data. The key findings
indicate that DL-based methods outperform traditional CS approaches in terms of the re-
construction accuracy and robustness to undersampling artifacts. The ability of DL models
to learn complex relationships within the data enables them to adapt to diverse imaging
scenarios and improve the reconstruction quality across various anatomical structures.

Additionally, network training techniques such as TL and FL offer promising ap-
proaches for collaborative and data-efficient MRI reconstruction, respectively. These tech-
niques help address challenges related to privacy, limited data, and generalization across
diverse datasets in the medical imaging domain. Moreover, this review also highlights
certain challenges and considerations. Issues such as the need for large and diverse datasets,
fine-tuning for specific imaging protocols, and potential overfitting remain areas of con-
cern. The promising outcomes of the reviewed studies suggest that deep learning-based
compressed sensing MRI reconstruction has the potential to revolutionize the field by offer-
ing faster and more efficient imaging protocols. Future research can focus on addressing
the current limitations, standardizing the evaluation metrics, and exploring the clinical
translatability of these advanced reconstruction techniques.
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Abbreviations

2D Two-Dimensional
3D Three-Dimensional
4D Four-Dimensional
ABIDE Autism Brain Imaging Data Exchange
BIDS Brain Imaging Data Structure
Brats Brain Tumor Segmentation
CNN Convolutional Neural Network
CS Compressed Sensing
CS-MRI Compressed Sensing-Magnetic Resonance Imaging
DICOM Digital Imaging and Communications in Medicine
DL Deep Learning
DNN Deep Neural Network
DTI Diffusion Tensor Imaging
FDA-CNN Fully Dense Attention CNN
FL Federated Learning
GAN Generative Adversarial Network
HCP Human Connectome Project
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IBSR Internet Brain Segmentation Repository
IFFT Inverse Fast Fourier Transform
ISMRM International Society For Magnetic Resonance In Medicine
LSTM Long Short-Term Memory
MICCAI Medical Image Computing And Computer-Assisted Intervention
MRI Magnetic Resonance Imaging
MSA Multi-Head Self-Attention
NIFTI Neuroimaging Informatics Technology Initiative
NLP Natural Language Processing
NN Neural Network
OASIS Open Access Series of Imaging Studies
PI Parallel Imaging
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RA-CNN Residual Attention CNN
RL Reinforcement Learning
RNN Recurrent Neural Network
Swin Shifted Windows
SW-MSA Shifted Windows-based Multi-head Self-Attention
T Tesla
TL Transfer Learning
VAE Variational Autoencoder
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