ﬂ Sensors

Article

The Development of a Stereo Vision System to Study the
Nutation Movement of Climbing Plants

Diego Rubén Ruiz-Melero !, Aditya Ponkshe 2, Paco Calvo %3

check for
updates

Citation: Ruiz-Melero, D.R.; Ponkshe,
A.; Calvo, P,; Garcia-Mateos, G. The
Development of a Stereo Vision
System to Study the Nutation
Movement of Climbing Plants.
Sensors 2024, 24, 747. https://
doi.org/10.3390/524030747

Academic Editors: Fernando
Fernandez-Martinez, Manuel

Gil-Martin and Rubén San-Segundo

Received: 6 December 2023
Revised: 21 January 2024
Accepted: 22 January 2024
Published: 24 January 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Ginés Garcia-Mateos 1*

Computer Science and Systems Department, University of Murcia, 30100 Murcia, Spain;
diegoruben.ruiz@um.es

Minimal Intelligence Laboratory (MINT Lab), University of Murcia, 30100 Murcia, Spain;
ponkshe.aditya@gmail.com (A.P.); fjcalvo@um.es (P.C.)

Department of Philosophy, University of Murcia, 30100 Murcia, Spain

Correspondence: ginesgm@um.es

Abstract: Climbing plants, such as common beans (Phaseolus vulgaris L.), exhibit complex motion
patterns that have long captivated researchers. In this study, we introduce a stereo vision machine
system for the in-depth analysis of the movement of climbing plants, using image processing and
computer vision. Our approach involves two synchronized cameras, one lateral to the plant and the
other overhead, enabling the simultaneous 2D position tracking of the plant tip. These data are then
leveraged to reconstruct the 3D position of the tip. Furthermore, we investigate the impact of external
factors, particularly the presence of support structures, on plant movement dynamics. The proposed
method is able to extract the position of the tip in 86-98% of cases, achieving an average reprojection
error below 4 px, which means an approximate error in the 3D localization of about 0.5 cm. Our
method makes it possible to analyze how the plant nutation responds to its environment, offering
insights into the interplay between climbing plants and their surroundings.

Keywords: plant nutation movement; computer vision; image processing; climbing plants

1. Introduction

The nutational movement of climbing plants refers to the rhythmic, circular, or nod-
ding motion exhibited by certain plant parts, such as stems, tendrils, or growing tips, as
they explore and interact with their environment during the process of climbing [1]. This
movement is often associated with the search for support structures, such as poles, trellises,
or other plants, which the climbing plant can use for stability and upward growth [2]. It
occurs as a result of differential growth rates on different sides of the plant organ. As the
plant grows, the cells on one side of the organ elongate more rapidly than those on the
opposite side, causing the organ to bend or curve [3]. This bending or curving allows the
plant to explore its surroundings and find a suitable support for climbing.

Climbing plants, such as common beans (Phaseolus vulgaris L.), employ various mech-
anisms for climbing, including twining, where the plant winds around a support, and the
use of tendrils, specialized structures that coil around objects for support [4].

The study of nutation movements in climbing plants is part of the broader field of plant
tropisms, which involves the growth responses of plants to external stimuli such as light,
gravity, and mechanical touch, first studied in the pioneering works of Charles Darwin [5].
This nutation movement allows climbing plants to optimize their growth in response
to their environment, increasing their chances of successful climbing and their access to
sunlight for photosynthesis. Moreover, it has been the inspiration for the development of
new techniques and methods in robotics [6], computational intelligence [7,8], and other
bioinspired innovations [9].

This current study of nutation and other plant movements requires the recording of
time-lapse images of plants, due to the long time span in which the movements occur,
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and the use of artificial vision algorithms for the efficient analysis of the videos obtained.
For example, Navarro et al. [10] developed a specific capture chamber to monitor the
growth of plants at intervals from 30 s to hours or even days. The captured images were
then analyzed with computer vision algorithms based on thresholding, morphological
operators, and blobs detection. Using the parameters obtained from the blobs, features such
as area, length, compactness, and perimeter were extracted for further analysis. Stolarz
etal. [11] developed software called the “Circumnutation Tracker” to analyze the circular
movement of the tip of the plants in zenithal time-lapse videos. The X and Y positions
of the tip are manually selected by the user, and the system includes useful tools for
the visualization and characterization of the plant movement, automatically extracting
circumnutation parameters.

More recently, Tenzer and Clifford [12] proposed a technique to analyze the growing
movement of hydroponic plants using different neural networks on grayscale images.
U-net, Linknet, FPN, PSPNet, and a 34-layer ResNet architecture were used for comparison,
obtaining a maximum area under the curve (AUC) for the validation set over 0.92. Another
recent method based on deep learning was presented by Mao et al. [13], which proposed a
U-net network architecture to segment the plant. This method is an improvement of their
free software “Plant Tracer”, which analyzed plant movement using the classic computer
vision techniques of object tracking and blob detection. Diaz-Galidn et al. [14] presented a
methodology to analyze the movement of plants using different reference points, which
were obtained from image analysis. This methodology included coordinates transformation,
curve fitting, and statistical analysis, allowing a comparison between different plant species.
Plant movement has also been analyzed using other types of sensors. For example, Geldhof
et al. [15] developed a digital inertial measurement unit (IMU) sensor to measure in real-
time the movement of leaves, achieving a precision of pitch and roll angles under 0.5°.
However, the exact 3D position of the leaves was not obtained.

The aim of this work is to develop a stereo system for the visual tracking of plant
nutation movement, which enables obtaining the precise 3D location of the tip of the plant.
This work was focused on the study of the common bean (Phaseolus vulgaris L.), since the
ultimate purpose is to analyze the differences in the movement between using or not using
a support pole for plants. Previous work from the MINT Lab research group suggests
that the dynamic patterns of plant nutation are influenced by the presence of support
to climb in their vicinity [2]. This fact has also been observed by other researchers. For
example, Guerra et al. [16] analyzed the 3D kinematics of the movement of climbing plants,
demonstrating that plants are not only able to perceive their environment but can also scale
the movement of their tendrils depending on the size of the support.

The objective of this present study is not to analyze these kinematic changes under
different environmental conditions but to develop computational tools for the accurate 3D
measurement of plant tip movement that will be used in further studies. Consequently, for
our analysis to be effective in a broader range of conditions, we obtained data on plants
from different settings, i.e., with and without a support to climb onto. Since the proposed
method is able to reconstruct the 3D position of the tip in both conditions, our method
promises to offer a framework for future studies to analyze how plant nutation responds to
different environments.

2. Materials and Methods

The proposed computer vision method to track the movement of the plant tip is shown
in Figure 1. It consists of five main stages: calibration, data acquisition, plant tip detection
in the top and side images, 3D position estimation, and visualization of the results.

In the following subsections, the characteristics of the experimental setup and the
stereo imaging system are presented first. Then, a brief introduction to the mathematical
foundations and artificial vision algorithms used is given. Finally, the procedure used to
estimate the position of the plant tip at each of the moments captured in the time-lapse
videos is described.
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Figure 1. Pipeline for the proposed computer vision method used to track the plant tip movement.

2.1. Experimental Setup

The experiments were carried out by the MINT Lab research group at the Scientific
and Technical Research Area of the University of Murcia (Spain). These experiments were
conducted under controlled conditions and consisted of two scenarios. In the first scenario,
the climbing plant was placed near a pole, which served as a support for the plant to grip
when it reached its position; in the second scenario, the plant was placed within a cabin
with no pole in it. The pole was 90 cm in height and 1.8 cm in diameter and was placed
at a distance of 30 cm from the plant center. Concerning the soil, a mixture of peat moss
and perlite (70-30%) was used throughout all the experiments. Both cabins were equipped
with white parabolic reflectors to provide symmetrical lighting. The temperature of the
growth chamber was kept constant at 20 °C and the relative humidity at 85% % 5%. We
have to note that, although this is a high relative humidity, plants are able to accomplish
their life cycles successfully with no harm, especially in controlled conditions in which heat
stress can be prevented. A L16:D8 h photoperiod was provided via high-pressure sodium
lamps (Lumatek pulse-start HPS Lamp 250 W; height: 150 cm and photon fluence rate:
430 £ 50 pmol m~2 s~ ! at leaf level). During the 8 h of darkness, a dim phototropically
inactive green safelight (fluence rate under 5 umol m~2 s~1) was activated, which was
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enough to take pictures in the dark using a 4.2 um high dynamic range (115 dB) image
Sensor.

Figure 2 shows an example of these two scenarios, with and without a supporting pole.
Specifically, the plant species used for this experiment were the common bean (Phaseolus
vulgaris L.). Seeds of the cultivar “Garrafal Oro Vega” variety were provided by Semillas
Ramiro Arnedo S.A., Spain (https://www.ramiroarnedo.com). “Garrafal Oro Vega” is
a variety with abundant foliage, having medium-sized leaves and containing 18-20 cm
long pods. The plants went through multiple stages from germination to the start of the
recording. The seeds took 48 h to germinate. Upon germination, the young seedlings
were transferred to coconut fiber growing pellets and kept on propagation trays for further
development. Once the first true leaves matured, which took around 8-12 days from the
young seedling stage, healthy-looking, 25-30 cm tall plants were selected and transferred
into the recording booths for video capture. The videos were recorded until the plant either
grabbed the pole, or the tip came out of the experimental area (i.e., the area visible to the
cameras), which usually happened after 3 or 4 days.

Figure 2. Images of the experiments conducted. At the top, zenithal and lateral images of the
experiment in the no-pole condition; at the bottom, images of the pole condition.

It can be observed in Figure 2 that a dark color was used at the bottom part of the
booth. The purpose of this dark cover was to increase the contrast with the plant contour,
thus enhancing the performance of the algorithm for extracting the position of the plant tip
in the videos corresponding to the top view in time-lapse. We made sure that the white
part remained disproportionately more than the black part. The proportion of the lower
black part was calibrated so that the plants did not show any shade avoidance response,
thereby altering the nutation movement.

Once the young seedlings were transferred to the coconut fiber growing pellets and
kept on propagation trays for further development, 30 mL of water was initially added
every day. Afterwards, when the plants started to mature, they were watered so that around
80% moisture was maintained throughout the growing stage. For recording purposes, the
plants were transferred into big, black plastic pots. At the onset of the recording, 400 mL of
water was added to each plant, which was found sulfficient to keep the soil moist throughout
the recording phase. No extra water was added during the four days of recording.

To estimate the nutational movement of the plant, a stereo pair of cameras was used,
recording synchronously and in time-lapse. The target of the motion tracking was the plant
tip. The configuration of the stereo vision system is shown in Figure 3. This imaging system
consisted of two Brinno TLC200 Pro cameras (Brinno Ltd., Taipei, Taiwan) positioned at the
top and side of the plant, forming a 90° angle. The technical specifications of the cameras
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are shown in Table 1. This top-side configuration of the cameras was chosen because it can
offer high accuracy in detecting the tip of the plant, although it may not be the best choice
for tracking other parts of the plant.
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Figure 3. Configuration of the stereo imaging system that was used. The recording cabin was a
cylinder of 1 m height and 93 cm radius. The lateral camera was situated at 55 cm from the floor, the
zenithal camera at 1.3 m, and the lamp at 1.5 m. The upper reflector had a height of 1 m.

Table 1. Technical specifications of the cameras used in the stereo system.

Characteristics

Type: 1/3"” HDR sensor
Dynamic range: 115 db
Sensor Resolution: 1.3 Mega pixel (1280 x 720 px)
Pixel size: 4.2 um
Sensibility: 3650 mV /lux-sec

Type: CS Mount
Optical lens Aperture: F2.0

Field of view: 112°

Focal length: 19 mm

To synchronize the captured images, the recording was started simultaneously on
both cameras. Each camera used its own internal clock. The images were captured at
one-minute intervals for a continuous 24 h recording, lasting from 3 to 4 days. Because
each camera had its own clock, there could be a slight offset in the images between the
two cameras for some recordings. To determine the number of frames corresponding to
this offset, the light-dark cycle used in the experiments to provide the L16:D8 photoperiod
was used. For this purpose, the zenithal images were used as a reference, based on the
photoperiod changes. During one of the lighting changes, the offset between the top and
side view images was computed, measured as the number of frames of difference. This
number was used in the further analysis of the sequence.

2.2. Mathematical Methods

In general, a camera maps 3D points in space to 2D points on the image plane. The
cameras used in the experiments were modeled using a pinhole camera model. In a pinhole



Sensors 2024, 24, 747

60of 17

model, a ray from a point in space passes through a fixed point called the projection center.
The intersection of this ray with a chosen plane in space, the image plane, is the projection
of the point on the image plane [17]. The projective transformation given by a pinhole
camera model is as follows:

sp = A[Rt]Py 1

where:

s is an arbitrary scaling factor of the projective transformation.

p is the 2D pixel on the image plane.

Py, is the 3D point expressed in the world coordinate system.

A is the matrix with the intrinsic parameters of the camera.

R and t are the rotation and translation, respectively, describing the coordinate change
from the world to the camera coordinate system.

The matrix with the intrinsic parameters is composed of the focal lengths, f, and f,,
expressed in pixel units, and the principal point of the camera, (Cy, Cy).

fo 0 G
A=10 fy G 2
0o 0 1

This matrix with the intrinsic parameters does not depend on the scene, so it can
be reused once estimated, as long as the focal length remains fixed. On the other hand,
matrix [R|t] contains the extrinsic parameters of the camera. This matrix performs the
homogeneous transformation and represents the change of basis from the world coordinate
system to the camera coordinate system, as follows:

Xc r1 r2 rns rul [ Xe

Ye| _ |tar m2 123 raa| | Yo 3)
Ze r31 13 133 13| | Zw

1 0 0 0 1 1

Combining these two matrices yields the projective transformation, which maps the 3D
points in the world to the 2D points on the image plane in normalized camera coordinates.

X

u fx 0 G 1 "2 113 T4 w

_ o1 Ttn T3 Toa| | Yw
s|lol =10 f, Cy

1 0 O 1 7’31 7’32 r33 r34 Zw

0 0 0 1 1

(4)

The pinhole camera model does not consider the distortion caused by the lenses used
in the cameras. To accurately represent a real camera, the camera model includes both
radial and tangential lens distortion. Radial distortion occurs when light rays bend more at
the edges of the lens than at the optical center. The radial distortion coefficients model this
type of distortion as follows:

xdistorted = x (1 + k1?2 + kor* + ksr®) o

ydistorted = y(1+ kyr? + kor* + k3r®)
where:
e 1,y is the location of the pixel without distortion.
e  kq ky, and k3 are the radial distortion coefficients of the lens.
o 2=x2+12
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On the other hand, tangential distortion occurs when the lenses and the image plane
are not perfectly parallel. In this case, the tangential distortion coefficients model this type
of distortion as follows:

xdistorted = x + [pz (T2 + 2x2) + 2p1xy]

6
ydistorted = y + [p1(r* + 2y) + 2paxy] ©

where:

e x,yis the location of the pixel without distortion.
e p; and p; are the tangential distortion coefficients of the camera.
o r2=2x2+ yz.

Using this basis, the computer vision algorithms that have been used in the imple-
mentation of the pipeline for the method used to track the plant nutation movement are
described in the following points.

2.2.1. Perspective-n-Point (PnP)

The pose computation problem consists of solving the rotation and translation of
an object with respect to the camera, while minimizing the reprojection error for corre-
spondences between the 3D points in the world and the 2D points on the image. Several
methods have been proposed to estimate the pose of an object relative to the camera [18,19].
These methods can be used for calibration using a planar calibration object [20].

2.2.2. Calibration of a Stereo Pair System

The procedure outlined in the previous subsection enables the obtaining of the intrinsic
parameters of the camera as well as the camera pose relative to the calibration object. If the
calibration object is visible to both cameras, we have the pose (Ry, f1) of the first camera
relative to the calibration object and the pose (Rp, t7) of the second camera. These two
poses are related as follows:

Ry=RXR;y;th)=Rxt;+t (7)

Therefore, by using the previous equation, it is possible to obtain the pose of the first
camera relative to the second camera. Once the pose of the first camera relative to the
second one is obtained, the essential matrix can be constructed as follows:

0 —ty —1
E=1|+t 0 —fy| xR (8)
-t fy 0

where t; are the components of the translation vector t = [tg, t1, t>]. From this, the funda-
mental matrix can be computed as follows:

F = CameraMatrix~T x E x CameraMatrix ™" )

2.2.3. Background Segmentation

The background segmentation problem involves detecting changes that occur in a
sequence of images. Pixels in an image are classified either as part of the background or as
part of an object of interest based on a background model. In real applications, depending
on the characteristics of the problem, different methods have been proposed: models based
on color thresholding, clustering, and fuzzy logic, and, more recently, neural network-based
models [21] have been used. The usual steps in image segmentation are:

1. The background model is initialized with some of the video frames.

2. Once the background model is initialized, each pixel in the image is classified based
on the background model.

3. The background model is updated with information from the last processed image.
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In the algorithms developed to extract the position of the plant’s tip in time-lapse
images, the Gaussian mixture method was used. This method uses multiple Gaussian
functions per pixel to model the background of the scene. This method takes into account
that a pixel can have different states over time. The implementation of this method in the

OpenCV library is based on Zivkovic [22].

2.3. Motion Tracking and 3D Position Estimation

This section first describes the procedure used to calibrate the stereo system. Next, the
steps in the process of extracting the position of the plant tip from the images captured by
the stereo system cameras are outlined. Finally, it describes how the nutation motion of the
plant was tracked based on the 2D position of the extracted plant tip from the images.

2.3.1. Camera Calibration

The stereo system calibration was carried out following the procedure described in the
previous subsection. The calibration process was conducted in two phases. First, each of the
stereo cameras was individually calibrated. A calibration object with a 10 x 7 chessboard
pattern and dimensions of 59.4 x 84.1 cm was used for the calibration. These dimensions
were chosen to cover a large part of the image plane, allowing the precise estimation of the
distortion coefficients.

Once the individual calibration of the cameras was completed, the stereo system
calibration was performed to estimate the projection matrices for each camera and the
fundamental matrix. In this case, a calibration object with dimensions of 42.0 x 59.4 cm
was used, visible in both cameras for a sufficient number of poses to carry out the stereo
system calibration. Table 2 shows the results of the calibration, measured in terms of the
reprojection error, that is, the distance from the calibration pattern key points detected in
the images to a corresponding world point projected into the same images.

Table 2. Results of the stereo system calibration. The mean reprojection error (Mean RE) and the
standard deviation of the reprojection error (Stdev RE) are shown for the top camera, the side camera,

and the complete stereo system.

Reprojection Errors (in Pixels)

Scenario Mean RE Top Stdev RE Mean RE Side  Stdev RE Side Mean RE Stdev RE
Camera Top Camera Camera Camera Stereo System  Stereo System
No Pole 0.47202 0.34563 0.29831 0.27472 0.61930 0.55591
Pole 0.30597 0.20053 0.28490 0.18405 0.91065 0.80017

In Figure 4, the points used in the calibration of the stereo system can be observed,
combining the positions of all the images used for calibration.

X Label (cm) X Labe| (cm)

=30 -20 _j9
[
1020 30 4 20 4

Y Label (cm)
Y Label (cm)

Z Labe) (cm)
onN
c83g

Figure 4. Points used in calibration of the stereo system (in green). Left: calibration scenario without
pole. Right: calibration scenario with pole. The small red and blue arrows indicate the camera’s

position in the scene.
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2.3.2. Detection of the Plant Tip in the Overhead View

The process consisted of two steps, as shown in Figure 5. First, for each frame, n
points, where the plant tip could be located, were detected. Once the candidate points were
obtained, a selection process for the position of the plant tip was performed for each frame,
followed by interpolation for frames where no candidate points were detected. The steps
of the first step can be seen in Figure 6.

( Start )

Extraction possible positions of the tip of the
plant in each frame

'

Most probable candidate selection for each
frame and position interpolation for frames
without candidate points

(" End

S

Figure 5. Procedure designed for extracting the plant tip position.

Parameters:

-min_area s N
-lighting_change_est_time (Start )
-num_selected_points ;L—
-lighting_change_area The user selects the
Variables: region of interest

-num_frames_since_last_lighting_change —l—

For each frame:

performed
Contours with an area greater
than 'min_area' are selected

v

The contours are sorted based
on the contour area in ascending
order

’ Image segmentation is ‘

L Yes
Has a lighting

change occurreﬁ//

The n-contours with the largest Background model is restarted
area are selected

For each contour, the furthest
point from the base of the plant
is selected

!

The region of interest is updated

'

The points that has been
selected are saved

1

(_ &nd

Figure 6. Algorithm for extracting possible positions of the plant tip in each frame of the top view.
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The following are the highlights of the algorithm used in the first step of the process:

e  The segmentation of the plant contour was performed using the mixture of Gaussians
algorithm.

e  After each change in lighting, the process reset the background model to reduce the
stabilization time.

e  To detect when a lighting change occurred, the process checked the area of the selected
contours, and, if the area exceeded a threshold specified by the lighting_change_area
parameter, it was assumed that a lighting change had occurred.

e  After a lighting change, the process did not check again for a lighting change until
after the frame period specified by the lighting_change_est_time parameter to prevent
the repeated detection of a lighting change in every frame after the background model
had been reset.

The process for selecting the plant tip position among the candidate points followed
these two criteria:

1. If there was only one candidate point, it was selected.

2. If there was more than one candidate point, the point closest to the last point selected
for previous frames was selected. In segments of frames where there was no candidate
point, the position of the plant tip was estimated by performing linear interpolation
using the plant tip position in the previous and subsequent frames of the segment.

2.3.3. Detection of the Plant Tip in the Lateral View

This process consisted of two stages, as in the case of the process used for extracting
the position of the plant tip in the top view images. First, for each frame, the n points, where
the plant tip could be located, were detected. Once the candidate points were obtained,
a selection process for the plant tip position was executed for each frame, followed by
interpolation for frames where no candidate points were detected. The steps of the first
stage are depicted in Figure 7.

Parameters:
-min_area
-lighting_change_est_time Start
-num_selected_points —3
-Fundamental matrix

Variables:
-num_frames_since_last_lighting_change

The user selects the
region of interest

l

Image segmentation is performed ‘

!

Contours with an area greater than
'min_area' are selected

!

The contours are ordered by
their distance from the epipolar
line

¥

No
Has a lighting Yes

change occurred?

[ The n-contours with the largest
area are selected

For each frame:

Background model is restarted

For each contour, the furthest
point from the base of the plant
is selected

The points that has been
selected are saved

!

( End

Figure 7. Algorithm for extracting possible positions of the plant tip in each frame of the side view.
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The highlights of this algorithm used in the first stage of the process are:

e  The segmentation of the plant contour was performed using the mixture of Gaussians
algorithm, just as for the segmentation of the plant contour in the top view.

e  For detecting changes in lighting, the same procedure used in processing images from
the top view was followed.

e  There were cases where multiple fragments of the plant contour are obtained when
applying the background model to the image. In these cases, the use of the epipolar
line helped to identify the fragment where the plant tip was located.

e Once the contours near the epipolar line were selected, a minimum path algorithm
was used to select the potential position of the plant tip within the contour.

The process for selecting the plant tip position among the candidate points followed
the same criteria as indicated in the previous section.

2.3.4. Correcting Wrong Detections and Obtaining the 3D Positions of the Plant Tip

The algorithms described in the previous subsections were not always able to detect
the plant tip position in all cases, as mentioned in each section. For this reason, a “Plant
Tracker” tool was developed to allow the user to modify the automatically performed plant
tip extractions. This tool consists of three screens, as shown in Figure 8. Once the user has
completed the manual corrections, the application allows the extraction of a CSV file with
the estimation of the 3D position for a selected range of frames.

*Project

Save

*Lateral view folder

*Overhead view folder

file:///G:/Videos/P. Trepadora/Pair 10_swissdevice/10_Npole_lat_1_swissdevice Select folder Extract images from video

&7 3D Tracking Visualization - Plant Tracker - o X

From: [1354

10, Npole_top_1_swissdevice Select folder Extract images from video
To: 334

10 t_n_pole_10.plantTracker Select New

(1) Manual marking H (2) Plant movement reconstruction ‘

Data export

Pos. X: 340

Pos.V:394 Frame: 1836/5708

Previous

[ | ~

@ Overhead view

© Lareral view

Figure 8. Sample view of the Plant Tracker tool developed to supervise the obtained locations. Top
left: main window of the program; button “(1) Manual marking” opens the window labeled 1, and
button “(2) Plant movement reconstruction” opens the window labeled 2.
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3. Results and Discussion

In this section, the results obtained in the processing of the available videos are
presented. The videos were processed in pairs, corresponding to the zenithal and side
views of each same experiment. The nutation movement followed by the tip of the bean
plant in three of the conducted experiments is shown in Figure 9.
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Figure 9. Visualization of the obtained nutation movement of the bean plants. Left: position result
for video pair 4 without pole. Middle: position result for video pair 7 without pole. Right: position
result for video pair 10 without pole. Red and blue arrows indicate the camera’s position in the scene,

and the green dot marks the position of the pot’s base.

3.1. Results of the Detection of the Tip of the Plant

Table 3 shows the cumulative results of the type of detection used to extract the position
of the plant tip in the frames of the time-lapse videos corresponding to the experiments. The
types of detection correspond to the following categories: Automatic: The algorithm for
extracting the plant tip position found only one candidate point. Manual: The points that
the user had to correct. Estimated: The algorithm for extracting the plant tip position found
more than one candidate point and selected the one that represented the most probable
position of the plant tip. Interpolated: The algorithm for extracting the plant tip position
did not find a candidate point. The plant tip position in the frame was determined by
interpolating the position from the plant position in the preceding and subsequent frames.

Table 3. Results of the plant tip detection procedure in the images for the three video pairs. For
each video pair, the condition (with or without a supporting pole), the frames that were analyzed,
the camera (top or lateral), and the extraction of the tip location (automatic, manual, estimated or

interpolated location) are indicated.

Type of Detection
Video Pole Frames ! View Automatic Manual Estimated Interpolated
Pair 4 No 2483-4746 Li}t(f;al g?g 373 41 izg Z‘;
Pair 7 Yes 3850-5798 L?Ft(f;al o s 2 b
Pair 7 No 750-2600 L?rts;al ﬁgi 25%8 27847 701
Pair 10 No 3850-5798 L?rt(f;al ggg fg} igg 11099

1 Range of frames that have been processed from the video.
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Figure 10 shows the reprojection error in pixels for each frame of the videos (side and
top views) of the time-lapse within the range for which the 3D position estimation of the
plant tip was performed.
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Figure 10. Visualization of reprojection errors of some videos along time. Top row: errors for video
pair 4 without pole. Middle: errors for video pair 7 without pole. Bottom row: errors for video pair
10 without pole.

3.2. Discussion of the Results

The plant tip detection algorithms were able to extract the correct position in a range
of 86-98% of the cases, as observed in Table 3. The number of corrections made by the user
was higher for the plant positions extracted in the lateral plant videos. This was mainly due
to moments when the plant tip overlapped with the plant stem in the images. An example
of this case is shown in Figure 11. This error is due to the use of a minimum path algorithm
to find the plant tip in the segmented contour of the plant. When the plant tip overlapped
with the stem, the position farthest from the plant’s base corresponded to the elevated part
of the plant stem visible in the image.
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Figure 11. A sample of an incorrect detection of the plant tip in the side view image.

Regarding the reprojection errors, the graphs shown in Figure 10 follow a sawtooth
pattern across all processed videos, with the maximum reprojection errors aligned in both
the top and side view videos of each time-lapse. Figure 12 shows the positions where the

reprojection error is greater than 10 px.

axis X (cm) axis X (cm)

Y(
) g

axi

aXis Z (cm)

0

Figure 12. Visualization of the obtained 3D points in the analyzed videos, represented in a blue color.
The points with a reprojection error greater than 10 px are marked in red. Red and blue arrows
indicate the camera’s position in the scene, and the green dots mark the position of the pot’s base.
Left: video pair 4 without pole. Middle: video pair 7 without pole. Right: video pair 10 without

pole.

The average reprojection error for each of the analyzed videos is shown in Table 4.

In general, it can be considered that the proposed method is able to achieve excellent
results, obtaining an average reprojection error of only 3.7 px, which is below 0.3% of the
width of the images. This value can be roughly translated into an estimated average error
in the 3D localization of about 0.5 cm, although this measurement depends on other factors,
such as the position of the plant tip. The total number of frames where there is a high error
(greater than 10 px) is less than 5.4%. On the other hand, although the method required
manual correction by an operator during some frames, as we have seen, this only occurred
in 8.3% of the frames. In the remaining 91.7% of the frames, the automatic algorithm
worked to locate the tip of the plants. Thus, the accuracy and robustness obtained by the
proposed method in tracking the plant tips is suitable for practical use in circumnutation

movement experimentation.
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Table 4. Results of the reprojection errors for the three video pairs. The mean reprojection error
(Mean RE), the standard deviation of the reprojection error (Stdev RE), the total number of points
analyzed, and the number of points with a reprojection error greater than 10 px (RE Points > 10 px)
are shown for each video pair.

Reprojection Errors (in Pixels)

Video View Mean RE Stdev RE Total Points RE Points > 10 px
Pair 4 Lateral 3.98679 2.84289 2264 39
ar Top 6.49004 5.74389 2264 373
Pair 7 Lateral 2.05453 2.52104 1851 33
Top 2.66366 3.13255 1851 47
Pair 10 Lateral 2.99391 2.62791 1949 4
Top 4.08886 3.31717 1949 119

The direct comparison of our results with other methods is not feasible, since other
works measure their results in terms of different parameters. For example, in the “Cir-
cumnutation Tracker” software of Stolarz et al. [11], manual annotation of the positions is
required for all the frames of the videos. Tenzer and Clifford’s [12] plant monitoring method
only segments the plants, without locating the 3D position of the tip, so the accuracy is
given in terms of the area under the ROC curve for the classification problem. In the inertial
tracker proposed by Geldhof et al. [15], the errors are expressed as the precision of pitch
and roll angles, being under 0.5°. The recent method by Mao et al. [13] using deep learning
is able to achieve an average error of 1.02 mm in the location of the apex of the plant, in
videos of 640 x 480 px of resolution; however, only one video is analyzed per plant, so the
3D locations are not extracted.

The largest reprojection errors in our method are found in the area closest to the lateral
camera. By overlaying the points used in the calibration onto the trace corresponding to
the nutation movement of the plant tip, it is observed that not all the space travelled by the
plant tip was covered. Furthermore, the greatest reprojection errors are located in the area
where there are no calibration points, as shown in Figure 13.

axis x (Cm)

axis X (cm) axis X (cm)

—30-20-10 0 10 20 39 49

Figure 13. Visualization of 3D points with a reprojection error greater than 10 px (marked in red) and
calibrations points (marked in green). Left: video pair 4 without pole. Middle: video pair 7 without
pole. Right: video pair 10 without pole. Red and blue arrows indicate the camera’s position in the
scene, and the green dots mark the position of the pot’s base.

To prevent this error in future experiments, it will be verified during the calibration
process that there are enough calibration points across the entire space traveled by the plant
tip in its nutation movement.
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4. Conclusions

The study of the nutation movement of plants has aroused great interest in the research
community in different areas, from philosophy to computer science, and has been a great
source of inspiration for new algorithms and bioinspired systems. This paper has presented
the development of a stereo vision system for studying the movement of climbing plants.
The system consists of a pair of RGB cameras that synchronously record a side and top view
of the plants in time-lapse. This study is focused on the common bean as a typical climbing
plant model. Subsequently, the images are analyzed with a computer vision algorithm that
obtains the tip of the plant and, using a previous calibration of the stereo pair, estimates the
position in 3D coordinates. The method is able to extract the correct tip position in 86-98%
of cases, depending on the video, with an average reprojection error below 4 px, which is
translated to an approximate error in the 3D localization of about 0.5 cm. The proposed
method allows researchers to know precisely and robustly the nutation movements of the
plants and to compare their behavior under different situations, such as the use or absence
of support structures for climbing.

In future work, it would be interesting to apply the latest deep learning methods
to perform the accurate segmentation of the plants in the images, as well as subsequent
matching between the stereo pair images for a complete estimation of the 3D position of
the plant. In this way, it would be possible to know not only the position of the tip of the
plant, but also of other parts such as the stems and leaves.
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