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Abstract: Mobile fitness applications provide the opportunity to show users real-time feedback
on their current fitness activity. For such applications, it is essential to accurately track the user’s
current fitness activity using available mobile sensors, such as inertial measurement units (IMUs).
Convolutional neural networks (CNNs) have been shown to produce strong results in different
time series classification tasks, including the recognition of daily living activities. However, fitness
activities can present unique challenges to the human activity recognition task (HAR), including
greater similarity between individual activities and fewer available data for model training. In this
paper, we evaluate the applicability of CNNs to the fitness activity recognition task (FAR) using IMU
data and determine the impact of input data size and sensor count on performance. For this purpose,
we adapted three existing CNN architectures to the FAR task and designed a fourth CNN variant,
which we call the scaling fully convolutional network (Scaling-FCN). We designed a preprocessing
pipeline and recorded a running exercise data set with 20 participants, in which we evaluated the
respective recognition performances of the four networks, comparing them with three traditional
machine learning (ML) methods commonly used in HAR. Although CNN architectures achieve at
least 94% test accuracy in all scenarios, two traditional ML architectures surpass them in the default
scenario, with support vector machines (SVMs) achieving 99.00 ± 0.34% test accuracy. The removal
of all sensors except one foot sensor reduced the performance of traditional ML architectures but
improved the performance of CNN architectures on our data set, with our Scaling-FCN reaching the
highest accuracy of 99.86 ± 0.11% on the test set. Our results suggest that CNNs are generally well
suited for fitness activity recognition, and noticeable performance improvements can be achieved if
sensors are dropped selectively, although traditional ML architectures can still compete with or even
surpass CNNs when favorable input data are utilized.

Keywords: activity recognition; inertial measurement unit; deep learning; convolutional neural
network; residual neural network; traditional machine learning; study

1. Introduction

Mobile fitness applications present a unique opportunity to provide users with real-
time assistance during non-stationary fitness activities, such as athletics [1]. The first step
towards such an application is the real-time recognition of different fitness activities using
mobile sensor devices. Because commonly used approaches that rely on external video
sensors such as [2] restrict the user to stationary activities, body-worn sensors, such as
inertial measurement units (IMUs), must be used for a mobile application. Recognizing
fitness activities based on IMU data is, in essence, a time series classification problem: given
a sequence of sensor data points collected over a time period, predict the fitness activity
performed during that time period.

Although most commonly used for visual tasks, convolutional neural networks
(CNNs) have been shown to produce competitive results on time series classification
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tasks [3], including human activity recognition (HAR) [4–6]. In the context of fitness activ-
ity recognition, they have been successfully applied to various different activities, such as
swing sports [7–9], skiing [10,11], beach volleyball [12], football [13], and exercising [14].
However, it is unclear how well CNN architectures translate to other fitness activities that
can present unique challenges, such as low availability of training data, small differences
between different activities, and limited processing power on mobile devices. Furthermore,
most of these papers focus on their respective use cases and thus do not compare their
CNN to other CNN architectures or traditional machine learning methods.

Therefore, this study aims to assess how CNN architectures can be adapted to the
mobile fitness activity recognition task using IMUs and how their results compare to
traditional machine learning. For this purpose, we propose a preprocessing pipeline,
adaptations to three existing CNN architectures, and a new CNN architecture that aims
to address the execution speed variability in fitness exercises. The performance of each
architecture is evaluated on a running exercise data set that was recorded in the context of
this study and compared to a baseline of three traditional machine learning models that are
commonly used in HAR. Lastly, performance changes are determined for varying numbers
of sensors and input data sizes.

Contributions

Our work provides the following key contributions to the field of human activity recognition:

1. An introduction of the Scaling-FCN architecture designed for sensor-based fitness
activity recognition with fixed time windows.

2. An introduction of a new public data set with IMU data of 20 participants for seven
different running exercises [15].

3. A recording and preprocessing pipeline for fitness activity data recorded with multiple
body-worn IMUs.

4. A detailed performance analysis of the Scaling-FCN compared to three existing CNN-
based architectures and three traditional machine learning architectures on the run-
ning exercise data set, focusing on the effect of different input data parameters.

2. Data Acquisition

A representative data set is essential not only to train a machine learning model but
also to assess its expected real-world performance. However, at the time of the study, we
were unable to find a single public human activity recognition (HAR) data set that met
the criteria for our study. In particular, we found that most data sets in the field of mobile
HAR, such as the one provided by Anguita et al. [16] only cover activities of daily living
and not fitness activities. Other data sets, such as the BasicMotions data set [17] and the
CounterMovementJump data set [18], feature relatively few activities and only a single
body-worn sensor. Furthermore, many public HAR data sets already consist of statistical
features such as mean, minimum, and maximum values across a recording and, therefore,
are not suitable for the CNN approaches evaluated in this study. The only data set that
we could find that satisfies the previous criteria, the daily and sports activities data set by
Barshan and Altun [19], consists of data from only eight subjects and primarily features
activities that are very different from each other and, therefore, are relatively simple to
classify. Plötz et al. [20] also acknowledge this lack of larger data sets in mobile HAR as
one of its main challenges, appealing for the development of such data sets.

Therefore, we recorded a running exercise data set that is publicly available at [15].
The data set consists of seven popular running exercises performed by 20 healthy subjects
(16 m, 4 f) between 16 and 31 years of age while wearing an IMU on each ankle and wrist
for a total of four IMUs (see Figure 1).
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Figure 1. Position of the four GSDBLE sensor boards worn during data acquisition.

2.1. Activity Choice

The fitness activities for our data set were chosen based on two primary criteria: subject
availability and difficulty of classification. The availability of subjects, in particular, had to
be taken into account because COVID-19 already limited the availability of subjects willing
to participate in our study. We, therefore, could not afford to limit subjects to those active
in specific sports. On the other hand, the different activities had to be sufficiently complex
and similar to one another that classification would still prove challenging to classifiers.
Based on these criteria, we chose the following running exercises that are performed as
warm-up exercises in different types of sports:

• Regular running;
• Side skips (right and left direction);
• Carioca running (right and left direction);
• Heel-to-butt running;
• High-knee running;

Since we differentiate between two different directions for side skips and Carioca
running each, we have a total of seven different fitness activity classes.

2.2. Hardware

Data were recorded using four GSDBLE sensor boards that have been developed for
mobile activity recognition in the context of Pascal Dornfeld’s thesis [21] (see Figure 2a).
They are powered by a CR2450 3 V lithium battery and record data with an LSM6DSL IMU
from STMicroelectronics. They use a Bluetooth low energy (BLE) connection to send their
accelerometer and gyroscope data alongside time stamps to a connected smartphone. The
sensor boards are contained in sweatband pockets (see Figure 2b) so they can be worn
without affecting the user’s mobility.

Subjects wore a total of four sensor boards during all recordings, one at each ankle
and each wrist, respectively (see Figure 1). All sensor boards were connected to a single
Huawei P20 smartphone that aggregated all their data using a custom recording applica-
tion. At the end of a recording, the application stored the sensor data, timestamps, and
metadata in a JavaScript Object Notation (JSON) format file. Timestamps are recorded in
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milliseconds, whereas accelerometer and gyroscope values are recorded as signed 16-bit
integer values representing an acceleration of a ∈ [−16 G,+16 G] and angular velocity of
v ∈ [−2000 dps,+2000 dps], respectively.

(a) (b)
Figure 2. The data acquisition sensor setup. (a) GSDBLE sensor boards with coin batteries for scale.
(b) The sweatband with the GSDBLE sensor board (currently not in pocket) on top.

2.3. Output Data Rate & Data Loss

Since we could observe data loss with high sensor output data rates (ODRs) and four
sensors connected to a single smartphone via BLE, we analyzed the incoming sensor data
for data loss and timestamp inconsistencies. While our initial results suggested that data
loss would only occur above 104 Hz, a 40 s real-world test performing fitness exercises
already showed a significant increase in data loss when going from 52 Hz to 104 Hz (see
Table 1). We, therefore, decided to use an ODR of 52 Hz when recording our data set since
we expect the increased data rate to provide relatively little value when classifying human
activities. Based on empirical tests with commercial devices that include an IMU, we expect
the remaining data loss of roughly 3% to be representative of real-world applications when
multiple devices are connected to a single device via BLE.

Table 1. Data loss (in %) during real-world usage performing fitness exercises over 40 s for each
sensor and averaged across all sensors.

ODR Data Loss Per Sensor (in %) Average Data Loss (in %)

52 3.71 | 1.84 | 3.57 | 3.52 3.16
104 3.52 | 4.01 | 12.78 | 7.77 7.02

2.4. Recording Procedure

We recruited a total of 20 healthy young adults (16 m, 4 f, 16–31 yo) to participate
in our study. All subjects stated that they engage in sport on a regular basis and know
the presented or similar running exercises. Furthermore, each subject gave their informed
consent to publish their anonymized recorded data. Each subject participated in one
recording session, and one subject participated twice. During each recording session, a
supervisor explained the scope of the study and ensured that no faulty data were recorded.
In particular, they checked that the exercises were executed properly, that the sensors were
worn properly, and that no hardware problems occurred. If such an issue was found during
a recording, the recording was discarded and the last exercise was recorded again. Each
exercise was recorded for 10 s per subject. The order of exercises was randomized for
each subject individually to ensure that no data leakage could occur based on the order
of exercise and the level of exhaustion of the subjects when performing each exercise. In
practice, the order had to be slightly adjusted for some subjects to ensure that they could
perform all the exercises. However, none of the subjects had to drop out of the study,
resulting in complete data for all 20 subjects.
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3. Preprocessing

To utilize the recorded data set in a machine learning (ML) classifier, it must be brought
into a suitable format. In addition, recorded data should first be cleansed to reduce the
impact of recording or transmission errors on classification performance.

3.1. Data Synchronization

When analyzing our data set, we found that the initial timestamps t0 between different
sensors of the same recording did not match exactly and drifted further apart over time (see
Figure 3a). To address varying initial timestamps, we shift each sensor time series to start
at t = 0 by subtracting the respective sensor’s t0 from all its timestamp values. To address
the drift in timestamps over time, we determine a scaling factor kn,r for each sensor n and
each recording r by dividing its last reported timestamp tmax by the expected timestamp
at the end of the recording texp. The timestamps of different sensors in each recording r
are then scaled to match each other by dividing each timestamp by the respective scaling
factor kn,r of its sensor n. In practice, we noticed that these scaling factors were constant
between recordings for each sensor and thus determined a single global scaling factor kn
for each sensor n that we applied to all its recordings. In a real-time application, this might
necessitate a calibration process during which this scaling factor is determined for each
connected sensor.

(a) (b)
Figure 3. Comparison of sensor data streams for equivalent movements. (a) Before timestamp
correction. (b) After timestamp correction.

3.2. Processing Incomplete Data

Based on our findings in Section 2.3, we expect some data in a real-world setting to
be lost during transmission. Whereas more elaborate approaches, such as local or global
interpolation, exist to address missing data values, we opt for a duplication of the previous
data value whenever an expected data value at a given timestamp is missing. In a real-time
application, this allows for all data to be processed immediately instead of having to wait
for the next data to interpolate a missing value. Based on our empirical findings, neither
method provides a noticeable increase in classification performance over the other in our
data set. However, a more elaborate approach might be preferable if a higher data loss
is observed.

In the event that at least 10% of the expected samples were missing during the course
of a 10 s recording for at least one sensor, the recording was completely discarded for the
purpose of our evaluation. This was typically only the case when one sensor stopped
sending data altogether and occurred four times in our 147 recordings, resulting in a total
of 143 remaining recordings.

3.3. Standardization

Many machine learning architectures require the input data to be normalized or
standardized for optimal training. Since we have two different types of data, acceleration
and angular velocity, we use the standardization formula V′ = V−µ

σ to scale all data to
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µ = 0 and σ = 1 to prevent one type of data from dominating the other during training. The
values for µ and σ were calculated once for all accelerometer data and once for all gyroscope
data in the data set and then applied to all samples. We decided against calculating µ and
σ for individual sensor positions and axes to preserve the relative differences in intensity.
In a real-time application, these values could be supplied alongside the model to ensure
consistent data values between training and inference.

3.4. Segmentation

To simulate the use case of a real-time application, data recordings have to be split into
individual segments, each segment representing the data that last arrived at the application
at a given point in time. Each segment later serves as one input sample in our experiments.
For this purpose, we use a typical sliding-window approach, as shown in Figure 4.

Liu et al. [22] suggest that window length and overlap ratio are important parameters
for HAR modeling and real-time performance and should be chosen with the data set
and use case in mind, specifically mentioning the length of individual motions as useful a
priori information, which they determined for daily activities in their previous work [23].
We estimate the length of individual running exercise repetitions to be roughly 0.5 to
1.0 s based on our observations that participants were able to perform roughly 10 to
20 repetitions in each 10 s recording. As a result, we chose a baseline window size of one
second (52 timestamps) to ensure that each window contains at least one full repetition
and compared it to smaller window sizes in Section 6.2.1, which may be better suited for
real-time applications relying on low prediction latency, such as exergames. We use 75% as
the overlap ratio to ensure that we have a sufficient number of samples for model training
and to simulate a real-time application that requires regular prediction updates, resulting
in a stride of 250 ms for a window length of one second. As detailed in the next paragraph,
we strictly ensure that no data from the same user are shared between training, validation,
and test sets, preventing any potential data leakage through window overlap.

Se
ns
or
s

Samples Over Time

Sliding Window Position xi
Sliding Window Position xi+1

Overlap

Sliding Window Position xi+2

Overlap

Stride Stride

Figure 4. A visualization of the sliding window segmentation with a window size of 13, a stride of
10, and an overlap of roughly 23%.

When evaluating machine learning architectures, it is common practice to segment the
given data set into three distinct partitions: a training set for model training, a validation
set to assess model performance during design and optimization phases, and a test set to
assess the final model performance on previously unseen data. To prevent data leakage
between the different sets, we split our data set on a per-subject basis. This ensures that
data from each subject is only included in a single set and that classes are represented
equally in each set. It is representative of the typical real-world use case of a machine
learning model having to predict a user’s activity without having seen data from the same
user during training.

Our static test set consists of the data of four randomly selected participants, or 20% of
all participants. For the training and validation sets, we instead use a leave-one-subject-out



Sensors 2024, 24, 742 7 of 20

cross-validation approach to generate 16 different training/validation splits. By using the
data of each participant not in the test set once for validation and fifteen times for training,
we maximize the number of data in the training set while also minimizing the impact of
individual participants’ data on validation results. As a result of this approach, each model
is trained a total of 16 times for each scenario.

4. CNN Architectures

To account for the variety of CNN architectures available, we adapted three different
CNN architectures that have been shown to perform well in time series classification
tasks. Furthermore, we designed a fourth CNN architecture that utilizes data rescaling as
proposed by Cui et al. [24] but adapted to the fitness activity recognition task.

Modifications to existing architectures were made when necessary to allow inference
on mobile devices. Although recent work shows that current mobile phones are capable of
running image classification model inference fast enough for real-time applications [25–28],
and further optimizations are possible [29], implemented models should still aim to limit
parameter count to preserve battery life and save computational resources. This can be
particularly important in mobile HAR applications, where recognition models may run
for prolonged periods of time in the background. Since we furthermore expect that the
task of recognizing fitness activities will be less complex than the task of recognizing
images, for which models usually contain at least one million parameters [25], we set
one million as the upper limit for the parameter count of our models. In our empirical
hyperparameter optimization, all architectures were able to generate optimal results (within
the measurement error range) with between 207,360 and 302,400 parameters each, resulting
in the final parameter counts shown in Table 2. All CNN architectures were implemented
in PyTorch version 2.1 (https://pytorch.org/(accessed on 20 December 2023)).

Table 2. Parameter count for each neural network architecture.

Architecture Parameter Count

Deep-CNN 235,157
FCN 207,360

ResNet 302,400
Scaling-FCN 237,894

4.1. Deep Convolutional Network (Deep-CNN)

Our Deep-CNN architecture is based on the VGG16 architecture introduced by Simoyan
et al. [30], which has been used in successful image classification such as AlexNet [31] in
the past. To reduce the size of the network for mobile real-time applications and adapt the
network to smaller input sizes, we removed the first two blocks of convolutional layers,
reduced the number of filters in the remaining three convolution blocks, and removed
the pooling layers preceding each block of convolution layers. After each convolutional
and fully connected layer, batch normalization was added. Lastly, we adjusted the size
of the fully connected layers at the end of the model to fit the expected number of output
classes and further limit the total parameter count. In total, the network has a total of nine
convolution layers divided into three blocks, each doubling the number of filters in the
previous block. ReLU was kept as the network’s activation function.

4.2. Fully Convolutional Network (FCN)

Instead of fully connected layers, fully convolutional networks (FCNs) use global
pooling to generate inputs for the final softmax layer [32] and achieve impressive results
in image segmentation tasks [33]. We use the FCN architecture of Wang et al. [34] as a
baseline for our network. Since the architecture was already optimized for time series
classification (TSC) and their model parameters are specified precisely, no large adjustments
were necessary. As a result, we use the same architecture consisting of three convolution
layers with 128, 256, and 128 filters, respectively, as well as an average pooling layer for

https://pytorch.org/
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global pooling. ReLU is again used as the activation function, whereas a softmax layer
produces the final output.

4.3. Residual Network (ResNet)

Residual networks (ResNets) make use of residual connections to outperform regular
CNNs with similar depths and parameter counts [35]. Wang et al. [34] again provide a
ResNet that has been successfully applied in time-series classification and is used with
minimal adjustments in our work. The model consists of three residual blocks with three
convolution layers, followed by batch normalization and ReLU activation each. The final
output is again generated using global pooling and a softmax layer.

Recently, modified and extended ResNet architectures specifically aimed at human ac-
tivity recognition were proposed, including MAG-Res2Net [5] and an architecture [6] based
on ResNeXt [36]. Whereas these architectures have shown promising results on the HAR
data sets on which they were tested, the architecture proposed by Mekruksavanich et al. [6]
does not compare ResNeXt with ResNet, and both publications were not available at the
time of our study, leading us to use the regular ResNet architecture in this work. Given
the strong performance of MAG-Res2Net on HAR data sets, it would be interesting for
future work to assess their performance on fitness activity recognition data sets such as the
running exercise data set proposed in this work.

4.4. Scaling-FCN

The speed of execution of fitness activities can differ significantly between individuals
based on factors such as fitness and motivation. Additionally, fitness activities often consist
of multiple overlapping movements that may be performed at varying time intervals. We
reflect this in our scaling fully convolutional network (Scaling-FN), shown in Figure 5, by
using one-dimensional average pooling layers at the beginning of the network to rescale
the input data in its time dimension. Compared to approaches such as the multiscale
convolutional neural network of Cui et al. [24], our approach does not drop any data that
could contain important information and is comparable to filtering in image classification,
such as [37]. After scaling the input data to three different sizes using average pooling,
each scaled input is processed in parallel by three convolution layers with a kernel size of
3 and a padding of 1, after which two-dimensional average pooling is applied. The data
are then concatenated, fed into an additional convolution layer (kernel_size = 3, stride = 1,
padding = 1), and finally fed into a softmax layer to generate the output. Similarly to ResNet,
each convolution layer is followed by a batch normalization and a ReLU activation function.

Figure 5. The Scaling-FCN architecture with data shapes for the Running Exercise data set with seven
different classes.

5. Traditional Machine Learning

To create a baseline for CNN architectures, we used three traditional machine learning
architectures: random forest (RF), support vector machine (SVM), and k-nearest neighbors
(K-NN). We chose these particular architectures because they are commonly used in human
activity recognition (HAR) and typically produce the best results among traditional machine
learning approaches [38]. For each architecture, we use the respective default multiclass
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classifier implementation as found in scikit-learn version 1.3.0 (https://scikit-learn.org/
stable/(accessed on 13 November 2023)). As the support vector machine (SVM) and k-
nearest neighbors (k-NN) architectures are not scale invariant, the feature data are first
standardized as described in Section 3.3 to ensure optimal performance. Furthermore, all
results are generated with a leave-one-subject-out cross-validation on the training set, as
described in Section 3.4.

5.1. Features

For traditional machine learning algorithms, it is important to generate features that
provide the model with the necessary information to differentiate classes. As surveys such
as those conducted by Lara et al. [39] and Cornacchia et al. [40] show, a large number of
different features in the time and frequency domains are being used for human activity
recognition. Barandas et al. [41] propose the TSFEL library containing 60 different features
for time series classification, which has been adapted by recent work in HAR, such as those
by Rodrigues et al. [42], Liu et al. [43,44], and Hartmann et al. [45].

As we do not have the computational resources to perform an extensive feature
selection procedure such as that detailed by Hui Liu [44] for multiple traditional machine
learning architectures, we instead compare feature sets that each comprise all features of
one category (statistical, temporal, and spectral) in TSFEL version 0.1.6 (https://github.
com/fraunhoferportugal/tsfel (accessed on 8 December 2023)), respectively, in addition
to all combinations of these feature sets. TSFEL currently supports 20 different statistical
features, 14 different temporal features, and 26 different spectral features.

Table 3 shows the prediction accuracies for all combinations of feature sets for each of
the three traditional machine learning architectures considered in this paper. For RF and
AVM, a combination of statistical and temporal features achieves the best results, whereas
for K-NN, this combination performs extremely close to the best-performing feature set
consisting exclusively of temporal features. Furthermore, we could observe that the spectral
features took significantly longer to generate than the statistical and temporal features.
Table 4 shows the average combined time spent on feature generation plus prediction
of a single label on a 4-core 8-thread 2200 Mhz Intel(R) Xeon(R) CPU. We expect these
to be roughly representative of modern higher-end smartphone CPUs that have similar
numbers of cores and frequencies, and we consider a prediction time of below 100 ms
to be acceptable for real-time usage. As a result, we use the feature set that combines
the 20 different statistical features and 14 different temporal features of the TSFEL library
in all subsequent experiments. We opted against using a different feature set consisting
of exclusively temporal features for K-NN as it only performed marginally better on the
validation sets, performed worse on the test set (not shown here), and would have made it
more difficult to compare the architectures’ behavior for different scenarios in Section 6.

Table 3. Average model validation accuracy over 16 models on different feature sets.

Classifier Feature Sets
Stat. Temp. Spec. Stat./Temp. Stat./Spec. Temp./Spec. All

RF 93.83% 89.72% 90.87% 94.34% 93.93% 90.87% 94.07%
SVM 96.84% 96.33% 91.82% 97.36% 94.45% 93.37% 95.2%

K-NN 91.64% 95.07% 89.18% 95.03% 92.54% 93.13% 94.05%

Table 4. Average prediction time including feature generation on different feature sets.

Classifier Feature Sets
Stat. Temp. Spec. Stat./Temp. Stat./Spec. Temp./Spec. All

RF 67 ms 26 ms 306 ms 93 ms 373 ms 332 ms 400 ms
SVM 68 ms 27 ms 310 ms 95 ms 379 ms 337 ms 405 ms

K-NN 67 ms 26 ms 306 ms 94 ms 374 ms 333 ms 400 ms

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://github.com/fraunhoferportugal/tsfel
https://github.com/fraunhoferportugal/tsfel
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5.2. Hyperparameters

A grid search was performed to determine the optimal hyperparameters for each
architecture. A limit of 100 ms was set for the combined time of feature generation and
prediction to ensure that the resulting models would still be suitable for a real-world
use case. In practice, this limit did not have to be enforced, as none of the architectures
ever surpassed it for any given hyperparameter combination. Table 5 shows the three
architectures identified by their scikit-learn implementation and selected hyperparameter
values for the hyperparameters that were optimized.

Table 5. Traditional machine learning classifiers and selected hyperparameters.

Classifier Hyperparameters

RandomForestClassifier

criterion = ‘entropy’
n_estimators = 400

max_depth = 10
min_samples_leaf = 1
min_samples_split = 4

SVC
C = 1

gamma = ‘scale’
kernel = ‘linear’

KNeighborsClassifier
n_neighbors = 12

p = 2
weights = ‘uniform’

6. Results

The purpose of this study is to evaluate the usability of CNN architectures in the
context of IMU-based recognition of fitness activities. For this purpose, we first determine
a baseline using the traditional machine learning architectures presented in Section 5 that
are commonly used for human activity recognition. We then compare the performance of
these architectures with that of the CNN architectures presented in Section 4. Finally, we
assess the performance impact when there are fewer sensor data available for classification.

For each scenario and architecture, we performed a leave-one-subject-out cross-
validation with splits, as detailed in Section 3.4, resulting in 16 models each. CNNs
were trained with a batch size of 128, early stopping after 15 consecutive epochs with
no improvement, and a maximum of 1000 epochs. For each model trained during cross-
validation, we additionally measured its performance on the test set that was not used
during any training or hyperparameter optimization for any architecture. Therefore, we
report performance metrics as the mean and standard deviation of the 16 trained models.
As we have a well-balanced dataset, we will primarily present results using accuracy as a
metric instead of resorting to less intuitive metrics such as the F1 score.

6.1. Architecture Performance

Table 6 shows the performance of all architectures during cross-validation and on the
test set for the default input sensor data consisting of 1 s segments (52 sensor readings)
with individual axis data for the four sensors (24 data per reading). For traditional machine
learning, the features detailed in Section 5.1 were generated from the input data. It can
be seen that RF and Deep-CNN generally perform worse than other architectures on the
test and validation set, achieving scores between 94.54% and 95.57%. Of the remaining
architectures, CNNs perform better on the validation set, reaching 98.37% in the case of
FCN, while traditional architectures perform better on the test set, reaching 99.00% in
the case of SVM. This suggests that the CNNs with their selected hyperparameters might
be overfitting to the training and validation sets. Across all architectures, the standard
deviation is significantly higher during cross-validation than on the test set, suggesting
that the models perform significantly better for some people in the data set than for others.
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As seen in Table 7, CNN models generally stopped training well before the maximum
of 1000 epochs was reached, suggesting that no potential performance was lost due to
the maximum number of epochs. ResNet and Deep-CNN generally stopped training the
earliest, with an average of 286 and 263 epochs, respectively, whereas our Scaling-FCN
stopped the latest, with an average of 591 epochs.

Table 6. Average model accuracy over 16 models trained in a cross-validation.

Architecture Test Accuracy (in %) Validation Accuracy (in %)

RF 94.54 ± 0.94 94.99 ± 5.19
SVM 99.00 ± 0.34 97.64 ± 3.85

K-NN 98.55 ± 0.44 95.46 ± 5.06
Deep-CNN 95.57 ± 2.05 94.96 ± 6.36

FCN 96.74 ± 0.46 98.37 ± 4.91
ResNet 97.14 ± 1.36 97.89 ± 5.12

Scaling-FCN 96.46 ± 1.06 98.33 ± 5.04

Table 7. Average number of epochs for CNN model training.

Architecture Epochs Standard Deviation

Deep-CNN 286 112
FCN 439 138

ResNet 263 129
Scaling-FCN 591 270

When looking at the confusion matrices of all trained models’ predictions on the
test set (see Figure 6 for ResNet and Appendix A for other architectures), some common
misclassifications can be observed. Most notably, all models share prediction errors for high-
knee running, which is most commonly misclassified as heel-to-butt running, suggesting a
similarity in the generated sensor data. Although the FCN (see Figure A5) has the highest
misclassification rate for high-knee running, with only 77.26% accurately predicted, it is
the only architecure with 100% prediction accuracy for all other classes. The second most
commonly misclassified exercise is regular running, with up to 7.55% misclassifications in
the case of Deep-CNN.

Figure 6. Confusion matrix for the ResNet architecture across all models of the cross-validation for
the default scenario on the test data set.
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6.2. Impact of Sensor Data on Performance

To determine the impact of input sensor data on model performance, we repeated
the previous experiment with varying time windows, sensor data dimensions, and sen-
sor numbers. In the following, we present the most interesting findings and input data
configurations with a focus on ResNet as the best-performing CNN on the test sets.

6.2.1. Time Window Length

The time window length for the input data is an interesting parameter because it affects
not only the total size of the input data but also the recency of the data used for classification.
A reduced time window length might, therefore, be interesting when recognizing activity
types where individual activities rapidly change, e.g., individual kicks and punches during
kickboxing, because data from the previous activity are more quickly discarded. However,
on our data set consisting of prolonged activities, we found that reducing the time window
length always resulted in lower classification accuracy, as shown exemplarily for Resnet
in Table 8 for window lengths of 52, 26, and 13 samples, corresponding to 1.0, 0.5, and
0.25 s of data each. Although there is a significant drop in accuracy when reducing the time
window length, ResNet still achieves a respectable 94.96% accuracy with just 0.25 s of data,
performing on par with or even outperforming traditional machine learning models with
1 s of data.

Table 8. ResNet accuracy for varying time window lengths.

Window Length Test Accuracy Validation Accuracy

52 97.58 ± 1.36 97.57 ± 5.97
26 96.78 ± 0.89 96.68 ± 5.85
13 94.96 ± 1.21 96.35 ± 4.67

6.2.2. Sensor Dimensions

By default, accelerometers and gyroscopes provide three-dimensional data, resulting
in a total of six dimensions for each IMU. This may result in inconsistent data when the
sensors are not applied exactly at the same location and in the same orientation. A potential
solution is to instead use the rotation-invariant vector length of the vector spanned by the
three dimensions of each sensor that represent total acceleration and total angular velocity,
respectively. As seen in Table 9, ResNet still achieves a respectable 96.0% test accuracy with
rotation-invariant data. Whereas the data show a performance gain when adding vector
lengths as a fourth dimension to existing three-dimensional data, the difference is small
enough to possibly be the result of variances between cross-validations.

Table 9. ResNet accuracy for varying sensor dimensions.

Dimensions Test Accuracy Validation Accuracy

1 96.00 ± 1.39 97.24 ± 3.84
3 97.20 ± 1.04 97.40 ± 5.90
4 97.84 ± 1.41 97.68 ± 5.45

6.2.3. Sensor Number and Position

In a real-world scenario, wearing a sensor on each wrist and ankle may not be desirable
or even possible. Therefore, we evaluated how CNN models perform for different subsets
of our default sensor configuration. As can be seen in Table 10 for ResNet, the number
and position of sensors can have a large impact on activity recognition. As expected for
our running exercise data set, subsets without data from either foot decrease significantly
in performance and only achieve approximately 83% test accuracy. Interestingly, model
performance consistently improves when seemingly redundant data are removed, resulting
in the highest accuracy of 98.59% being achieved when only data from a single ankle
are used.
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Table 10. ResNet accuracy for varying sensor position subsets.

Sensors Test Accuracy Validation Accuracy

All 97.02 ± 0.92 97.30 ± 5.88
Wrists only 82.71 ± 1.61 80.42 ± 11.26
Ankles only 96.37 ± 2.00 96.63 ± 6.88

Right side only 97.74 ± 0.72 99.75 ± 0.59
Right ankle only 98.59 ± 1.14 97.21 ± 9.56
Right wrist only 83.44 ± 2.21 84.22 ± 7.81

Although this behavior was consistent for all CNN models, traditional machine
learning models did not share the same behavior and instead performed worse without
data from either wrist. Table 11 shows the performance of all CNN and traditional machine
learning models when only data from the right ankle are used. In this scenario, the test
accuracies of traditional machine learning models dropped to between 89.80% for RF and
96.20% for SVM. With a test accuracy of 99.86%, our Scaling-FCN performs extremely well
on this reduced problem, performing better than any other architecture in the process,
although other CNNs also achieve scores of at least 98.44%.

Interestingly, all CNN models now perform worse during cross-validation than on
the test set, suggesting that they may no longer overfit the training and validation sets.
However, when we analyzed the individual models trained during cross-validation, it
appeared that the data of a single participant could no longer be accurately classified
for any sensor combination excluding the left foot, resulting in below 70% accuracy for
that particular participant’s validation set for all architectures. Potential causes could be
sensor movement relative to the foot or inconsistent execution of the movement pattern
compared to other participants. Since neither was noticed during recording, we consider
this representative of a real-world use case.

Table 11. Average model accuracy over 16 models trained in a cross-validation using only data from
the right ankle.

Architecture Test Accuracy (in %) Validation Accuracy (in %)

RF 89.80 ± 1.18 92.03 ± 6.48
SVM 96.20 ± 0.78 96.30 ± 4.03

K-NN 94.55 ± 0.44 93.39 ± 5.00
Deep-CNN 98.44 ± 0.98 96.47 ± 7.92

FCN 99.22 ± 0.56 97.23 ± 7.88
ResNet 98.60 ± 1.16 97.25 ± 7.98

Scaling-FCN 99.86 ± 0.11 97.11 ± 9.85

In an attempt to find the absolute best model on our data set, we also checked for
combinations of the parameters assessed previously but could not find any combinations
for which the CNNs performed better than for a time window of 52 samples and three-
dimensional sensor data from a single ankle. In particular, all models performed worse
with four-dimensional sensor data than they did with three-dimensional sensor data when
only data from a single ankle were used.

6.3. Prediction Times

For a real-world use case, it is important to keep the prediction times and, thus, CPU
usage low to preserve battery life and prevent the application from slowing down the
smartphone. Furthermore, if the predictions are used as the input of real-time applications
such as exergames, high prediction times directly result in high input latencies and, thus, a
bad user experience. We recorded all models’ mean prediction times on the same 4 core
8 thread 2200 Mhz Intel(R) Xeon(R) desktop CPU, with CUDA disabled and no GPU
attached. Table 12 shows the prediction times of all model architectures for the default
scenario and the scenario where only data from the right ankle is used. For traditional
machine learning architectures, times are reported as the sum of feature generation and
prediction time, with pure prediction times in brackets.
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Although all prediction times promise usability in a real-time application on a high-end
smartphone, it is clear that the feature generation process presents a significant bottleneck
for traditional machine learning models. Thus, a feature selection process that takes into
account the feature generation time should be applied if real-time usage is desired. Fur-
thermore, according to Hartmann et al. [45,46], a significant speedup by a factor up to the
number of channels can be achieved by re-implementing the TSFEL features using NumPy
vectorization. However, this was achieved on a 48-core desktop CPU and is unlikely to be
representative of the speedup on a smartphone CPU. Nevertheless, efficient feature generation
implementations, such as those suggested by Hartmann et al. [45,46], should be prioritized.

Table 12. Average prediction time of each architecture on the test set, including feature generation for
traditional architectures. Pure prediction times are reported in brackets.

Architecture All Sensors Right Ankle

RF 93.50 ms (0.08 ms) 23.42 ms (0.07 ms)
SVM 93.89 ms (0.47 ms) 23.44 ms (0.09 ms)

K-NN 93.69 ms (0.27 ms) 23.47 ms (0.11 ms)
Deep-CNN 0.89 ms 0.88 ms

FCN 1.59 ms 1.66 ms
ResNet 1.67 ms 1.72 ms

Scaling-FCN 1.98 ms 1.71 ms

6.4. Limitations

Our results are primarily limited by the data set used in this work and by the specific
model architectures evaluated. We expect the impact of the time window length and
sensor positions, in particular, to be highly dependent on the activities in the data set.
For example, slower weightlifting activities would likely benefit from longer input time
windows and favor wrist sensor data over ankle sensor data. Therefore, while our results
suggest that these parameters may be used to optimize performance, this behavior needs
to be confirmed individually for future data sets.

Regarding the reference neural network architectures, we attempted to use established
architectures with as few changes as possible to fit the requirements detailed in Section 4
to ensure comparability, but we cannot exclude that further hyperparameter tuning or
architectural changes such as ResNeXt [36] produce better results than those presented in
this work. For traditional machine learning architectures, we further cannot guarantee that
the selected feature sets (see Section 5.1) are fully optimal, as our feature selection process
was limited by the computational resources available to us.

Lastly, all prediction times were recorded on a 4-core 8-thread 2200 Mhz Intel(R)
Xeon(R) desktop CPU. Real-world prediction times will highly depend on the respective
smartphone CPU as well as background processes. Furthermore, our prediction times may
benefit from a higher spatial and temporal locality of the accessed data compared to a
real-world use case. As a result, our prediction times are primarily useful for a comparison
between architectures and configurations and should not be taken as absolutes.

7. Conclusions

In this paper, we investigate the applicability of CNN-based architectures to the task
of IMU-based fitness activity recognition. For this purpose, we designed a preprocess-
ing pipeline, adapted three existing CNN architectures, and developed the Scaling-FCN
architecture. Furthermore, we recorded a new data set [15] consisting of IMU data for
seven different exercises performed by 20 participants, which is made publicly available.
We evaluated the four CNN architectures by comparing their performance with three
traditional machine learning architectures commonly used in human activity recognition
and assessing the impact that different input data parameters had on their performance.

The results of our evaluation suggest that CNN-based architectures are well suited
for IMU-based fitness activity recognition, consistently achieving strong results on our
data set across a number of different input data configurations. Although K-NN and SVM
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outperform all CNNs on the test set when data from all four sensor positions are available,
achieving up to 99.00% accuracy, FCN, ResNet, and our Scaling-FCN are still within at
most three percentage points of K-NN and SVM on the test set while performing better on
the validation sets. On our data set, CNNs show particularly strong performance when
fewer input data are available, dropping by less than three percentage points when window
sizes are reduced from 1.0 to 0.25 s. When only data from a single foot are available,
CNNs outperform all traditional ML architectures on the test and validation sets, with our
Scaling-FCN achieving up to 99.86% test accuracy.

In future work, we plan to investigate the performance of the Scaling-FCN within our
pipeline on other data sets consisting of different fitness activities and ultimately apply
it within the context of a mobile fitness application to track the user’s fitness activity and
provide real-time feedback. As our data set is publicly available, we hope other scientists
can utilize it to evaluate their systems and provide reference data for different machine
learning architectures. Lastly, more research needs to be conducted to compare a larger
variety of machine learning architectures on the task of fitness activity recognition on
mobile devices, focusing on real-world applications.
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Appendix A. Confusion Matrices

The following confusion matrices show the per-class performance of individual ar-
chitectures’ models trained during cross-validation for the default scenario detailed in
Section 6.1.

Figure A1. Confusion matrix for the RF architecture across all models of the cross-validation for the
default scenario on the test data set.

Figure A2. Confusion matrix for the SVM architecture across all models of the cross-validation for
the default scenario on the test data set.
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Figure A3. Confusion matrix for the K-NN architecture across all models of the cross-validation for
the default scenario on the test data set.

Figure A4. Confusion matrix for the Deep-CNN architecture across all models of the cross-validation
for the default scenario on the test data set.
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Figure A5. Confusion matrix for the FCN architecture across all models of the cross-validation for
the default scenario on the test data set.

Figure A6. Confusion matrix for the Scaling-FCN architecture across all models of the cross-validation
for the default scenario on the test data set.

References
1. Müller, P.N.; Fenn, S.; Göbel, S. Javelin Throw Analysis and Assessment with Body-Worn Sensors. In Proceedings of the Serious

Games, Dublin, Ireland, 26–27 October 2023; Haahr, M., Rojas-Salazar, A., Göbel, S., Eds.; Lecture Notes in Computer Science;
Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 36–49.

2. Nadeem, A.; Jalal, A.; Kim, K. Accurate Physical Activity Recognition Using Multidimensional Features and Markov Model for
Smart Health Fitness. Symmetry 2020, 12, 1766. [CrossRef]

http://doi.org/10.3390/sym12111766


Sensors 2024, 24, 742 19 of 20

3. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review.
Data Min. Knowl. Discov. 2019, 33, 917–963. [CrossRef]

4. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using
Wearables. arXiv 2016, arXiv:1604.08880.

5. Liu, H.; Zhao, B.; Dai, C.; Sun, B.; Li, A.; Wang, Z. MAG-Res2Net: A Novel Deep Learning Network for Human Activity
Recognition. Physiol. Meas. 2023, 44, 115007. [CrossRef] [PubMed]

6. Mekruksavanich, S.; Jantawong, P.; Jitpattanakul, A. A Deep Learning-based Model for Human Activity Recognition Using
Biosensors Embedded into a Smart Knee Bandage. Procedia Comput. Sci. 2022, 214, 621–627. [CrossRef]

7. Tabrizi, S.S.; Pashazadeh, S.; Javani, V. Comparative Study of Table Tennis Forehand Strokes Classification Using Deep Learning
and SVM. IEEE Sens. J. 2020, 20, 13552–13561. [CrossRef]

8. Anand, A.; Sharma, M.; Srivastava, R.; Kaligounder, L.; Prakash, D. Wearable Motion Sensor Based Analysis of Swing Sports. In
Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico,
18–21 December 2017; pp. 261–267. [CrossRef]

9. Jiao, L.; Bie, R.; Wu, H.; Wei, Y.; Ma, J.; Umek, A.; Kos, A. Golf Swing Classification with Multiple Deep Convolutional Neural
Networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718802186. [CrossRef]

10. Rassem, A.; El-Beltagy, M.; Saleh, M. Cross-Country Skiing Gears Classification Using Deep Learning. arXiv 2017,
arXiv:1706.08924.

11. Brock, H.; Ohgi, Y.; Lee, J. Learning to Judge like a Human: Convolutional Networks for Classification of Ski Jumping Errors.
In Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017;
pp. 106–113. [CrossRef]

12. Kautz, T.; Groh, B.H.; Hannink, J.; Jensen, U.; Strubberg, H.; Eskofier, B.M. Activity Recognition in Beach Volleyball Using a
Deep Convolutional Neural Network: Leveraging the Potential of Deep Learning in Sports. Data Min. Knowl. Discov. 2017,
31, 1678–1705. [CrossRef]

13. Stoeve, M.; Schuldhaus, D.; Gamp, A.; Zwick, C.; Eskofier, B.M. From the Laboratory to the Field: IMU-Based Shot and Pass
Detection in Football Training and Game Scenarios Using Deep Learning. Sensors 2021, 21, 3071. [CrossRef]

14. Patalas-Maliszewska, J.; Pajak, I.; Krutz, P.; Pajak, G.; Rehm, M.; Schlegel, H.; Dix, M. Inertial Sensor-Based Sport Activity
Advisory System Using Machine Learning Algorithms. Sensors 2023, 23, 1137. [CrossRef]

15. Müller, P.N.; Müller, A.J. Running Exercise IMU Dataset. 2023. Available online: https://figshare.com/articles/dataset/
Running_Exercise_IMU_Dataset/22117235 (accessed on 17 February 2023).

16. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition Using
Smartphones. Comput. Intell. 2013, 3, 6.

17. Clements, J. BasicMotions Dataset. Available online: https://www.timeseriesclassification.com/description.php?Dataset=
BasicMotions (accessed on 17 February 2023).

18. O’Reilly, M.; Le Nguyen, T. CounterMovementJump Dataset. Available online: http://timeseriesclassification.com/description.
php?Dataset=CounterMovementJump (accessed on 17 February 2023).

19. Barshan, B.; Altun, K. Daily and Sports Activities. UCI Machine Learning Repository. 2013. Available online: https://archive.ics.
uci.edu/dataset/256/daily+and+sports+activities (accessed on 17 February 2023).

20. Plötz, T.; Guan, Y. Deep Learning for Human Activity Recognition in Mobile Computing. Computer 2018, 51, 50–59. [CrossRef]
21. Dornfeld, P. Entwicklung eines Systems für die Mobile Sensordatenerfassung zur Erkennung von Ganzkörpergesten in Echtzeit.

Bachelor’s Thesis, TU Darmstadt, Darmstadt, Germany, 2019; p. 53.
22. Liu, H.; Xue, T.; Schultz, T. On a Real Real-Time Wearable Human Activity Recognition System. In Proceedings of the 16th

International Joint Conference on Biomedical Engineering Systems and Technologies, Lisbon, Portugal 16–18 February 2023;
pp. 711–720. [CrossRef]

23. Liu, H.; Schultz, T. How Long Are Various Types of Daily Activities? Statistical Analysis of a Multimodal Wearable Sensor-based
Human Activity Dataset. In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and
Technologies, Virtual Event, 9–11 February 2022; pp. 680–688. [CrossRef]

24. Cui, Z.; Chen, W.; Chen, Y. Multi-Scale Convolutional Neural Networks for Time Series Classification. arXiv 2016,
arXiv:1603.06995.

25. Sehgal, A.; Kehtarnavaz, N. Guidelines and Benchmarks for Deployment of Deep Learning Models on Smartphones as Real-Time
Apps. Mach. Learn. Knowl. Extr. 2019, 1, 450–465. [CrossRef]

26. Luo, C.; He, X.; Zhan, J.; Wang, L.; Gao, W.; Dai, J. Comparison and Benchmarking of AI Models and Frameworks on Mobile
Devices. arXiv 2020, arXiv:2005.05085.

27. Deng, Y. Deep Learning on Mobile Devices: A Review. In Proceedings of the Mobile Multimedia/Image Processing, Security,
and Applications 2019, Baltimore, MD, USA, 14–18 April 2019; Agaian, S.S., DelMarco, S.P., Asari, V.K., Eds.; SPIE: Baltimore,
MD, USA, 2019; p. 11. [CrossRef]

28. Ignatov, A.; Timofte, R.; Chou, W.; Wang, K.; Wu, M.; Hartley, T.; Van Gool, L. AI Benchmark: Running Deep Neural Networks on
Android Smartphones. In Proceedings of the Computer Vision–ECCV 2018 Workshops, Munich, Germany, 8–14 September 2019;
Leal-Taixé, L., Roth, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11133, pp. 288–314. [CrossRef]

http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1088/1361-6579/ad0ab8
http://www.ncbi.nlm.nih.gov/pubmed/37939391
http://dx.doi.org/10.1016/j.procs.2022.11.220
http://dx.doi.org/10.1109/JSEN.2020.3005443
http://dx.doi.org/10.1109/ICMLA.2017.0-149
http://dx.doi.org/10.1177/1550147718802186
http://dx.doi.org/10.1145/3123021.3123038
http://dx.doi.org/10.1007/s10618-017-0495-0
http://dx.doi.org/10.3390/s21093071
http://dx.doi.org/10.3390/s23031137
https://figshare.com/articles/dataset/Running_Exercise_IMU_Dataset/22117235
https://figshare.com/articles/dataset/Running_Exercise_IMU_Dataset/22117235
https://www.timeseriesclassification.com/description.php?Dataset=BasicMotions
https://www.timeseriesclassification.com/description.php?Dataset=BasicMotions
http://timeseriesclassification.com/description.php?Dataset=CounterMovementJump
http://timeseriesclassification.com/description.php?Dataset=CounterMovementJump
https://archive.ics.uci.edu/dataset/256/daily+and+sports+activities
https://archive.ics.uci.edu/dataset/256/daily+and+sports+activities
http://dx.doi.org/10.1109/MC.2018.2381112
http://dx.doi.org/10.5220/0011927700003414
http://dx.doi.org/10.5220/0010896400003123
http://dx.doi.org/10.3390/make1010027
http://dx.doi.org/10.1117/12.2518469
http://dx.doi.org/10.1007/978-3-030-11021-5_19


Sensors 2024, 24, 742 20 of 20

29. Niu, W.; Ma, X.; Wang, Y.; Ren, B. 26ms Inference Time for ResNet-50: Towards Real-Time Execution of All DNNs on Smartphone.
arXiv 2019, arXiv:1905.00571.

30. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
31. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in

Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2012; pp. 1097–1105.

32. Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2014, arXiv:1312.4400.
33. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]
34. Wang, Z.; Yan, W.; Oates, T. Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. In

Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017;
pp. 1578–1585. [CrossRef]

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

36. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

37. van Noord, N.; Postma, E. Learning Scale-Variant and Scale-Invariant Features for Deep Image Classification. Pattern Recognit.
2017, 61, 583–592. [CrossRef]

38. Balkhi, P.; Moallem, M. A Multipurpose Wearable Sensor-Based System for Weight Training. Automation 2022, 3, 132–152.
[CrossRef]

39. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition Using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013,
15, 1192–1209. [CrossRef]

40. Cornacchia, M.; Ozcan, K.; Zheng, Y.; Velipasalar, S. A Survey on Activity Detection and Classification Using Wearable Sensors.
IEEE Sens. J. 2017, 17, 386–403. [CrossRef]

41. Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time Series
Feature Extraction Library. SoftwareX 2020, 11, 100456. [CrossRef]

42. Rodrigues, J.; Liu, H.; Folgado, D.; Belo, D.; Schultz, T.; Gamboa, H. Feature-Based Information Retrieval of Multimodal Biosignals
with a Self-Similarity Matrix: Focus on Automatic Segmentation. Biosensors 2022, 12, 1182. [CrossRef]

43. Liu, H.; Hartmann, Y.; Schultz, T. Motion Units: Generalized Sequence Modeling of Human Activities for Sensor-Based Activity
Recognition. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August
2021; pp. 1506–1510. [CrossRef]

44. Liu, H. Biosignal Processing and Activity Modeling for Multimodal Human Activity Recognition. Ph.D. Thesis, Universität
Bremen, Bremen, Germany, 2021. [CrossRef]

45. Hartmann, Y.; Liu, H.; Schultz, T. Feature Space Reduction for Multimodal Human Activity Recognition. In Proceedings
of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2020)—Volume 4:
BIOSIGNALS, Valletta, Malta, 24–26 February 2020; pp. 135–140. [CrossRef]

46. Hartmann, Y. Feature Selection for Multimodal Human Activity Recognition. Ph.D. Thesis, Universität Bremen, Bremen,
Germany, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/IJCNN.2017.7966039
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.patcog.2016.06.005
http://dx.doi.org/10.3390/automation3010007
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1109/JSEN.2016.2628346
http://dx.doi.org/10.1016/j.softx.2020.100456
http://dx.doi.org/10.3390/bios12121182
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616298
http://dx.doi.org/10.26092/elib/1219
http://dx.doi.org/10.5220/0008851401350140

	Introduction
	Data Acquisition
	Activity Choice
	Hardware
	Output Data Rate & Data Loss
	Recording Procedure

	Preprocessing
	Data Synchronization
	Processing Incomplete Data
	Standardization
	Segmentation

	CNN Architectures
	Deep Convolutional Network (Deep-CNN)
	Fully Convolutional Network (FCN)
	Residual Network (ResNet)
	Scaling-FCN

	Traditional Machine Learning
	Features
	Hyperparameters

	Results
	Architecture Performance
	Impact of Sensor Data on Performance
	Time Window Length
	Sensor Dimensions
	Sensor Number and Position

	Prediction Times
	Limitations

	Conclusions
	Appendix A
	References

