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Abstract: Real-time monitoring and timely risk warnings for the safety, health, and fatigue of under-
ground miners are essential for establishing intelligent mines, enhancing the safety of production, and
safeguarding the well-being of miners. This concerns the collection, transmission, and processing of
relevant data. To minimize physical strain on miners, data collection functions are consolidated into
two wearable terminals: an electronic bracelet equipped with reliable, low-power components for
gathering vital sign data and transmitting them via Bluetooth and a miner lamp that integrates multi-
gas detection, personnel positioning, and wireless communication capabilities. The gas sensors within
the miner lamp undergo regular calibration to maintain accuracy, while the positioning tag supports
round-trip polling to ensure a deviation of less than 0.3 m. Data transmission is facilitated through
the co-deployment of 5G communication and UWB positioning base stations, with distributed MIMO
networking to minimize frequent cell handovers and ensure a low latency of no more than 20 ms.
In terms of data processing, a backpropagation mapping model was developed to estimate miners’
fatigue, leveraging the strong correlation between saliva pH and fatigue, with vital signs as the
input layer and saliva pH as the output layer. Furthermore, a unified visualization platform was
established to facilitate the management of all miners’ states and enable prompt emergency response.
Through these optimizations, a monitoring system for underground miners’ status based on mine
IoT technology can be constructed, meeting the requirements of practical operations.

Keywords: health monitoring; personnel positioning; wearable terminal; fatigue estimation; mine IoT

1. Introduction

Underground mining operations involve various hazards [1,2], such as collapses,
explosions, toxic substance exposure, and mechanical accidents, which pose serious risks to
the safety and well-being [3] of underground miners. To enhance safety in production, it is
crucial to establish an efficient perception system that can provide early warnings for safety
hazards and health issues. This system should encompass data collection, transmission,
and processing of information regarding each miner’s health status, fatigue level, exposure
to environmental gases, and precise location.

In the medical field, evaluating human health often involves monitoring the four
vital signs: respiration, body temperature, pulse rate, and blood pressure [4]. Recent
advancements in wearable sensing devices [5] and Internet of Things (IoT) technology [6]
have enabled remote monitoring [7] of vital signs, making it more convenient and accessible.
This allows for the real-time capture of vital sign data from miners, enabling a prompt
response to abnormal situations and the timely implementation of emergency measures [8,9].
However, current monitoring systems encounter specific limitations. Challenges include
ensuring the daily wearability and maintenance of multiple sensors on different body
parts. Furthermore, accurately and directly measuring fatigue levels [10] using wearable
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devices remains a challenge. While fatigue state assessment through measurements of heart
rate [11], body movement [12], and skin conductivity [13] has been explored, it is often
unreliable for evaluating miners’ conditions due to individual susceptibility to fatigue and
external environmental factors.

In order to achieve timely risk warnings and emergency responses, it is essential to ac-
curately measure environmental gas concentrations [14,15], such as methane (CH4), carbon
monoxide (CO), and oxygen (O2), and to precisely track the location [16,17] of underground
miners. While the relevant technology has matured, maintaining high accuracy while also
ensuring a lightweight and portable solution remains a challenge.

Due to the unique environment, the deployment and application of wireless com-
munication systems in mines face significant challenges. Safety concerns, as well as the
presence of dust and combustible gases, impose limitations on the transmitting power of
radio frequency signals, which in turn affects signal coverage [18]. Moreover, the operation
of large-scale production equipment often introduces crosstalk in communication signals,
further complicating signal processing [19]. Therefore, it is crucial to optimize wireless
communication systems for underground scenarios to overcome these limitations and
ensure reliable communication.

Once data reach the surface, it becomes crucial to establish a unified monitoring
platform [20] that can process, manage, and display various status indicators, such as safety,
health, and fatigue. This platform enables uniform state analysis and risk management and
ensures seamless integration with the diverse systems operating within the mine.

2. Architecture of Monitoring System for Miner’s Status

The monitoring system for the miner’s status, which is based on mine IoT technology,
is illustrated in Figure 1. To strike a balance between reducing physical strain and ensuring
monitoring capabilities, all underground miners are equipped with two highly integrated
terminals: a lightweight electronic bracelet worn on the wrist and a waist-mounted smart
miner lamp. The electronic bracelet collects vital signs such as respiration, body temper-
ature, pulse rate, and blood pressure, synchronizing these data to the miner lamp via
Bluetooth. The miner lamp is transformed from a basic lighting device to an intelligent
terminal [21], featuring not only its primary purpose of providing underground illumina-
tion but also multi-gas detection, personnel positioning, and wireless communication. As
mine intelligence advances, wireless communication systems such as 4G, 5G, and Wi-Fi
have been extensively deployed in mines, providing efficient and reliable transmission
channels for exchanging information between the underground and the surface. In the
absence of Global Navigation Satellite Systems (GNSSs), spatial positioning intelligence
in mines relies on technologies such as ZigBee or ultra-wideband (UWB). Therefore, the
base station in the mine needs to provide both wireless communication and positioning
coverage, usually using a combination of technologies such as 4G and ZigBee, 5G and UWB,
or other suitable options. Lastly, the data of all miners converge from underground to the
surface and undergo data processing procedures, such as health and safety assessment and
fatigue estimation, before being uniformly presented on the monitoring platform.

Taking the system deployed in a coal mine located in Northwest China as an example,
the main parameters are shown in Table 1.

Table 1. Parameters of the monitoring system for miner’s status.

Items Parameters

Underground miner - Three shifts per day, with a maximum of 400 miners per shift

Electronic bracelet
- Collection of vital signs: respiration, body temperature, pulse rate,
blood pressure
- Data synchronization: Bluetooth

Miner lamp
- Wireless communication: 5G, Wi-Fi
- Gas detection: methane, oxygen, carbon monoxide
- Personnel positioning: UWB
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Table 1. Cont.

Items Parameters

Base station
- 5G: Upload ≥ 450 Mbps, delay ≤ 20 ms
- UWB: error ≤ 30 cm

Monitoring platform
- Assessment: health and safety
- Estimation: fatigue level
- Maximum concurrent number: up to 5000 users
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3. Realization Methods and Results
3.1. Vital Signs Collection and Synchronization

In order to ensure the accurate capture of miners’ vital signs and enable real-time
reporting, the development of a customized electronic bracelet design must adhere to
several key principles. Firstly, non-invasive measurements [22] should be utilized to avoid
any potential environmental interference [23]. Secondly, the design should prioritize high
integration and lightweight construction to minimize additional burden on the miners.
Lastly, strict adherence to safety and explosion-proof requirements in the mine is essential.

Blood oxygen saturation is a crucial physiological parameter in the field of respira-
tion and circulation, representing the proportion of oxygen-saturated hemoglobin in the
blood compared to the total hemoglobin [24]. In clinical practice, the widely used pulse
oximeter (SpO2) [25] is employed to measure blood oxygen saturation, calculated using the
following formula:

SpO2 = HbO2/(HbO2 + RHb) (1)

where HbO2 refers to oxyhemoglobin, while RHb represents total hemoglobin. The calcula-
tion of SpO2 relies on the different absorption rates of oxyhemoglobin and total hemoglobin
for specific wavelengths of light. Typically, the reflectance of human tissue across two dis-
tinct wavelengths, such as 660 nm and 940 nm, is analyzed to determine SpO2. Figure 2
provides an illustration of the light absorption by different components of the blood.
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Body temperature measurement can be achieved using a pyroelectric infrared detec-
tor [26], which detects infrared radiation using pyroelectric properties in specific materials
and enables accurate body temperature measurement. This method is reliable and not
affected by factors such as sweat or ambient temperature.

Another widely used technique for health monitoring is photoplethysmography (PPG),
which utilizes changes in light reflection from human tissue to extract pulse waves [27]. By
analyzing characteristics of the pulse wave signal, such as its frequency, and establishing
a regression equation for blood pressure estimation based on pulse wave data, real-time
blood pressure measurement can be achieved [28]. The electronic bracelet that uses PPG to
measure blood pressure shows readings that deviate within ±3 mmHg compared to the
calibrated mercury sphygmomanometer, as shown in Table 2.

Table 2. Comparison of blood pressure test results.

Test Time
Electronic Bracelet Sphygmomanometer

Systolic Diastolic Systolic Diastolic

8:00 126 mmHg 83 mmHg 125 mmHg 84 mmHg
10:00 132 mmHg 87 mmHg 129 mmHg 85 mmHg
12:00 135 mmHg 88 mmHg 133 mmHg 86 mmHg
14:00 128 mmHg 83 mmHg 128 mmHg 82 mmHg
16:00 122 mmHg 82 mmHg 120 mmHg 81 mmHg

Due to the high real-time requirements but low data rate, data synchronization be-
tween the electronic bracelet and the miner lamp can be achieved through the Bluetooth
protocol. To achieve a lightweight design, the electronic bracelet utilizes a Bluetooth Low
Energy (BLE) module to reduce power consumption by using smaller packets and spaced
connections [29]. Similar to traditional Bluetooth technology, BLE can also handle inter-
ference through adaptive frequency hopping (AFH) [30]. It supports equiprobable hops
within 37 data channels, usually employing the mode 37 method, which can be described
by the following equation:

fn+1 = (fn + X) mod 37 (2)

where fn and fn+1 represent the channel index before and after frequency hopping, X is
the frequency hopping parameter, an integer ranging from 5 to 16, and mod is the remain-
der operator.

By integrating highly reliable and low-power components, the electronic bracelet is
capable of collecting four vital signs and reporting them to the miner lamp in real time.
Moreover, the electronic bracelet is powered by a LiMn2O4 (lithium manganese oxide)
battery [31], meeting the explosion-proof requirements of coal mines.
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3.2. Multi-Gas Detection and Personnel Positioning

The modern miner lamp has undergone significant evolution, now functioning as
a highly integrated terminal that combines the features of a smartphone, a multi-gas
detector, and a positioning tag. Alongside the electronic bracelet, the miner lamp forms a
comprehensive health and safety data acquisition system aimed at ensuring the well-being
of underground miners, as illustrated in Figure 3.
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Although tunable diode laser absorption spectroscopy (TDLAS) [32,33] offers out-
standing accuracy and precision for multi-gas detection, it presents challenges in terms
of miniaturization. As a solution, traditional yet compact electrochemical sensors are
employed in miner lamps to detect gases such as CH4, CO, and O2, with each gas requiring
a dedicated sensor. The output voltage of electrochemical sensors generally demonstrates a
linear relationship with gas concentration, as represented by the following equation:

U = k × C (3)

where U, k, and C denote the output voltage, linear slope, and gas concentration, respectively.
In practice, relying solely on formula (3) may not yield accurate measurements due

to the slight nonlinearity in the sensor. For example, Figure 4 illustrates the measurement
deviation of the O2 sensor in its original state. Our essential task is to achieve precise
measurements by establishing a mapping relationship between the measured values and
the actual gas concentration through proactive calibration. Given the potential changes in
the properties of electrochemical sensors over time, regularly calibrating the gas detection
function in the miner lamp is essential to maintain accuracy.
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UWB is widely acknowledged as the optimal choice for personnel positioning in
mines [34,35], due to its impressive range, precision, and robustness in challenging tunnel
environments. The theoretical accuracy of UWB ranging can achieve millimeter-scale or
even higher resolutions due to the picosecond-level timestamp accuracy of pulses. However,
many factors, including clock offset between the anchor and tag, can significantly impact
actual positioning accuracy. To address this issue, the double-sided two-way ranging (DS-
TWR) method is adopted [36], achieved through round-trip exchanges between the anchor
(base station) and the tag (miner lamp) via polling, as illustrated in Figure 5. The ranging
process begins with the tag initiating a signal transmission along with a timestamp, and the
signal undergoes 3-trip exchanges between the tag and anchor via polling. During the final
trip, an end-of-transmission signal is added to indicate the completion of a full ranging.
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By analyzing the time differences of these exchanges, represented by T1 to T6, the
distance value is computed using the following equation that establishes a relationship
between speed and time:

d = [(T4 − T1 − T32) + (T6 − T3 − T54)] × c/4 (4)

where T32 equals T3 − T2, and T54 equals T5 − T4. The symbol c represents the velocity of
the electromagnetic wave, which is equal to 299,792,458 m/s. Personnel positioning can
be achieved by obtaining the distance between the miner lamp and the two nearby base
stations through DS-TWR, ensuring that the UWB positioning error does not exceed 0.3 m,
as shown in Table 3.
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Table 3. Positioning results based on the DS-TWR.

Absolute Distance

1.00 m 125.00 m 250.00 m 400.00 m

Test 1 1.09 m 125.03 m 250.05 m 400.07 m
Test 2 1.07 m 125.02 m 250.05 m 400.04 m
Test 3 1.12 m 125.03 m 250.12 m 399.99 m
Test 4 1.17 m 125.04 m 250.06 m 400.06 m
Test 5 1.12 m 125.02 m 250.10 m 400.07 m
Test 6 1.12 m 125.05 m 250.09 m 400.12 m
Test 7 1.04 m 124.98 m 250.11 m 400.03 m
Test 8 1.06 m 125.10 m 250.02 m 400.07 m
Test 9 1.16 m 125.00 m 250.05 m 400.05 m

Test 10 1.11 m 124.99 m 250.11 m 400.07 m

3.3. Base Station Deployment and Networking

In practical mine deployment, the positioning base station usually relies on the commu-
nication base station for data transmission and typically follows a co-deployment approach,
as depicted in Figure 6. By utilizing the 5G and UWB combination, the coverage range of
the positioning base station is 2 to 3 times that of the communication base station. Con-
sequently, the positioning base station is deployed at intervals from the communication
base station.
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When considering the deployment of 5G base stations operating on the 3.5 GHz
frequency band, it is worth noting that the coverage radius of a single base station is
approximately 200 m [37]. Signal quality rapidly declines beyond this range, as illustrated
in Figure 7, which shows a partial map of the base station coverage in the mine. In the
traditional cellular network architecture [38], each base station represents a cell, leading
to frequent cell handovers [39] when user terminals are on the move, compromising
communication performance, particularly in terms of latency. Furthermore, the complex
electromagnetic environment and multi-path effects in confined spaces further limit the
performance of individual base stations.
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To address these challenges, distributed multiple-input multiple-output (D-
MIMO) [40,41] networking is implemented. This technique effectively enables collabo-
ration among neighboring base stations, allowing them to collectively serve a single user
terminal and thereby enhancing overall network coverage. Additionally, as a form of
MIMO technology, it naturally exhibits characteristics such as interference suppression and
fading suppression. Within a mine tunnel, specific test points between two neighboring 5G
base stations, as marked in Figure 7, were selected to measure the latency changes from
underground terminals to the surface server during continuous movement, as depicted
in Figure 8. Upon repeated verification, it was observed that the maximum latency does
not exceed 20 ms, indicating the transformation of this tunnel into a cell-free area where
changes in position have no impact on latency.
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Figure 8. Upon repeated verification, it was observed that the maximum latency does not 
exceed 20 ms, indicating the transformation of this tunnel into a cell-free area where 
changes in position have no impact on latency. 
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3.4. Fatigue Level Estimation

Following prolonged, high-intensity labor, the body generates an excess of lactic
acid [42,43], resulting in reduced pH levels of bodily fluids including blood, sweat, and
saliva [44,45]. While real-time non-invasive monitoring of any kind of bodily fluids may
be impractical, establishing a correlation between vital signs and salivary pH in advance
allows for the estimation of fatigue levels using data from electronic bracelets.
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Backpropagation [46] is a mature neural network algorithm that learns through data
training to achieve the mapping of input and output. In this application, we use a 3-layer
neural network with appropriate parameter settings to simulate complex nonlinear map-
pings. The input layer consists of four neurons: respiration, body temperature, pulse rate,
and blood pressure. These inputs are processed through the hidden layer and mapped to
the output layer, which represents the pH value of saliva. The number of neurons in the
hidden layer can be determined using the following empirical formula:

m = sqrt (n + l) + a (5)

where m represents the number of neurons in the hidden layers, n is the number of neurons
in the input layer, and l is the number of neurons in the output layer. The constant a ranges
from 1 to 10. In the context of the current scenario, selecting a value of 6 for a strikes a more
optimal balance between achieving high accuracy and maintaining low complexity. As a
result, we have set m to 8, which leads to the establishment of the neural network structure
as shown in Figure 9.
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In a production mine, operations are typically carried out in three shifts throughout
the day. At the end of each shift, saliva samples are collected and tested. Salivary pH is
influenced by various physiological activities within the human body, including fatigue,
but not limited to it. Therefore, our focus is not on the absolute value of pH but on the
changes caused by the fatigue level.

∆pH = pH0 − pHshift − ∆pHid (6)

where ∆pH represents the relative change in pH, pH0 represents the measured value of
pH, pHshift represents the average pH value for each shift, and ∆pHid is the average ∆pH
for each individual miner in the absence of fatigue.

The neural network is continuously trained to update the weights and thresholds using
datasets derived from the same individuals for both training and testing. This approach
ensures a pH value judgment error that does not exceed 0.05, as shown in Figure 10, even
when considering different individuals, thus remaining within an acceptable threshold of
0.2 for the purpose of fatigue estimation.
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3.5. Data Management and Emergency Response

In general, data management is composed of two software components. The first is a
mobile application installed in the miner lamp. Its primary functions are to display data
on the screen and upload it to the server. The second component is a monitoring platform
located on the surface server. This platform assesses the safety and health status of all
miners, estimates their fatigue levels, and presents the results via a web interface as shown
in Figure 10. Additionally, it receives information from the server through MQTT (Message
Queuing Telemetry Transport) and forwards it to the electronic bracelet.

Figure 11 depicts the interaction among underground miners, the monitoring platform,
and the surface administrator, who is able to promptly respond to any anomalies. The
entire cycle enables early warnings of safety hazards and health issues, providing assur-
ance of underground emergency response. The interaction among underground miners,
monitoring platform, and surface administrator is shown in Figure 12.

Furthermore, the monitoring platform can be seamlessly interconnected with the
mine’s broadcasting, scheduling, video, and other systems, enabling real-time linkage to
collectively enhance the safety and productivity of the mine.
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4. Conclusions

In this paper, we propose a real-time monitoring system based on mine IoT technology
to assess the safety and health, as well as estimate the fatigue level, of underground
miners. We discuss this system from several aspects, including data collection, transmission,
and processing. Unlike conventional solutions, all components for data acquisition are
integrated into a lightweight electronic bracelet and a smart mine lamp, with functions
optimized for vital signs collection, multi-gas detection, and personnel positioning to meet
specific requirements. Through the co-deployment of base stations and the implementation
of a distributed MIMO network, effective coverage of communication and positioning
signals can be achieved, overcoming the limitations of cellular networks. To address the
challenge of directly measuring fatigue levels, we constructed a mapping model based on
vital signs and saliva pH value to estimate fatigue. By conducting a comprehensive state
analysis and implementing risk management, alerts regarding safety hazards and health
issues can be generated from a visualization platform on the surface.

The proposed real-time monitoring system, which utilizes IoT technology, has been
successfully operational in a coal mine in Northwest China for over six months. It offers
an effective way to monitor the well-being of all miners, thereby minimizing the risk of
accidents and enhancing safety throughout the production process. This system stands out
from its predecessors due to its ability to assess fatigue levels and to perform integrated
processing of multi-dimensional data, all without imposing additional burdens on the
miners. According to initial user feedback, there have been no safety incidents related to
the physical condition of miners since the system was implemented.

Looking ahead, plans are in place to extend this advanced monitoring system to other
mines via renovation. For example, in open-pit mines, the GNSS will replace UWB for
personnel positioning. Moreover, sophisticated data protection methods, like blockchain
technology, will be adopted to strengthen the security and confidentiality of the data.

5. Patents

There are three Chinese patents resulting from the work reported in this paper:
ZL202010454491.2, ZL202211346766.6, and ZL202310627721.4, corresponding to Section 3.2,
Section 3.3, and Section 3.4, respectively.

Author Contributions: Conceptualization, Y.J. and W.C.; methodology, Y.J.; software, X.Z.
(Xuejun Zhang); validation, W.C. and G.Y.; formal analysis, X.Z. (Xue Zhang); investigation, X.Z.
(Xue Zhang); data curation, X.Z. (Xuejun Zhang); writing—original draft preparation, X.Z. (Xue Zhang);
writing—review and editing, Y.J.; visualization, X.Z. (Xue Zhang); supervision, Y.J.; project admin-
istration, X.Z. (Xuejun Zhang); funding acquisition, Y.J. All authors have read and agreed to the
published version of the manuscript.



Sensors 2024, 24, 739 12 of 13

Funding: This work was supported by the Key Project of Innovation and Entrepreneurship Fund of
Tiandi Science & Technology Co., Ltd. with grant nos. 2022-2-TD-ZD001 and 2023-TD-ZD005-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
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