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Abstract: This paper proposes a monitoring procedure based on characterizing state probability
distributions estimated using particle filters. The work highlights what types of information can be
obtained during state estimation and how the revealed information helps to solve fault diagnosis
tasks. If a failure is present in the system, the output predicted by the model is inconsistent with
the actual output, which affects the operation of the estimator. The heterogeneity of the probability
distribution of states increases, and a large proportion of the particles lose their information content.
The correlation structure of the posterior probability density can also be altered by failures. The
proposed method uses various indicators that characterize the heterogeneity and correlation structure
of the state distribution, as well as the consistency between model predictions and observed behavior,
to identify the effects of failures.The applicability of the utilized measures is demonstrated through a
dynamic vehicle model, where actuator and sensor failure scenarios are investigated.
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1. Introduction

The objective of this study was to investigate the information that can be obtained
through state estimation using a particle filter (PF) [1] and how it can aid in fault diagnosis
tasks. The aim was to develop and systematize methods that are suitable for diagnosing
and visualizing the operation of particle filters (PF). Gaining insight into the operation of
the filter can reveal significant features for fault diagnosis.

Fault diagnosis is responsible for detecting and identifying faults and taking corrective
action. Different diagnostic approaches are used to detect and identify faults. The two main
approaches to quantitative fault diagnostics are data-driven [2] and model-based [3]. In the
former case, machine learning models are trained on historical data about the operation. If
labeled data for the operation under faulty conditions are available, supervised machine
learning can be used to classify data into different operation modes. There are several appro-
priate methods for this classification, including neural networks, support vector machines [4],
principal component analysis [5], and decision trees [6]. The effectiveness of fault-type differ-
entiation methods is heavily influenced by the features used. Therefore, sophisticated feature
engineering procedures are typically required [7]. In practical cases, the lack of data about
the faulty mode means that the normal mode data are over-represented [8], which can be
problematic in supervised methods. In this case, the goal is to identify data that differ from
the data generated under normal conditions, which is a classic anomaly-detection task [9].
Detection can be based on the absolute value of a characteristic or its trend [10]. A change in
the statistical characteristics, such as variance, of the relevant feature in a fixed-length sliding
window may also indicate an anomaly [11]. In addition to the use of appropriate features,
the optimal choice of thresholds that distinguish the abnormal domain from the normal
domain is critical in anomaly detection [12]. The thresholds should be chosen to provide the
required sensitivity to faults, while keeping the false alarm rate as low as possible, even under
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dynamic conditions [13]. Several methods are available to select an appropriate threshold
in the presence of labeled erroneous data [14]. Binary classification metrics can be used to
fine-tune the threshold(s) [15]. In a simple case, the selection is made heuristically based on
expert knowledge. Under more dynamic conditions, adaptive thresholds are proposed instead
of fixed values, to cope with the difficulties caused by inference [16]. There are advanced
methods beyond threshold-based approaches for anomaly detection, which use statistical
hypothesis testing [17] or Bayesian inference [18].

The essence of model-based fault diagnostics systems is to compare the predicted
behavior based on the system model with the actual observed behavior [19]. The deviations
between model prediction and observation, called residuals, represent the potential faults
of the system. They are calculated on the basis of analytical redundancy, which involves the
algebraic and temporal relationships between the system’s states, inputs, and outputs [20].
This approach requires precise and accurate predictions. Prediction error metrics can be
used to assess the performance of estimation algorithms [21]. The classic Kalman filter is
a widely used technique for model-based fault diagnosis [22]. However, it is limited to
linear systems. In non-linear dynamics, the extended Kalman filter [23] and the unscented
Kalman filter [24] can be useful, but these require linearization and the assumption of
Gaussian noise. PFs offer more powerful estimations in non-linear and non-Gaussian
systems [25], which are prevalent in many real-world applications. PFs are based on Monte
Carlo sampling, which allows them to approximate complex probability distributions. A
PF is suitable for tracking the state of hybrid systems, making it applicable to systems with
varying dynamics [26].

PF-based fault detection employs two approaches. One is the comparison of residuals
with threshold values. This approach was applied in the diagnosis of faults in electric
aircraft systems [27] and in induction generators used in wind turbines [28]. The other
approach is based on the likelihood of particles. The logarithm of the likelihood of the
output particles considering a measurement density is summed, and that value is examined
in a sliding window to avoid false alarms due to disturbances.This value is then evaluated
using a threshold similar to the previous one. Moving average [29], exponential smooth-
ing [30], or simple summation in a window [31] are generally used to form a decision
function from the sum of particle likelihoods.

Fault isolation, however, is a more complex task that requires more sophisticated ap-
proaches than a basic state estimation. A common approach in PF-based fault diagnosis is to
track changes in the parameters [32,33]. In this method, the underlying assumption is that
faults in a system can be represented as changes in the system’s parameters. By monitoring
and estimating these parameter changes, faults can be detected and diagnosed. By comparing
the estimated parameters with their expected values, any deviations can be identified as
potential faults. This approach can be useful, for example, during tool wear diagnostics [34].
Another approach is to use a hybrid system model with discrete modes [35,36]. In this
method, the state space is extended to include additional discrete variables that represent
the different modes or states of the system faults. Each particle in the filter carries not only
the state estimate but also the mode estimate. Each mode has different dynamics. The fault
identification process is based on the estimation of continuous states and the calculation of the
most probable discrete state [26,37,38]. This approach is particularly useful when the system
has multiple possible fault modes that can occur simultaneously or sequentially. This allows
for more accurate fault detection and identification through explicitly modeling the different
fault scenarios. Furthermore, particle filter-based fault diagnostic methods can use dedicated
observers [39]. Dedicated observers are specialized models designed to capture specific fault
signatures or symptoms. These observers usually specialize in a particular sensor, whose
signal is not taken into account when estimating the state. In the event of the failure of a
particular sensor, the estimate of the dedicated observer remains unaffected, while the others
are distorted [40]. This phenomenon can be detected through hypothesis testing [25], using
the likelihood of a particular observer [40] or using the likelihood ratio of a particular observer
to a main observer [41]. The development and application of fault isolation algorithms require
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detailed knowledge of a fault model. These fault-specific models and knowledge are not
always available, so these tools cannot be easily applied for the identification of novel faults.

This study aims to investigate whether the analysis of state distributions estimated using a
particle filter can provide valuable features for reliable fault detection and to isolate individual
failure effects. Various indicators and visualizations are utilized to analyze the structure of
the distribution that represents the state and its uncertainty, along with the operation of the
estimation algorithm used to identify fault-specific information patterns. During the presented
procedure, we examine three aspects: the homogeneity of the discrete distributions produced,
the correlation structure between the state variables, and the update step for the filter.

The key contributions of this study can be summarized as follows:

• We provide a set of indicators to evaluate the probability distribution of the states
estimated using the particle filter.

• This study investigates the homogeneity of probability distributions generated with a
particle filter using probabilistic and information-theoretic metrics.

• The evolution of the correlation structure of estimated distributions over time is monitored.
• The consistency between model-predicted distributions and measurements is monitored.
• The proposed indicators are demonstrated through a vehicle dynamics example.
• The effectiveness of the proposed metrics is examined using sensor and actuator

failure scenarios.

The article is structured as follows: In Section 2, the methodology is introduced. Section 2.1
explains the particle filter state estimation algorithm. Section 2.2 describes the measures ap-
plied for the evaluation of the heterogeneity of the state-probability distributions estimated
using a particle filter (Section 2.2.1), for the correlation structure of the states (Section 2.2.2), and
for the consistency between the model predictions and observations (Section 2.2.3). Section 3
presents the application example within whose framework the analysis was carried out.
Section 3.1 describes the model used. Section 3.2 explains the simulated scenarios. Section 3.3
describes the applied estimator parameters. Section 3.4 presents and discusses the results of
the investigations. Finally, some concluding remarks are made.

2. Monitoring the Operation of the Particle Filter and Its Estimated Distributions

In this section, we first detail the particle filter-based state estimation. The proposed
monitoring procedure is then explained, which involves investigating three aspects of the
operation of the estimator:

• the heterogeneity of the estimated state distributions is examined over time;
• the correlation pattern between the state variables is monitored;
• the consistency between model predictions and measurements is also qualified.

The metrics used for these three investigations are presented.

2.1. State Estimation with Particle Filter

Bayesian state estimation aims to recursively calculate the posterior probability density
function of the state using an assumption about the evolution of the dx-dimensional state
x(t) and the dy-dimensional measurement y(t) in each time instant t. The general discrete
state-space model describes how the state evolves in time:

x(t) = f (x(t−1), u(t−1), v(t−1)), v(t−1) ∼ N (0, Q) (1)

where f is the state-transition function, u(t−1) stands for the input vector, and v(t−1) denotes
the process noise vector in the (t − 1)th time instant. The process noise is assumed to follow
a zero-mean Gaussian probability density function (PDF) with a covariance matrix Q with
dx × dx dimensions. The measurement equation creates a link between the information
about the state and the noisy measurements:

y(t) = h(x(t), w(t)) w(t) ∼ N (0, R) (2)
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where h is the measurement function, y(t) is the measurement in time t, and w(t) represents
the measurement noise. This noise is also assumed to be a zero-mean Gaussian PDF with
covariance matrix R with dimensions dy × dy.

The particle filter [1] applies discrete sampling densities generated using Monte Carlo
simulations to estimate the internal states x(t) of a dynamics system. In this method, the
posterior density of the state is approximated in each tth discrete time instant using a
set of Ns random samples called particles represented by {x(0:t)

i , i = 1, . . . , Ns} support

points and {w(0:t)
i , i = 1, . . . , Ns} associated weights. This discrete sampling density is

expressed as

p(x(0:t)|y(1:t)) ≈
Ns

∑
i=1

w(t)
i δ(x(0:t) − x(0:t)

i ) (3)

where δ is the Dirac delta function. The associated weights w(t)
i are obtained based on the

importance sampling technique [42]:

w(t)
i ∝

p(x(0:t)
i |y(1:t))

q(x(0:t)
i |y(1:t))

(4)

where q denotes the importance density function defined as:

q(x(0:t)|y(1:t)) = q(x(t)|x(0:t−1), y(1:t))q(x(0:t−1)|y(1:t−1)) (5)

To derive the appropriate weights, we need to express the joint posterior density
as follows:

p(x(0:t)|y(1:t)) =
p(y(t)|x(0:t), y(1:t−1))p(x(0:t)|y(1:t−1))

p(y(t)|y(1:t−1))

=
p(y(t)|x(t))p(x(t)|x(t−1))

p(y(t)|y(1:t−1))
p(x(0:t−1)|y(1:t−1))

∝ p(y(t)|x(t))p(x(t)|x(t−1))p(x(0:t−1)|y(1:t−1))

(6)

By substituting Equations (5) and (6) into Equation (4), the weight update equation
can be written as follows:

w̃(t)
i ∝

p(y(t)|x(t)i )p(x(t)i |x(t−1)
i )p(x(0:t−1)

i |y(1:t−1))

q(x(t)i |x(0:t−1)
i , y(1:t))q(x(0:t−1)

i |y(1:t−1))

=
p(y(t)|x(t)i )p(x(t)i |x(t−1)

i )

q(x(t)i |x(0:t−1)
i , y(1:t))

w(t−1)
i

(7)

The tilde superscript (w̃t
i ) indicates that the posterior normalization factor is not taken

into account here (Equation (6)).
Due to the Markov property, q(x(t)|x(0:t−1), y(1:t)) = q(x(t)|x(t−1), y(t)).
The choice of importance density is crucial in designing a particle filter. The most

commonly applied sub-optimal choice is the state transition function:

q(x(t)|x(t−1)
i , y(t)) = p(x(t)|x(t−1)

i ) (8)

By substituting Equation (8) into Equation (7), we can express the weight update
formula as

w̃(t)
i ∝ w(t−1)

i p(y(t)|x(t)i ) (9)
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It is important to note that the normalization factor of the posterior density (Equation (6))
is still unknown. Therefore, we have to normalize the importance of weights:

w(t)
i =

w̃(t)
i

∑Ns
j=1 w̃(t)

j

(10)

Then, the posterior density of t time instant can be approximated as

p(x(t)|y(t)) ≈
Ns

∑
i=1

w(t)
i δ(x(t) − x(t)i ) (11)

A well-known challenge of the weight update formula is the sample degeneracy
problem [43]. As the number of iterations increases, a small fraction of particles receive
larger and larger weights, while the other particle weights become negligible. Thus, after
a while, only one particle represents the state. In this case, the uncertainty of the state
is not represented. Consequently, the algorithm cannot track the changes in the process.
The extent of degeneracy is monitored by approximating the effective sample size in each
iteration [44]. The effective sample size can be approximated as

N̂e f f =
1

∑Ns
i=1(w

(t)
i )2

(12)

To avoid the undesirable phenom of sample degeneracy, the particles are resampled
when the effective sample size N̂e f f falls below a predetermined threshold value [45].
During the resampling process, new particles are randomly selected from the set of existing
particles {x(t)i }Ns

i=1 with replacement. The probability of selecting x(t)i is proportional to its

weight w(t)
i . All weights are reset to 1/Ns after resampling. Resampling and reweighting

allow keeping the shape of the posterior distribution, so that all particles contribute equally
to the information content.

The following pseudocode briefly summarizes the particle filter algorithm (Algorithm 1):

Algorithm 1 The particle filter algorithm

Input: A set of measurements (mostly in real-time defined as streaming data, but the whole
time series may be already available) y(0:t), a set of control inputs (as streaming data
or whole time series) u(0:t), the model is defined by the f and h functions, and the
parameters of the algorithm (R, Q, Ns, ϵ)

Output: Set of state samples x(t)i and the associated weights w(t)
i

1: function PARTICLE FILTERING(y(0:t)
i , u(0:t), f , h, R, Q, Ns, ϵ)

2: Step 1: Initialization of particles
3: for i = 1, . . . , Ns do
4: Draw samples x(t=0)

i from the priori distribution of state.

5: Initialize their weights w(t=0)
i = 1/Ns.

6: end for
7: Step 2: Prediction
8: for i = 1, . . . , Ns do
9: Propagate particles x(t)i with state-transition model f (Equation (1)).

10: end for
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Algorithm 1 Cont.

11: Step 3: Update weights
12: for i = 1, . . . , Ns do
13: Calculate the likelihood of each prior particle p(y(t)|x(t)i ) based on the new

measurement y(t) and measurement equation h (Equation (2)).
14: Incorporate the information from the new measurement y(t) by updating the

particle weights w(t)
i according to Equations (7) and (10).

15: end for
16: Step 4: Resampling
17: Calculate the effective sample size N̂e f f according to Equation (12).
18: if N̂e f f < ϵ then

19: Resample particles x(t)i and reset their weights w(t)
i to 1/Ns.

20: end if
21: Repeat
22: for t = 1, . . . , ∞ do
23: Repeat Steps 2–4.
24: end for
25: end function

The computational effort of the algorithm is mainly related to the complexity of the
model used, since the simulation based on the model is carried out in an amount of time
corresponding to the number of particles.

2.2. Monitoring the Behavior of a Particle Filter

Failure will cause the model-estimated value to be inconsistent with the observed
value, increasing the uncertainty. This uncertainty is reflected in a decrease in the probability
weights of the state samples [46]. Lower weights result in a higher resampling frequency,
decreasing the homogeneity of the state distribution. Furthermore, it is assumed that
the presence of a defect changes the correlation pattern in the state particle distribution,
which can be detected. In this study, different monitoring techniques are applied to
track the operation of the estimator in case of different types of faults. Probabilistic and
information-theoretic measures are used to evaluate the homogeneity of the posterior
distributions. The correlation structure of the estimated state particles in the distributions
and their time evolution are investigated. In the filter update step, the information content
of the measurement is incorporated into the assumptions made about the model, which, if
consistent, will yield a more informative posterior compared to the predicted distribution.
The information surplus between the posterior and prior distributions, the similarity of the
eigenvectors of their covariance matrix, and the distance between the prior distributions
and the distributions representing the measurement are measured to test this.

2.2.1. Evaluation of the Compactness and Heterogeneity of the Posterior Distribution

The uncertainty and reliability of the posterior carry important information for us. The
appearance of a fault involves an inconsistency between the model and the measurement.
As a result, the homogeneity of the posterior distribution and the diversity of the state
particles decreases, and their estimated probability also decreases. In contrast, during the
normal operation mode, when the estimation is consistent, the estimated state values are
evenly distributed around the true state, and most of them carry significant probability
weights. This implies high confidence in the estimates. Four indicators will be used to
monitor these phenomena.

The theoretical definition of effective sample size Ne f f corresponds to the number
of independent samples that, if generated directly from the target distribution, would
result in an estimation efficiency equivalent to that achieved using the MCMC or IS algo-
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rithms [44]. The calculation is performed using the widely accepted approximation formula
(Equation (12)).

The logarithmic likelihood function provides a good indicator of the probability that
the posterior distribution represents the actual state. Its value gives an indication of how
closely the prior density coincides with the measurement density. Given Ns number of
state particles x(t)i in a discrete predictive distribution Pprior(x(t)) at the tth time instant, the
logarithmic likelihood function is expressed using the sum of the logarithm of likelihoods
of the particles conditioned on measurement y(t):

ℓ(Pprior(x(t))) =
Ns

∑
i=1

log(p(y(t)|x(t)i )) (13)

Shannon entropy [47] is a measure suitable for quantifying the uncertainty and hetero-
geneity of a distribution. Given Ns number of particles x(t)i and their estimated probability

densities p(x(t)i |y(t)) in a discrete posterior distribution Ppost(x(t)) at tth time instant, the
entropy formula is expressed as follows:

H(Ppost(x(t))) = −
Ns

∑
i=1

p(x(t)i |y(t)) log2 p(x(t)i |y(t)) = −
Ns

∑
i=1

w(t)
i log2 w(t)

i (14)

The entropy calculated from the weights is used to infer the heterogeneity of the
posterior. If it is high, then the particles are identical; we do not know which corresponds
better to the actual state. If the weights are concentrated on a few particles, it takes a
low value.

Another measure of the diversity of particles in terms of their information content is
the population diversity factor [48]. The population diversity factor is described by the
following formula:

Dpop = s(w(t)
max − w(t)

av )/w(t)
av (15)

where w(t)
max denotes the maximum weight, w(t)

av denotes average of the upper 50% of
weights, and s stands for a scale factor that generally takes a value between 3 and 6.

2.2.2. Investigating Correlations between the State Variables of Particles

When a fault occurs, it can lead to increased uncertainty and inconsistency in state
estimates. This increased uncertainty is reflected in the covariance matrix of the state
estimates. A sudden change in the covariance of certain state variables may indicate the
presence of a fault that affects those variables. Depending on the type of fault, the covari-
ance structure of the state estimates may change over time. Tracking these changes can
help diagnose the fault and understand its evolution. In the presence of a fault, certain
state variables can become more correlated than they were in the fault-free condition. The
eigenvectors of the prior and posterior distributions provide insight into the correlation
structure of data. They describe the directions or axes of maximum variance in the data
space. The direction of each eigenvector represents a particular correlation pattern between
the variables. Eigenvectors associated with high eigenvalues capture strong correlations,
while those with low eigenvalues represent weak or negligible correlations. If the eigen-
vectors remain consistent or exhibit minimal changes, this suggests that the dominant
directions of variation in the data remain relatively stable. However, significant changes in
the eigenvectors indicate variations in the underlying structure or dynamics of the data.
Changes in the eigenvectors can indicate mode switching or transitions between different
patterns or clusters in the data, which may be caused by a failure. The eigenvectors and
eigenvalues are used to track the covariance structure of the posterior distributions at each
t time instant, allowing the capture of changes: from each dx × dx dimensional covariance
matrices C(t) of posterior distribution Ppost(x

(t)
i ), the eigenvectors V = [v(t)

1 , v(t)
2 , . . . , v(t)

dx
]

and corresponding eigenvalues λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
dx

are calculated.
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Note that particle weights {w(t)
i } are taken into account when calculating the covari-

ance of a posterior distribution Ppost(x
(t)
i ).

2.2.3. Investigation of the Weight Update Process to Infer the Consistency between the
Model and Observations

During the update step, the information content of a measurement is incorporated into
the posterior distribution. Each particle is weighted according to the likelihood it has in
the probability distribution, representing the uncertainty of the measurement. If the model
and measurement are consistent, the two distributions overlap to a large extent and a large
proportion of particles contribute to the posterior information content. In the case of a fault,
however, the two distributions are further apart, so the degree of overlap is smaller. Then,
the posterior distribution will be skewed, and the particle weights will be concentrated at
the edge of the distribution. This will result in a more heterogeneous posterior, which is
more ordered in terms of information content. The Kullback–Leibler (KL) divergence [49]
is a suitable measure of the divergence between the information content of the prior and
posterior in fault diagnosis [36]. It measures relative entropy; that is, how much extra
information is needed before specifying the value of the state variable x as a result of using
the prior instead of the posterior distribution. Let Pprior(x(t)) and Ppost(x(t)) be prior and
posterior distributions of the tth time instant. The KL divergence can be expressed for
them as

DKL(Pprior(x
(t)
i )||Ppost(x

(t)
i )) =

Ns

∑
i=1

p(x(t)|x(t−1)
i )ln

p(x(t)|x(t−1)
i )

p(x(t)i |y(t))
(16)

The degree of overlap between the prior and the distribution characterizing the un-
certainty of the measurement is quantified using the Bhattacharyya distance [49]. The
Bhattacharyya distance between the predictive and measurement distributions Pprior(x(t))

and Pmeas(x(t)) can be calculated based on their densities p(x(t)|x(t−1)
i ) and p(y(t)|x(t−1)

i ):

DB(Pprior(x(t))||Pmeas(x(t))) = −ln

(
Ns

∑
i=1

√
p(x(t)|x(t−1)

i )p(y(t)|x(t−1)
i )

)
(17)

If the measurement and the expected value are in sync, the update does not signifi-
cantly change the correlation structure of the particles. In this case, the state dimensions
with the highest variance point are roughly in the same direction in the prior and posterior
distributions. The difference between the eigenvectors of each covariance matrix is exam-
ined on the basis of Krzanowskii similarity [50]. This measure indicates the similarity or
alignment between the dimensions of the hyperplanes defined by the longest eigenvectors.
Let us assume A and B are covariance matrices of Pprior(x

(t)
n ) and Ppost(x

(t)
n ) prior and pos-

terior distributions. The Krzanowsky similarity between A and B in case of eigenvectors of
the highest k eigenvalues can be expressed as

SK =
k

∑
m=1

k

∑
n=1

cos2(Θmn) (18)

where Θmn is the angle between the mth eigenvector of A and the nth eigenvector of B.

3. Application to the Diagnosis of the Sensor and Actuator Faults of Vehicles

With the increasing complexity and widespread use of electrical and electronic compo-
nents, functional safety is becoming of paramount concern in the automotive industry. Any
faults that occur in these components can cause significant issues for vehicles, including
degraded performance, increased noise and vibration, unintended torque requests, and
more, all of which can compromise the functional safety of the vehicle. Therefore, it is
of utmost importance to prioritize the development of reliable and resilient diagnosis
and fault-tolerant control systems for electrified power trains. This is crucial to ensure
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the safe and reliable operation of vehicles on the road. Our work was motivated by the
aforementioned challenges. Additionally, we aimed to produce results that are easily
interpretable and reproducible. To achieve this, we demonstrated the application of the
proposed monitoring procedure through simulations based on a vehicle dynamics model.

3.1. The Applied Model

In this research, a single-track dynamic non-linear vehicle model [51] is applied. It
is used to describe the lateral motion of vehicles in the plane of the vehicle. It assumes
that the left and right wheels are subject to an equal amount of lateral force, and it merges
the four wheels of the vehicle on the two axles into two imaginary wheels, namely the
front and rear wheels. It also assumes that the mass of the vehicle is concentrated on
the gravitational center of the vehicle. This is the most basic vehicle model that can
predict lateral motions. Due to its simpler representation, it facilitates analysis and requires
much lower computational resources, making it suitable for real-time applications. The
application of Newton’s second law for the motion along the y axis gives the lateral
dynamics, and the moment balance about the z axis yields the yaw dynamics of the model.
The dynamics are described using the following differential equations:

may = Fy f + Fyr

IzΨ̈ = l f Fy f − lrFyr
(19)

After simplifications and transformations, the following equations can be described:

Ẋ = vxcos(ψ)− vysin(ψ)

Ẏ = vxsin(ψ)− vycos(ψ)

ψ̇ =
vx

l f + lr
tan(δ)

mv̇x = Fx + mvyψ̇ − 2Fy f sin(δ)− Fa − Fr

mv̇y = −mvxψ̇ + 2
(

Fy f cos(δ) + Fyr

)
Iψ̈ = 2

(
l f Fy f cos(δ)− lrFyr

)
(20)

Here, X and Y are the longitudinal and lateral positional coordinates of the gravita-
tional center of the vehicle. vx and vy are the longitudinal and lateral speeds, and ψ is the
yaw of the vehicle. m and I denote the vehicle mass and yaw inertia, respectively. Fy f and
Fyr denote the lateral tire forces at the front and rear wheels, which can be obtained using
tire models [52]. l f and lr represent the distance from the center of the vehicle mass to the
front and rear axles, and Fa and Fr are the air drag and rolling resistance.

The input of the system is the driving force Fx and the steering angle δ. The mea-
sured outputs are the position coordinates X and Y, velocities vx and vy, and yaw rate ψ̇.
Equation (21) summarizes the model variables:

x = [X, Y, ψ, vx, vy, ψ̇]

y = [X, Y, vx, vy, ψ̇]

u = [Fx, δ]

(21)

3.2. Simulation Scenarios

This study deals with the detection and investigation of two sets of faults, similarly to
reference [53].

• Actuator fault: This fault is in the steering angle command. The effective steering
angle differs from the commanded steering angle by a constant 0.4 degrees.

• Sensor fault: The measured yaw rate does not correspond to the actual yaw rate, due
to a positive 0.02 rad/s offset.
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The states are simulated using the single-track model described in Section 3.1. During
the simulation, the driving force Fx was set to be constant and the steering angle δ had a
sinusoidal input with a frequency of 0.05 and amplitude of 5°. For the measured variables
(coordinates x and y, velocities vx and vy, and yaw rate ψ̇), white Gaussian noises were
considered with covariances of

R̂ =


0.05 0 0 0 0

0 0.05 0 0 0
0 0 0.005 0 0
0 0 0 0.005 0
0 0 0 0 0.000005

 (22)

To simulate the sensor fault, 0.02 rad/s was added to the simulated yaw rate measure-
ments starting from the 1000th time instant. The second scenario is an additive actuator
fault, where the angle of the front wheel does not correspond to the commanded angle of
steering. The same setting as in the sensor fault scenario was applied in the simulation.
0.4◦ was added to the sinusoidal steering angle input from the time instant 1000th.

Figure 1a,b visualize the effect of the faults. The figure illustrates that there was no
significant shift in the values due to the faults when the measurements were plotted against
time. This implies that the nature of the faults does not permit the use of conventional
univariate signal-based fault diagnosis tools.

Figure 1. (a) demonstrates the deviation of the measured yaw rate from its actual value caused by the
presence of a fault. (b) illustrates how the model’s prediction for the vertical position component
differed from its actual value as a result of an incorrect steering input. The vertical red line indicates
the moment when the error occurred.

3.3. Applied Estimator Parameters

The particle filter estimation ran on the presented data, with the same model. The
number of particles Ns was set to 300 and the minimum threshold for effective sample size
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ϵ was set to 50% of all particles. The applied process and measurement noises were selected
using a trial-and-error method, during which root mean squared error (RMSE) was used,
and the guidelines of reference [54] were also followed. The selected parameters were

R =


0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.001 0 0
0 0 0 0.001 0
0 0 0 0 0.000001

 (23)

Q =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.00001

 (24)

It is important to note that the Gaussian distribution with R covariance is not the same
as the Gaussian distribution used to simulate measurement noise R̂, although the two must
be consistent with each other, because the latter has a strong impact on the best values to
choose for the former.

3.4. Results and Discussion

The position coordinates of the particles are plotted in Figure 2 to illustrate the changes
in the homogeneity of the distribution. The figures indicate the emergence of a new
operation mode with reduced variance, and the particles formed clusters over time, causing
inhomogeneity in the distributions. The more intensive resampling reduced the number
of particles. It can be observed that, in the event of an actuator fault, this phenomenon
was delayed.

The change in homogeneity was examined using the qualitative indicators presented
in Section 2.2.1. Their evolution over time is visualized in Figure 3. In the period before the
error, a step-like pattern appeared for each indicator, which can be attributed to resampling.
After the error, the resampling frequency increased, which broke this pattern. Based on the
plots, the widely used log-likelihood function seemed to be the most meaningful indicator.
In the presence of an error, its value decreased significantly, which allowed the choice of
an absolute value threshold by expert judgment. In the case of the population diversity
factor, the expected value clearly increased, but more frequent resampling results in higher
variance, which can lead to false alarms. Hence, it is worth looking at its aggregated
or expected value in a sliding window rather than its actual value. The use of entropy
and effective sample size as diagnostic features requires more advanced methods. Both
are heavily influenced by resampling, which keeps their values within a constant range.
In order to define a reliable decision criterion, it is necessary to take into account the
resampling-induced decreases, the variance changes, and the trend of their value. It can be
seen that all the indicators change explosively in the event of an incorrect measurement
and then quickly take on a constant value. This jump is not present in the case of an
incorrect input, because the inconsistency between the model and the measurements
develops gradually. It should be noted that, although not addressed in this work, it would
be worthwhile to investigate the use of kurtosis, modality, and skewness measures to
characterize the changes in the structure of the distribution (or possibly the use of clustering
techniques, as the distributions are discrete). It would also be advisable to investigate the
use of different types of distributions; for example, to investigate which of the different
types of distribution best fits each type of error.
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Figure 2. These figures illustrate the particle positions in the event of sensor or actuator faults. The
left subplots show the evolution of particle positions in the case of sensor faults, while the right
subplots show the evolution of particle positions in the case of actuator faults.

This inconsistency was checked using the indicators described in Section 2.2.3. The dis-
tance between the prior and the measurement density was measured using Bhattacharyya
distance, the excess of the posterior information compared to the prior was quantified
using KL divergence, and the similarity of their correlation pattern was analyzed with
Krzanowsky similarity using the two largest eigenvectors of the priors and posteriors.
Figure 4 shows the change in these values over time. The evolution of these indicators is
very similar to that of the heterogeneity indicators. The KL divergence or relative entropy
follows the same pattern as the entropy with the opposite sign. Therefore, its use as a fault
diagnostic feature poses similar challenges. The pattern of the Bhattacharyya distances is
similar to the pattern of the population diversity factors. It appears as a difference between
the two fault types, where this distance increases over time to a greater extent in the case
of a sensor fault. In the event of a measurement error, a momentary jump-like increase in
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the values can also be observed here. In the alignment of the hyperplanes defined by the
two principal eigenvectors, a deviation appears after the appearance of the fault and the
similarity value temporarily drops and then regains its maximum. The difference between
the two types of failure is that this drop is delayed in the case of an erroneous input.
Because of these characteristics, this measure can only be used to detect the occurrence of a
fault, not its presence.

Figure 3. The changes in the different heterogeneity indicator values over time in cases of yaw rate
sensor failure (figure (a)) and faulty steering angle (figure (b)). Listed from top to bottom: showing the
effective sample size, the population diversity factor, the loglikelihood of particles, and the entropy
of particle weights. The vertical red lines indicate the moment when the error occurred.

The correlation structure was tracked over time. Figure 5 shows the eigenvalues of the
posterior covariance matrices at different time instants. There was a significant decrease in
these eigenvalues after failure, indicating a reduction in the overall variance of the data.
While the filter was operating in steady-state mode, the variance of the particles increased
continuously and fell back with each resampling.
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Figure 4. The changes in the indicators of update process monitoring over time in cases of yaw
rate sensor failure (figure (a)) and faulty steering angle (figure (b)). Listed from top to bottom:
Bhattacharyya distance between the prior and measurement densities, the KL divergence between
the prior and posterior distributions, the Kranowsky similarity between the hyperplanes defined
using the longest eigenvectors of the prior and posterior. The vertical red lines indicate the moment
when the error occurred.

Figure 5. The eigenvalues calculated based on posterior covariance matrices in different time instants
in case of (a) yaw rate sensor fault and (b) steering command fault.

The coordinates of the largest eigenvector v(t)
1 = [v(t)11 , v(t)12 , ..., v(t)16 ] computed from the

posterior covariances are monitored over time to capture the shaping of the correlation
structure (Figure 6). The figure shows that the variability of the correlation structure
changed significantly, after the fault occurrence. The values of the first three coordinates
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were set close to zero. These three coordinates correspond to the contributions of the first
three state variables (which are the zeroth order variables) to the principal component,
represented by the eigenvector with the largest eigenvalue. The values of the other three
coordinates, corresponding to the contributions of the first-order derivative variables to
the principal component, began to oscillate to a great extent as a result of the error. During
this oscillation, they had absolute values close to one. This shows that as a result of the
error, the correlation between the lower-order variables decreased and the higher-order
variables tended to determine the correlation structure. The absolute values close to one
indicate that the variance of the state distribution at a given moment can always be related
to a specific higher-order state variable to a great extent. As these coordinates alternated
between −1 and 1, no stable value was formed based on which the type of error could be
distinguished. All this shows that the correlation structure is shaped by random fluctuations
in the probability distribution of the rate of change of the system, rather than by a specific
effect characteristic of a unique fault, so that the information obtained from the correlation
pattern cannot be used for fault identification. However, the variability characteristic of
the correlation structure is promising for detection purposes, as the statistical properties of
these coordinates changed sharply as a result of the failure. Figure 7 illustrates this well by
plotting the means and variances of the fourth coordinates of the principal component (this
coordinate is related to the velocity component vx) in a sliding window of 20 data lengths
in the case of the sensor fault scenario. Both statistical properties changed greatly in the
presence of error.

Figure 6. The different coordinates of the longest eigenvector computed from posterior covariances
at different time instants in the case of (a) yaw rate sensor fault and (b) steering command fault. The
vertical red lines indicate the moment when the error occurred.
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Figure 7. The mean values (figure (a)) and variances (figure (b)) of the fourth coordinates of the
principal components of the posteriors in a sliding window of 20 data lengths. The vertical red lines
indicate the moment when the error occurred.

It is to be expected that as measurement noise increases, so will statistical fluctuations,
even under normal operation conditions. To test this, state estimation was also performed
in the presence of simulated measurement noise that was an order of magnitude higher.
Figure 8a shows the mean value of the fourth coordinate of the principal component in the
sliding window in the case of an order of magnitude higher measurement noise. It can be
seen that the efficiency of the indicator decreased, but not significantly, as the same pattern
still appeared. The sensitivity of the indicators to measurement noise for a given model
and filter parameters is determined by the capabilities of the PF. Thus, the noise should
be considered primarily through the tuning of the PF algorithm. It can also be assumed
that by increasing the freedom of the particles, the statistical variance will increase, and the
efficiency of the method will be compromised. To test this, we performed state estimation
with process covariance values that were an order of magnitude higher. With such values,
the deviation of the estimate itself proved to be unacceptable; however, the same variability
pattern still appeared in the correlations (Figure 8b). By increasing the measurement density,
the degree of fluctuations can be reduced. In this case, the conclusion of the model became
more and more decisive compared to the measurement during estimation. As a result
of which, the correlation structure remained intact even under the influence of the fault,
which on the one hand was at the expense of detectability, and on the other hand, the
correlation structure still did not indicate the nature of fault-relevant information. To test
this assumption, the estimation was performed using output density covariance values
that were one order of magnitude higher. This assumption was confirmed. Figure 8c shows
the evolution of the mean values of the fourth eigenvector coordinate. The graph shows
that the value remained close to zero throughout the process. In summary, in the range
where state estimation works, correlation variability indicators also work, and hence, they
can aid the tuning of particle filter-based fault diagnostics algorithms.
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Figure 8. The evolution of mean values in a sliding window of the fourth coordinates of the principal
components in the case of estimations with (a) an order of magnitude higher measurement noise,
(b) an order of magnitude higher process covariance Q, and (c) an order of magnitude higher output
covariance R. The vertical red lines indicate the moment when the error occurred.

4. Conclusions

The objective of this study was to gain insight into the operation of a particle filter used
to investigate what type of information and features can be extracted for fault detection
and identification purposes. A monitoring procedure was proposed to track the correlation
and information structure of discrete probability distributions estimated using a particle
filter operated with a normal operation model, to extract fault-specific information. The
proposed method evaluated the heterogeneity of the posterior distribution particles, their
correlation, and the consistency of the prediction and observations of the model. It was
highlighted that the log-likelihood-based indicator was effective for fault detection. The
indicators developed changed significantly in the case of faults, and sensor errors caused
abrupt changes that were different from actuator errors. The proposed correlation structure
analysis revealed shifts in state variance due to faults and helped to tune particle-filter-
based fault diagnostic algorithms. Future research should focus on the development of
analytical methods that compare distribution differences to fault detection accuracy and
corresponding measures, which could allow for targeted tuning. It would also be worth
considering the application of hybrid system models that estimate discrete modes and
allow complex varying dynamics to be captured, as well as the application of clustering
techniques to explore different operating and fault modes.
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10. Miljković, D. Fault detection using limit checking: A brief introductory review. In Proceedings of the 2021 44th International

Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 908–913.

11. Zhang, L.; Guan, Y. Variance estimation over sliding windows. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, Beijing, China, 11–13 June 2007; pp. 225–232.

12. Ellefsen, A.L.; Han, P.; Cheng, X.; Holmeset, F.T.; Æsøy, V.; Zhang, H. Online fault detection in autonomous ferries: Using
fault-type independent spectral anomaly detection. IEEE Trans. Instrum. Meas. 2020, 69, 8216–8225. [CrossRef]

13. Timusk, M.; Lipsett, M.; Mechefske, C.K. Fault detection using transient machine signals. Mech. Syst. Signal Process. 2008,
22, 1724–1749. [CrossRef]
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