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Abstract: In order to realize the unsupervised segmentation of subtle defect images on the surface of
small magnetic rings and improve the segmentation accuracy and computational efficiency, here, an
adaptive threshold segmentation method is proposed based on the improved multi-scale and multi-
directional 2D-Gabor filter bank. Firstly, the improved multi-scale and multi-directional 2D-Gabor
filter bank was used to filter and reduce the noise on the defect image, suppress the noise pollution
inside the target area and the background area, and enhance the difference between the magnetic
ring defect and the background. Secondly, this study analyzed the grayscale statistical characteristics
of the processed image; the segmentation threshold was constructed according to the gray statistical
law of the image; and the adaptive segmentation of subtle defect images on the surface of small
magnetic rings was realized. Finally, a classifier based on a BP neural network is designed to classify
the scar images and crack images determined by different threshold segmentation methods. The
classification accuracies of the iterative method, the OTSU method, the maximum entropy method,
and the adaptive threshold segmentation method are, respectively, 85%, 87.5%, 95%, and 97.5%.
The adaptive threshold segmentation method proposed in this paper has the highest classification
accuracy. Through verification and comparison, the proposed algorithm can segment defects quickly
and accurately and suppress noise interference effectively. It is better than other traditional image
threshold segmentation methods, validated by both segmentation accuracy and computational
efficiency. At the same time, the real-time performance of our algorithm was performed on the
advanced SEED-DVS8168 platform.

Keywords: threshold segmentation; 2D-Gabor filter bank; subtle defect images; BP neural network classification

1. Introduction

With the development of automobiles and aerospace, military and national defense,
microelectronics industry, modern medicine, bioengineering and instrumentation, and
other industries, the demand for small magnetic rings is increasing drastically [1]. However,
the surface of the magnetic ring is prone to physical defects such as scars, cracks, and
trachoma due to the influence of impurities mixed with raw materials, damage to the
forming mold, and unhomogenzation heating during firing [2]. These defects affect the
operating efficiency and service life of the parts themselves and their products directly [3].
It also reduces the stability and reliability of the equipment and brings great hidden dangers
to using it safely. Therefore, it has become an urgent problem to be solved: How to improve
the efficiency and accuracy of magnetic ring defect detection, in particular, those subtle
defects invisible to the eye or by an ordinary CCD camera [4]. Image processing is the
primary link in defect detection. Images with noise pollution must undergo preprocessing
operations such as grayscale correction, filtering, and noise reduction before they are
used for image processing [5]. In image processing technology, image segmentation is
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an important method to extract regions of interest [6]. Common image segmentation
methods include edge detection and threshold segmentation. The information detected
by the edge detection method is too strong, and the edge information is too weak to
achieve the ideal segmentation effect. The threshold value determined by the threshold
segmentation method, such as the selection iteration method and the maximum inter-
class variance method (OTSU), is larger, and the segmentation effect of them is poor [7].
The most commonly used method is still the maximum entropy method. Although the
segmentation effect of dark areas is slightly better, it still cannot segment the defect area
and the background area accurately [8].

In order to solve the problem of accurate segmentation and calculation rate of fine
defect images on the surface of small magnetic rings, this study introduces the 2D-Gabor
filter using common scar defects as an example and proposes a new adaptive threshold
segmentation method based on the improved 2D-Gabor filter bank. This method has the
characteristics of low entropy, multi-resolution, and decorrelation, and can be used to filter
image noise from different scale directions to remove normal textures, so as to achieve
accurate segmentation of small magnetic ring surface defects. We designed a classifier
based on a BP neural network to classify the scar images and crack images determined by
the adaptive threshold segmentation method and the traditional threshold segmentation
method, so as to verify the effectiveness of the method. At the same time, it realized the
real-time nature of this algorithm on the DVS8168 platform. The flowchart of this study is
shown in Figure 1.
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Figure 1. Flow diagram of image segmentation in this study.

2. Methods and Results Analysis
2.1. Raw Magnetic Ring Image Acquisition

The image quality obtained by the imaging system is crucial for post-image processing.
In order to obtain a clear image of the surface defects of the magnetic rings, we obtained
10 qualified magnetic rings and 150 defective magnetic rings (Shandong Tongfang Luying
Electronics Co., Ltd., Shandong, China). The height of the magnetic ring is about 30 mm,
the diameter is about 20 mm, and there is a fine crack width of about 0.1 mm on the surface.
The magnetic ring is small in size and has a fine and irregular texture, which is difficult
to observe with the human eye and general optical imaging devices, especially the radial
microcracks submerged in the normal texture. Therefore, a microscope was designed in
this study, which is shown in Figure 2.

The camera used in the experiment had a microscope lens magnification of 10×, a
focal length of 5 cm, and a resolution of 1 K. The light source is a stable and economical
LED lamp (Opple Lighting Co., Ltd., Shanghai, China), the light intensity is 500~700 lux,
the illumination mode is diffuse, and a 768 × 576 dot matrix can be collected. In order to
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avoid interference from natural light, turn off the room lights before the experiment, turn
on the microscope, light source, and computer, and then place the magnetic ring on the
rotating stage of the translation stage, which not only realizes millimeter-level translation in
the horizontal direction but also realizes the full detail capture of the magnetic ring surface.
By adjusting the position of the translation stage appropriately, the camera achieves the
best depth of field and field of view.
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Figure 2. Original magnetic ring image acquisition system.

When acquiring defect images, first, adjust the position of the translation table accord-
ing to the defect markers so that the camera is roughly aimed at the defect area. Then,
the magnetic ring surface defect is looked for by slowly rotating the rotary table. Then
fine-tune the distance to the focal length to ensure that the microscope camera captures a
clear, complete, and bright image of the defect. Finally, the image information is stored in
the computer. If the defect area is large, slowly move the shooting area along the defect
texture, starting from the edge point of the defect, so that one edge of the defect coincides
with the opposite edge of the previous image. As can be seen in Figure 3, the image
acquisition device is able to clearly detect defects submerged in the texture.
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camera + microscope.

2.2. Image Processing

The accuracy requirement of image segmentation is very important to find the subtle
defects. The Gabor filter was customly applied. The Gabor function was first proposed
by Dennis Gabor in 1946 [9]. And in 1985, Daugman pushed the 1D-Gabor filter up to
two-dimensions successfully [10]. The 2D-Gabor filter is a linear filter that can achieve
local optimal solutions in both the spatial and frequency domains [11]. The representation
of its frequency and direction is very close to the human visual system [12], so it is often
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used for texture description. In addition, Gabor filters have self-similarity, and they can be
generated from a mother wavelet through dilation or rotation.

Different parameter values can be obtained from 2D-Gabor filters with different
bandwidths, frequencies, and directions. We can use these to filter the target image and
extract the image texture feature information with a certain direction and changing law.
The 2D-Gabor function can be interpreted as the product of an elliptic Gaussian envelope
and a complex plane wave [13], and is interpreted in the following Formula (1):

Ψ(s,d)(x, y) = Ψk(v) =
||k||2

σ2 ·exp(
||k||2·||v||2

2σ2 )·
[

exp(ik·v)− exp(−σ2

2
)

]
(1)

where v = (x, y) is the position variable, σ is the window size space constant, k = ks·exp
(
iΦd

)
is the frequency vector, which represents the scale and orientation of the 2D-Gabor filter.
ks = kmax/ f s indicates the center frequency of the Gabor filter.

In Formula (1), the spatial parameter σ determines the bandwidth of the filter, and the
value is π; k defines the key parameters ks and Φd for the value of the Gaussian function in
this study. It has been shown that the experiment works best when the center frequency
does not exceed π/2 in the experiments conducted by M Lades. Therefore, this study
takes the maximum sampling frequency kmax = π/2, and the sampling step size f =

√
2,

s = 0, 1, 2, 3. Since the Gabor filter is symmetric, the actual value of Φd is between [0, π].
Therefore, the value of Φd is πd/8, d = 0, 1, ..., 7. Thus, a total of 32 real part value images
of Gabor filters in 4 scales and 8 directions are formed in Figure 4.
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2.3. Filtering of Scar Defect Images

The process method of using the Gabor filter bank to process the magnetic ring defect
image can be interpreted in the Formula (2).

g(x, y) =
∣∣ f (x, y) ∗ Ψs,d(x, y)| (2)

where f (x, y) represents the input image, and g(x, y) represents the output image after
processing. Ψs,d(x, y) is the filter template, and the size of the filter template is selected as
(15, 15) in this study. The symbol “∗” stands for convolution operation. The original defect
image is processed using the above filter bank, and the processed images are shown in
Figure 5. Different scale parameters are represented from top to bottom (s = 0, 1, 2, 3), and
different direction parameters are represented from left to right (kmax = 0, π/8, ..., 7π/8).

In Figure 5, the larger the filter scale, the stronger the suppression of small noise.
In addition, the filtering result changes with the filter direction transformation, and the
texture response value to a direction close to the filter direction is larger. The magnetic
ring surface images involved in this study all have normal textures generated during
production and processing in the horizontal direction. Therefore, the original filter bank
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is improved, which means that the horizontal direction filter (Φd = π/2) is screened out
to avoid the adverse effect of normal texture on the segmentation of defective areas. The
edge direction of the defect area in the magnetic ring image is obvious, and the horizontal
texture of the background area has been filtered out. At the same time, other speckle noise
appears isotropic with no well-directed edges. Therefore, the isotropic filter response can
be suppressed by stacking the filtered images to enhance the difference between the defect
and the background area. The superposition process is described in Formula (3).

g(x, y)=
∣∣∑ ∑ f (x, y) ∗ Ψs,d(x, y)

∣∣ (3)

where f (x, y) and Ψs,d(x, y) represent the same meanings as that in Formula (2), and g(x, y)
represents the superimposing of the output images after processing. Different images,
including both initial images and processed images, are indicated in Figure 6.
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Figure 6. The initial image and processed images by 2D-Gabor filters: (a) initial image; (b) filter
image accumulation of 4 × 8 filter banks; (c) filter image accumulation of improved filter banks.

In Figure 7, it can be clearly seen that there are fewer and fewer red areas. This shows
that the improved filter set makes the grayscale more uniform, effectively weakens the
noise pollution in the image, and makes the difference between defects and background
more prominent. Therefore, the improved filter bank processing works better.

In practical terms, in order to simplify the complex convolution operation process,
filters with the same window and different scales and directions are usually superimposed
first, and then the image is filtered. The process can be expressed in Formula (4):

g(x, y) =

∣∣∣∣∣ f (x, y)∗∑
s

∑
d

Ψs,d(x,y)

∣∣∣∣∣ (4)

where g(x, y), f (x, y), and Ψs,d(x, y) represent the same meanings as that in Formula (3).
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Here, the image size is assumed to be M × N, and the filter template size is H × W.
Thus, the calculation amount is S(28M × N × H × W) by Formula (3). The calculation
amount of the simplified Formula (4) method is: S(28H × W + M × N × H × W) ≈
S(H × W × M × N) by the simplified Formula (4). Obviously, the calculation was speed by
more than one order of magnitude.

The difference between the target defect and the background region is strengthened,
which provides preparation for the implementation of adaptive threshold segmentation.
The grayscale histogram of the image can clearly reflect the grayscale statistical law after
passing through the filter bank.
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In order to verify the filtering effect of the improved filter bank on other defective
images, we used the improved filter bank to filter the cracks. The filtering effect is also
obvious, as shown in Figure 8.
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By the grayscale statistical characteristics, it is indicated that the grayscale histogram
of the filtered defect image is dominated by the background pixels that approximately obey
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the normal distribution. The defect area is represented by a small number of low-gray
pixels, and there is an obvious boundary with the pixels in the background area. According
to this characteristic, the segmentation threshold can be constructed using Formula (5).

T = µ − k × σ (5)

where µ and σ represent the gray mean and variance of the filtered enhanced image,
respectively, and k is the adjustment factor. The size of k is related to the gray value
characteristic of the enhanced image, and this characteristic can be described by the gray
mean value. Through extensive experiments, we define k as a function of the image mean
in a linear Formula (6).

k = 1.0 + [1 − exp(0.60 − 0.0045µ)]/ [1 + exp(0.60 − 0.0045µ)] (6)

2.4. Adaptive Threshold Segmentation Results

For filter-enhanced image pixels g(x, y), the rules for defining adaptive threshold
segmentation are illustrated in Formula (5).

g(x, y) =
{

0(Background region), g(x, y) > T
1 (De f ect region), g(x, y) < T

(7)

Traditional methods of threshold segmentation, such as the common selection iterative
method, OTSU method, and maximum entropy method et al., are selected to segment the
threshold of a magnetic ring image after Gaussian filter noise reduction, and the results are
separately shown in Figure 9a–c.
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On the left of Figure 10, the processing result is displayed by the threshold segmenta-
tion algorithm proposed by this study. Although there is a slight mis-segmentation, it can
be eliminated by the area picking method, as shown in the middle of Figure 10. Finally,
after adaptive segmentation and morphological processing based on a 2D-Gabor filter, the
magnetic ring scar defect is basically detected. By detecting the minimum circumscribed
rectangle of the defect, the defect area of interest can be enveloped, as shown in the right
of Figure 10.

The segmentation thresholds, processing times, and the number of iterations deter-
mined by different threshold segmentation algorithms for scar defect images are labeled
in Table 1.

In Table 1, it can be indicated that our algorithm can accurately separate the defect area
from the background area without iterative time. However, the threshold determined by
the iterative method and the OTSU method is relatively large. And the segmentation effect
of the scar defect on the surface of the magnetic ring is poor. The threshold determined
by the maximum entropy method is slightly smaller, as is a certain segmentation effect on
dark areas with small defect gray values, especially for large-area defects such as scars. But
it cannot be completely segmented.
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Table 1. Comparison of 4 kinds of threshold segmentation algorithms.

Method
Defect Images

Number of Iterations
Threshold Processing Time

Iterative 166 336 256
OTSU 157 297 6

Maximum entropy 127 60 8
Adaptive threshold 95 51 0

In order to further verify the superiority of the adaptive threshold segmentation
algorithm proposed in this paper compared with other traditional threshold segmentation
algorithms, a classifier based on a BP neural network was designed. By comparing the
classification results of classifiers under different threshold segmentation methods, the
superiority of the proposed algorithm is verified.

3. Classification of Magnetic Ring Surface Scars and Cracks Based on
BP Neural Network
3.1. BP Neural Network Structure and Parameter Design

Before establishing the BP neural network classification model, the number of neurons
in the input, output, and hidden layer, learning rate, number of iterations, allowable error
value, and inertia coefficient should be set in advance.

The number of input nodes can be the number of pixels of the image or the number
of feature dimensions. The number of output nodes is generally based on the number of
categories to be divided, and if you want to divide the data into m categories, the number
of nodes is generally m or logm

2 . In this example, the number of input nodes is set to the
number of image pixels, and the number of output nodes is set to 2 according to the scar
and the crack that we want to recognize. The number of nodes in the hidden layer directly
affects the classification accuracy of the model. If the number of nodes is too small, the
network training may not be completed, which will affect the learning efficiency. Too much
can prolong the training time or even lead to a failure to converge. In practice, the number
of hidden layer nodes is determined using Formula (8).

l = logm
2

(√
m + n + a < l < n − 1

)
(8)

where n, m, and l are, respectively, the number of input, output, and hidden layer nodes,
and a is a constant less than 10.

The learning rate η affects the correction amount of each weight, and too small will
lead to slower convergence speed and increase the transmission error. Too much will affect
the system’s performance. According to experience, the value of η is generally between
[0.01, 0.8]. The node excitation function also affects the performance of the BP neural
network classifier. Common node excitation functions include threshold, S-type, and
Gaussian stimulus functions. Among them, the network structure of the S-type function is
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more applicable and can be approximated to any function, so the stimulus function in this
paper is the S-type function.

3.2. Analysis of Classification Results

Table 2 shows the experimental environment settings. The settings of the relevant
parameters of the BP neural network model are shown in Table 3.

Table 2. Experimental operating environment.

Project Disposition

Processor model Intel(R) Core(TM) i5-4210M
Operating system Windows 10

CPU frequency 2.60 GHz
RAM 8.00 GB

Experimental platform Matlab R2020a

Table 3. Model parameter value.

Model Parameters Value

The number of input nodes 10
The number of nodes in the hidden layer L

The number of output nodes 3
The number of iterations 20,000

Error accuracy 0.5%
The learning rate 15%

The number of nodes in the hidden layer can be obtained in the range of (4, 14)
according to Formula (8), and the accuracy of defect classification under different hidden
layer nodes is obtained through repeated experiments, as shown in Figure 11.
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According to the results of Figure 11, it is concluded that when the number of neurons
in the hidden layer of the BP neural network is 10, the overall classification accuracy of the
sample is the highest. Finally, Table 4 shows the specific classification results of the simula-
tion test of scars and cracks samples using the model designed with the above parameters.
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Table 4. Classification results of scars and cracks determined by different threshold segmentation methods.

Threshold
Segmentation

Method

Type of
Defect

Number of
Training Samples

Number of
Test Samples

Number of
Identification Errors

Classification
Accuracy

Average
Accuracy

Iterative
Scar 50 20 2 90%

85%Crack 50 20 4 80%

OTSU
Scar 50 20 1 95%

87.5%Crack 50 20 4 80%
Maximum

entropy
Scar 50 20 0 100%

95%Crack 50 20 2 90%
Adaptive
threshold

Scar 50 20 0 100%
97.5%Crack 50 20 1 95%

As can be seen from Table 4, the average accuracy of the adaptive threshold segmenta-
tion method proposed in this paper is as high as 97.5%, which is 12.5% higher than that
of the iterative method, 10% higher than the OTSU method, and 2.5% higher than the
maximum entropy method. It is proven that the adaptive threshold segmentation method
proposed in this paper is superior to other traditional threshold segmentation methods in
terms of classification ability.

4. Real-Time Implementation
4.1. The Overview of DVS8168

The inspection of magnetic ring image defects is based on DVS8168, which was
developed with the TMS320DM8168 processor at its core. This device has a strong ability to
process video; the embedded ARM core can be clocked at a frequency of 1.2 GHz, and the
embedded DSP core can reach 1 GHz, mainly for video compression and high-speed data
processing. The high-definition video processing subsystem (HDVPSS) includes three high-
definition video coprocessors (HDVICP) at frequencies up to 600 MHz. The high-definition
video processing subsystem, HDVPSS, is controlled by Cortex-M3, which mainly completes
the video capture task. SEED-DVS8168 peripherals include: 8 chips of 128 MB DDR3 with
a total of 1GB of memory, 16-bit bus width, 256 MB of NAND Flash memory, and HDMI
as a high-definition video output. The input port enables 16 D1 images and comes with
a 160 GB hard disk for storing video processing data. The A8 core is the main processor,
responsible for the control and external interface of the whole system. The C674xDSP is
responsible for algorithm calculation, the Video M3 is responsible for the encoding and
decoding of video, the VPSS M3 is responsible for the video processing subsystem, and
the SATA bus stores and accesses the compressed video and communicates with the host
computer through the driver setting serial port. The overall structure of the system is
shown in Figure 12.
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4.2. The Principle of Magnetic Ring Detection System

The magnetic ring detection system is mainly composed of three parts: Industrial
camera and microscope, SEED-DVS8168, and PC. The algorithm for magnetic ring defect
detection is embedded in SEED-DVS8168, and the real-time display interface of the system
is shown in Figure 13.
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After the system is powered on, the HDVPSS, controlled by Cortex-M3, acquires a
magnetic ring image from CCD industrial cameras and microscopes. HDVICP is a video
codec accelerator that can independently complete video encoding and decoding and has
obvious advantages in processing high-definition video. Then, the processing of image data
is completed in the DVS8168 main core; its frequency is up to 1 GHz, and its processing
performance is as high as 8000 MI/s, which greatly improves the speed of data processing.
Finally, under the control of the ARM core, the data are read, stored, and transmitted to the
PC through HDMI for real-time display. This magnetic ring detection system can meet the
real-time display of magnetic ring images with 450 × 450 resolution and a 50 Hz frame rate,
and the system can achieve a speed-up ratio that is nearly 4 times faster than running in
MATLAB. This system processes an image for about 18 ms, which is a good improvement
in the visual effect of the real-time display of magnetic rings.

5. Conclusions

The image processing method of surface defects of small magnetic rings is mainly
studied in this study. We designed a microscope instead of the traditional CCD camera to
collect the initial image, which greatly improved the acquisition efficiency of subtle defects.
In the case of the poor performance of common threshold segmentation algorithms, a new
adaptive threshold segmentation method was proposed based on an improved 2D-Gabor
filter bank. In addition, a classifier based on a BP neural network was designed to classify
the scar images and crack images determined by the adaptive threshold segmentation
method and the traditional threshold segmentation method. By comparison, it has faster
calculation speed and higher classification accuracy than traditional methods, such as
selection iteration, OTSU, and maximum entropy. And an advanced DVS8168 video
platform is used to implement the above-mentioned algorithm in real time and verify its
feasibility. This study might be beneficial to automatic sorting for sublet defects on the
surface of small magnetic rings.
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