
Citation: De Smet, R.; Blancquaert, R.;

Godden, T.; Steenhaut, K.; Braeken, A.

Armed with Faster Crypto: Optimizing

Elliptic Curve Cryptography for ARM

Processors. Sensors 2024, 24, 1030.

https://doi.org/10.3390/s24031030

Academic Editor: Jose Manuel Molina

López

Received: 11 January 2024

Revised: 26 January 2024

Accepted: 4 February 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Armed with Faster Crypto: Optimizing Elliptic Curve
Cryptography for ARM Processors
Ruben De Smet 1,†, Robrecht Blancquaert 2,† , Tom Godden 2, Kris Steenhaut 1,2,* and An Braeken 2

1 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussels, Belgium; rubedesm@vub.be

2 Department of Engineering Technology (INDI), Vrije Universiteit Brussel, Pleinlaan 2,
B-1050 Brussels, Belgium; robrecht.simon.blancquaert@vub.be (R.B.); tom.godden@vub.be (T.G.);
an.braeken@vub.be (A.B.)

* Correspondence: ksteenha@etrovub.be
† These authors contributed equally to this work.

Abstract: Elliptic curve cryptography is a widely deployed technology for securing digital commu-
nication. It is the basis of many cryptographic primitives such as key agreement protocols, digital
signatures, and zero-knowledge proofs. Fast elliptic curve cryptography relies on heavily optimised
modular arithmetic operations, which are often tailored to specific micro-architectures. In this article,
we study and evaluate optimisations of the popular elliptic curve Curve25519 for ARM processors.
We specifically target the ARM NEON single instruction, multiple data (SIMD) architecture, which
is a popular architecture for modern smartphones. We introduce a novel representation for 128-bit
NEON SIMD vectors, optimised for SIMD parallelisation, to accelerate elliptic curve operations
significantly. Leveraging this representation, we implement an extended twisted Edwards curve
Curve25519 back-end within the popular Rust library “curve25519-dalek”. We extensively evaluate
our implementation across multiple ARM devices using both cryptographic benchmarks and the
benchmark suite available for the Signal protocol. Our findings demonstrate a substantial back-end
speed-up of at least 20% for ARM NEON, along with a noteworthy speed improvement of at least
15% for benchmarked Signal functions.

Keywords: extended twisted Edwards curve; Curve25519; single instruction, multiple data (SIMD);
Rust; ARM NEON

1. Introduction

Elliptic curve cryptography (ECC) has been deployed as the main asymmetric crypto-
graphic primitive to secure various systems. Notably, transport layer security (TLS) 1.3 [1]
added elliptic curve Diffie–Hellman key exchange (ECDHE) in the base specification, and
it removed RSA-based cipher suites. Secure messaging applications like Signal and What-
sApp rely on ECC for their end-to-end encryption (E2EE) protocols. Signal additionally
makes heavy use of ECC in its private group system [2] and its sealed unidentified delivery
system [3], which greatly improves the security for Signal users.

ECC is appealing in those settings because of its unmatched performance and security
properties. An n-bit secure elliptic curve key can be encoded in 2n + x bits, with x being a
small number. This means that for the typical 128-bit security level, a key can be encoded
in only 32 bytes.

Even considering the high potential throughput of ECC operations, a carefully opti-
mised implementation of ECC algorithms is beneficial. In some applications—for example,
zero-knowledge proofs (e.g., Bulletproofs [4])—thousands of ECC operations need to be car-
ried out as efficiently as possible. Other applications might run on battery-powered devices
and benefit from consuming as little power as possible for executing these computations.

Sensors 2024, 24, 1030. https://doi.org/10.3390/s24031030 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24031030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0555-7794
https://doi.org/10.3390/s24031030
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24031030?type=check_update&version=1


Sensors 2024, 24, 1030 2 of 16

In this article, we aim to improve the performance of the extended twisted Edwards
curve of Curve25519 [5]. Curve25519 is one of the fastest curves in the literature. Since
it is not covered by any patent [5], it has quickly gained popularity in many different
applications. This article proposes a highly efficient implementation of Curve25519 elliptic
curve operations for ARM processors since they are by far the most widely used processors
in smartphone and tablet devices. Our proposed improvements help compensate for the
limited processing power of such handheld devices. We specifically target ARM processors
that support the ARM NEON single instruction, multiple data (SIMD) instruction set. We
show an improvement in performance of 20%.

The main contributions in this article are the following:

• We present an adaption of the parallel formulae for extended twisted Edwards curves
by Hisil et al. [6] for ARM processors by designing a new representation for an elliptic
curve point using ARM NEON vectors.

• We provide an open source implementation of those formulae in the Dalek cryptogra-
phy Curve25519 Rust library [7,8].

• We perform a performance analysis of our implementation on multiple ARM devices,
demonstrating a significant speed-up.

2. Related Work

ECC is a popular technique for securing digital communication [9]. It is used in
a range of cryptographic primitives, such as key agreement protocols, signatures, and
zero-knowledge proofs (ZKPs) [10]. One of the key challenges in implementing ECC is the
implementation of fast modular arithmetic operations, which can be optimised for specific
microarchitectures [11].

Several articles have investigated the optimisation of ECC for specific hardware plat-
forms. Our work builds on the previous efforts of Bernstein [5], Bernstein and Schwabe [9],
and Hisil et al. [6]. Bernstein and Schwabe [9] describe the use of NEON vector instruc-
tions on ARM processors. Our library utilises the methods for multiplication described by
Bernstein and Schwabe [9] for multiplication, reduction, and squaring within Curve25519.
Instead of pure assembly, it uses a mix of Rust and assembly instructions and takes into ac-
count our new representation. Hisil et al. [6] propose a new addition algorithm for extended
twisted Edwards curves that can be computed using four processors for an even faster
implementation. We use this algorithm with Curve25519 [5] with our new representation
for elliptic curve points.

Notable parallels can be drawn between our efforts and those outlined in related
studies, although there are some key differences. Hamburg [12] introduced a swift and
resource-efficient implementation of elliptic curve cryptography (ECC), albeit lacking ARM
NEON instructions. Faz-Hernández et al. [13] harnessed AVX2 SIMD vector instructions,
yielding substantial performance enhancements for ECC on contemporary Intel x86-64
architectures. In a similar vein, Cheng et al. [14] introduced a throughput-optimised AVX2
implementation of variable-base scalar multiplication. It is important to note that none of
these references involve the utilisation of the parallel formulae of Hisil et al. [6].

Goetschmann et al. [15] leveraged Intel Skylake floating-point arithmetic to expedite
elliptic curve algorithms, although without SIMD instructions. Our approach, in contrast,
relies on integer arithmetic. Meanwhile, Dong et al. [16] achieved performance gains
through an alternative avenue: harnessing embedded graphical processing units (GPUs).

Another body of research has concentrated on optimising ECC specifically for ARM
processor architectures. Luc et al. [17] devised a technique to enhance point arithmetic
efficiency on elliptic curves using ARM processors and NEON instructions. Additionally,
Longa [18] introduced FourQNEON: an accelerated ECC scalar multiplication algorithm
tailored for ARM processors. Our work differs from these previous optimisations for ARM
NEON in that we create a new representation specifically for the parallel formulae of Hisil
et al. [6] that works for ARM NEON.

An overview of these related works is presented in Table 1.



Sensors 2024, 24, 1030 3 of 16

Table 1. Related work, showing a general overview of the target elliptic curves and CPU architectures
of related papers.

Title Year Curve Target SIMD

NEON Crypto [9] 2012 Multiple (including
Curve25519) ARM NEON Yes

Twisted Edwards Curves
Revisited [6] 2008 extended twisted Edwards

curve All No

Fast and Compact Elliptic
Curve Cryptography [12] 2012 Multiple types (Montgomery,

twisted Edwards) All No

High-performance
Implementation of Elliptic
Curve Cryptography Using
Vector Instructions [13]

2019 Ed25519, Ed448, Curve25519,
Curve448 AVX2 Yes

High-Throughput Elliptic
Curve Cryptography Using
AVX2 Vector Instructions [14]

2021 Ed25519, Curve25519 AVX2 Yes

Fast implementations of
Curve25519 on Intel
Skylake [15]

2020 Curve25519 AVX2 Yes

EC-ECC: Accelerating Elliptic
Curve Cryptography for Edge
Computing on Embedded
GPU TX2 [16]

2022 Ed25519, Ed448, Curve255519,
Curve448 GPU No

Improving the Efficiency of
Point Arithmetic on Elliptic
Curves Using ARM
Processors and NEON [17]

2022 All ARM NEON Yes

FourQNEON: Faster Elliptic
Curve Scalar Multiplications
on ARM Processors [18]

2017 All ARM NEON Yes

Our work 2023 Curve25519 (extended twisted
Edwards equivalent) ARM NEON Yes

We target to improve the speed of the ECC algorithms using NEON, specifically by
using the parallel formula for extended twisted Edwards curves proposed by Hisil et al. [6]
relying on an ARM NEON SIMD representation. We do this by implementing a Curve25519
back-end in a widely used Rust library, curve25519-dalek [7], targeting the ARM NEON
SIMD architecture. We evaluate the performance on a range of ARM devices and compare
our results to the state-of-the-art implementation without SIMD.

3. Preliminaries

In this section, we first explain the different elliptic curve operations in the context
of extended twisted Edwards curves. We then elaborate on how SIMD operations are
currently implemented in the curve25519-dalek library for these operations. In Section 4,
we build on this knowledge for speeding up the ECC operations, both using SIMD in a
general way and specifically for ARM NEON.

3.1. Elliptic Curve Operations

The security of elliptic curve cryptography is based on the discrete logarithm assump-
tion. This assumption states that multiplication of a point P on the elliptic curve by a scalar
a, where a · P = A, is easy, but if knowing only A and P, it is generally very hard to find a in
polynomial time. This problem is known as the (elliptic curve) discrete logarithm problem,
and it allows elliptic curves to be used in cryptography as a public key cryptosystem.



Sensors 2024, 24, 1030 4 of 16

Elliptic curves are a group of points that satisfy a specific equation: most commonly,
the simplified Weierstrass equation y2 = x3 + ax + b. For any two points, we can create
their sum by drawing a line through them and mirroring along the x-axis where the curve
and the line intersect in a third point (by negating the y coordinate). This is illustrated
in Figure 1. This figure also shows the addition of a point with itself, in which case the
tangent along the curve is used as the line; this operation is called point doubling. Note
that Figure 1 shows a continuous curve, whereas for cryptographic purposes, curves are
defined over a finite field, but the properties for addition still hold.

From this addition, we can define multiplication of a point by a scalar as a series of
additions and doublings: for example, 5P = 2(2P) + P. Conforming to the geometric
construction of the addition and doubling, the following are the formulae to perform these
operations:

Addition: (x3, y3) =

((
y2 − y1

x2 − x1

)2
− x1 − x2,

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

)

Doubling: (x3, y3) =

(3x2
1 + a
2y1

)2

− 2x1,

(
3x2

1 + a
2y1

)
(x1 − x3)− y1



−4 −2 0 2 4 6 8 10
−10

−5

0

5

10

x

y

P

Q

-R

R

x-axis

y-
ax

is

P + Q = R

−4 −2 0 2 4 6 8 10
−10

−5

0

5

10

x

y

P

-R

R

x-axis

y-
ax

is

P + P = R

Figure 1. Addition of points on an elliptic curve. The full line indicates the drawn line to get −R. The
dashed line indicates the reflection along the x-axis to get R.

3.2. Elliptic Curve Models and Point Representation

The above simplified Weierstrass equation and addition and doubling formulae have
several shortcomings in the context of cryptography. First, the addition and doubling
formulae are different. This leads to vulnerabilities such as side channel attacks [19], as
by knowing the series of additions and doublings that was used, an attacker can uniquely
restructure and derive the original scalar. The formulae given above are also lengthy, which
is a disadvantage when they need to be repeated often. Researchers have looked for faster
formulae that use fewer operations to achieve the same result. This has led to alternative
curve representations, such as extended twisted Edwards curves [6], for which the curve
equation is ax2 + y2 = 1 + dx2y2. The points on this curve consist of four coordinates,
(X, Y, T, Z), and there is a single formula for doubling and addition:

(x3, y3) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1− dx1x2y1y2

)
With this representation, more coordinates per point need to be tracked, but operations

are faster as there are fewer field operations in the formula. However, a new problem is
introduced by the fact that the order of extended twisted Edwards curves is not prime.
These curves generally have a cofactor of 8, which means the order of the curve is 8 · p,
where p is a large prime. This cofactor can lead to vulnerabilities such as small-subgroup



Sensors 2024, 24, 1030 5 of 16

attacks, which should be taken into account [20]. These can be mitigated by ensuring that
the points used in cryptographic operations are in the correct subgroup. This can be done
using a costly multiplication or by using optimised methods such as Ristretto [21], which is
based on the Decaf method of Hamburg [20]. The advantages of the speed-up generally
outweigh the drawbacks of cofactor elimination methods, especially since the extended
twisted Edwards coordinates have additional optimisations using parallel computation.

The extended twisted Edwards addition formula for (X1 : Y1 : T1 : Z1) + (X2 : Y2 :
T2 : Z2) = (X3 : Y3 : T3 : Z3) can be written as the parallel formula seen in Table 2 using
four processors (k is a predetermined constant) as formulated by Hisil et al. [6]:

Table 2. Parallel formula for elliptic point addition as formulated by Hisil et al. [6].

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 R1 ← Y1 − X1 R2 ← Y2 − X2 R3 ← Y1 + X1 R4 ← Y2 + X2
1M 2 R5 ← R1 · R2 R6 ← R3 · R4 R7 ← T1 · T2 R8 ← Z1 + Z2
1D 3 idle idle R7 ← kR7 R8 ← 2R8

4 R1 ← R6 − R5 R2 ← R8 − R7 R3 ← R8 + R7 R4 ← R6 + R5
1M 5 X3 ← R1 · R2 Y3 ← R3 · R4 T3 ← R1 · R4 Z3 ← R2 · R3

In the cost column, M represents a multiplication in the field, and D is a multiplication
by a known scalar. This algorithm describes a way to add two curve points in only five steps
and with a cost of 2M + 1D. In reality, the algorithm cannot be split over four separate
processing units due to the need to synchronise after every step, which introduces too
large an overhead. Fortunately, SIMD instructions provide a way to execute this optimised
algorithm. We are able to represent each column in the parallel formula above as a sub-
vector in a larger SIMD vector. On each of these sub-vectors, the same operation can be
executed simultaneously, such as addition or multiplication with another SIMD vector or
multiplication with a constant. This operation happens pair-wise, i.e., the first sub-vector
of the first SIMD vector will be added to the first sub-vector of the second SIMD vector.

3.3. Curve25519 and Field Polynomials

Curve25519 [5] was specifically designed to be fast by having efficient formulae. At
the same time, Curve25519 avoids many implementation-related vulnerabilities. Such
vulnerabilities include side-channel attacks and certain algebraic attacks. This specific
design of the curve avoids some of these side-channel attacks, as described by Fan et al. [22]
and Abarzúa et al. [23]. Countermeasures against other side-channel attacks still rely on
the implementation. Avoiding these other side-channel attacks is out of the scope of
this paper. However, the implementation described in this paper is based on an already
existing popular implementation of Curve25519 that has no known vulnerabilities. It uses
algorithms that are known to be safe against timing-based attacks. Our implementation,
which adapts these algorithms, should, in theory, have the same safety.

The speed and security of Curve25519 derive from specifically chosen properties such
as the field size and the fixed-base point that allow for efficient arithmetic operations while
remaining secure. Curve25519 is a curve over the finite prime field of order 2255 − 19 with
the following Weierstrass equation: y2 = x3 + 486662x2 + x, which translates into the
extended twisted Edwards equation of: −x2 + y2 = 1− 121665

121666 x2y2.
Operations in the field of this elliptic curve are done with 255-bit numbers. To represent

them inside our algorithm, we can split these numbers into 10 numbers with radixes of
225.5. In reality, these will be alternatively 25- and 26-bit numbers and radixes. Since
CPU representations that contain these numbers will be at least 32 bits, there are some
unused bits after each number. These are useful to ensure that algorithms need to do
fewer reductions to field size. This leads to an increase in performance compared to an
implementation with a larger radix and more reductions.

The polynomial representation for a field element x takes the form of 20x0 + 225.5x1 +
251x2 + . . .+ 2229.5x9, where each component of x is referred to as a limb. This representation



Sensors 2024, 24, 1030 6 of 16

illustrates how addition and multiplication operations should be performed when the field
element is divided into limbs, as it is equivalent to performing these operations on the
polynomials.

When two of these polynomials are multiplied together, the resulting polynomial will
contain terms from 20x0 to 2229.5x9 but also additional terms ranging from 2255x10 to 2459x18.
The x10 to x18 terms can be reduced by multiplying the resulting term with 19 · 2−255. This
follows from:

2255 − 19 ≡ 0 mod 2255 − 19 ⇐⇒ 2255 ≡ 19 mod 2255 − 19

Thus:
2255x10 ≡ 19 · 20 · x10 mod 2255 − 19

This effectively reduces the x-index of these terms by 10, so the term of x10 is added to
the term of x0, x11 to x1, . . . This representation and these reduction techniques are exactly
how we will represent and reduce field elements using SIMD. To add two polynomials
together, terms of the same power are added together, whereas in a SIMD addition, sub-
vectors with the same index in two SIMD vectors are added together.

4. Techniques for Speed-Up with SIMD
4.1. SIMD in Curve25519-Dalek

SIMD allows us to perform a single instruction on multiple elements in a SIMD vector
at the same time. This is applied in the curve255119-dalek library with the parallel extended
twisted Edwards formulae for the AVX2 architecture. We implement Hisil et al. [6] for
ARM NEON, creating a new representation accounting for the 128-bit SIMD vector size. We
will first discuss how elliptic curve points and field elements are represented in the library.

In Section 3, we discussed how a field element is split into ten pieces of 32 bits with
some unused bits per limb. These unused bits are used to extend the bound of the field order
so that after some operations, such as addition, these bits are used instead of performing a
reduction step. Using these bits, we can delay the costly reduction step as long as possible.
This distribution is represented in Figure 2.

Every limb is not immediately put in the first open place in a vector. This follows from
the fact that in the extended twisted Edwards representation, every point is constructed
of four field elements and that we have to distribute the ten limbs of each of those four
elements over the SIMD vectors. First, we will consider the already implemented case in
the existing curve25519-library, for which these SIMD vectors are 256 bits long in the AVX2
architecture. These 256-bit vectors can only hold 8 limbs, so we will need 5 vectors to hold
all 40 limbs of the four field elements of an elliptic curve point projective representation. If
we have four field elements (A, B, C, D), we can divide each element X into limbs x0 to x9.
This results in the structure shown in Figure 3, where each row represents a SIMD vector
consisting of the limbs (A, B, C, D). In this representation, we call each column a lane.

Field Element

SIMD Vector

26 + 6 bit 26 + 6 bit 25 + 7 bit 25 + 7 bit

26 bit 26 bit 26 bit 26 bit 26 bit25 bit 25 bit 25 bit 25 bit 25 bit

32 bit 32 bit 32 bit 32 bit 32 bit 32 bit 32 bit 32 bit

Figure 2. Distribution of one field element’s limbs over a vector: of the ten limbs of the first field
element, two are put in specific sub-vectors in the first SIMD vector. These sub-vectors are made up
of the limbs plus extra bits used to exceed the bound of the field order.



Sensors 2024, 24, 1030 7 of 16

vector content
v0 a0 b0 a1 b1 c0 d0 c1 d1
v1 a2 b2 a3 b3 c2 d2 c3 d3
v2 a4 b4 a5 b5 c4 d4 c5 d5
v3 a6 b6 a7 b7 c6 d6 c7 d7
v4 a8 b8 a9 b9 c8 d8 c9 d9

Figure 3. Distribution of field element limbs over vectors for the representation of an elliptic curve
point. The first vector holds the first two limbs of field elements (A, B, C, D), the second vector the
next two, and so on. The alternating limbs are distributed in such a way as to make operations such
as multiplication easier.

This table of five 256-bit SIMD vectors now holds all the information about a single
elliptic curve point. The limbs {a, b, c, d}0,...,9 are distributed in the vectors vi as follows:

i ∈ {0, 1, 2, 3, 4}, n = 2i : vi = (an, bn, an+1, bn+1, cn, dn, cn+1, dn+1)

This representation makes multiplication between elliptic point tables easier. When
we multiply two 32-bit numbers together, the result will be a 64-bit number. Because our
SIMD operations happen on the whole vector at the same time, a multiplication would
be impossible without losing information when using the default above representation
because there is not enough space. However, this representation allows us to easily double
the number of vectors by extracting the b and d lanes and bit-shifting by 32 to the left, as
can be seen in Figure 4. In other words, we take out all the b and d limbs, substitute them
with 0, place them in a new vector in the same place as the a and c limbs would be, and fill
the rest with 0 again.

After a multiplication of two limbs, those zeroed sub-vectors will be filled with the
higher 32 bits of the 64-bit result of the multiplication. This 64-bit result can then be reduced
modulo the field order, which reduces each limb once again to 32 bits, and put back in the
default representation by interweaving the vectors: effectively the reverse of the operations
seen in Figure 4.

a0 b0 a1 b1 c0 d0 c1 d1 →
a0 0 a1 0 c0 0 c1 0
b0 0 b1 0 d0 0 d1 0

Figure 4. Split of field element limbs over vectors, which prepares for a multiplication.

4.2. Implementation on ARM NEON

For our representation using ARM NEON, we only have vectors of 128 bits to work
with. To keep using the same techniques, we have split the representation of a point into
two tables.

This would theoretically double the number of operations in algorithms compared
to an implementation without this split. An elliptic curve point representation previously
consisting of five SIMD vectors will now use ten, and since each operation on such a
representation applies over all SIMD vectors, the number of operations is doubled.

There are some cases in which we can make use of the split of tables without drawbacks—
or even to our advantage. For example, switching the A and B lanes with the C and D lanes
is equivalent to trivially swapping the two variables holding each table in memory. This is
significantly simpler and more efficient than the equivalent SIMD operation to rearrange
these vectors. This swapping of lanes is necessary when an operation needs to happen
between two different lanes of two elliptic curve point tables, e.g., the A and D lanes. When
we want to add what is in the A lane of one representation to what is in the D lane of the
other, we would have to place the A lane in the D lane or vice versa. Operations such as
addition happen pair-wise between lanes of two representations—the A lane of the first
gets added to the A lane of the second—so if we want to add a different lane, we need to
swap it first.



Sensors 2024, 24, 1030 8 of 16

This swapping and other techniques we used for optimisation will be further discussed
in Section 4.3. First, we will present the functions in which our back-end is used and how it
is used.

Our goal when speeding up ECC is to make the scalar multiplication faster. This
scalar multiplication is done using an algorithm that utilises the addition algorithm be-
tween two elliptic curve points. This addition algorithm uses our back-end. The addition
algorithm of the curve25519-dalek [7] library adds a CachedPoint to an ExtendedPoint. An
ExtendedPoint is the elliptic curve point representation as discussed above. A CachedPoint
is the same, but it has some pre-computed variables. This follows from the parallel formula
seen in Table 2, where the first steps only use the elements of one elliptic curve point at a
time; thus, when using the same elliptic curve point multiple times for addition in a row, it
is more efficient to pre-compute this step.

To create a CachedPoint from a point (X1, Y1, Z1, T1), we execute the following steps
Algorithm 1. The value 121666 in this algorithm is the constant k in the parallel formula.

Algorithm 1 Algorithm for creation of a CachedPoint
1: function FROM(P1: ExtendedPoint)
2: (X1, Y1, Z1, T1)← P1
3: (S2, S3, Z1, T1)← (Y1 − X1, Y1 + X1, Z1, T1)
4: (S′2, S′3, Z′1, T′1)← (121666 · S1, 121666 · S2, 2 · 121666 · Z1, 2 · 121666 · T1)
5: P′1 ← (S′2, S′3, Z′1, T′1)
6: return P′1 : CachedPoint
7: end function

Step 2 gives us a CachedPoint. To add two elliptic curve points, P1 = (X1, Y1, Z1, T1)
and P2 = (X2, Y2, Z2, T2), we first transform P2 into a CachedPoint: P′2 = (S′2, S′3, Z′2, T′2).
Then, we follow the steps in Algorithm 2 to perform the elliptic curve point addition of
P1 + P′2 = P3.

This yields the same results as the parallel formula of Hisil et al. [6], with a slightly
different execution order due to the CachedPoint. Some steps are omitted in the above
algorithms that are necessary when executing them with SIMD vectors. We treat each
element in a SIMD vector, such as (X1, Y1, Z1, T1), as a separate variable that we can move
and manipulate. In reality, these are all stored in a singular SIMD vector, and moving
and performing operations on them is a bit more involved. For example, on Line 3 of
Algorithm 1 and Line 4 of Algorithm 2, we perform the operation (Y1−X1, Y1 + X1, Z1, T1).
All the separate steps required for this operation with SIMD are given in Algorithm 3.

Algorithm 2 Algorithm for adding ExtendedPoint to CachedPoint

1: function ADD(P1: ExtendedPoint, P′2: CachedPoint)
2: (X1, Y1, Z1, T1)← P1
3: (S′2, S′3, Z′2, T′2)← P′2
4: (S0, S1, Z1, T1)← (Y1 − X1, Y1 + X1, Z1, T1)
5: (S8, S9, S10, S11)← (S0 · S′2, S1 · S′3, Z1 · Z′2, T1 · T′2)
6: (S12, S13, S14, S15)← (S9 − S8, S9 + S8, S10 − S11, S10 + S11)
7: (X3, Y3, Z3, T3)← (S12 · S14, S15 · S13, S15 · S14, S12 · S13)
8: P3 ← (X3, Y3, Z3, T3)
9: return P3: ExtendedPoint

10: end function



Sensors 2024, 24, 1030 9 of 16

Algorithm 3 SIMD instructions necessary to calculate (Y1 − X1, Y1 + X1, Z1, T1) from
(X1, Y1, Z1, T1)

1: (X1, Y1, Z1, T1)← P1
2: temp1 ← (Y1, X1, T1, Z1)← SHUFFLE(P1, BADC)
3: temp2 ← (−X1,−Y1,−Z1,−T1)← NEGATE(P1)
4: temp2 ← (−X1, Y1,−Z1, T1)← BLEND(P1, temp1, AC)
5: result← (Y1 − X1, X1 + Y1, T1 − Z1, Z1 + T1)← ADD(temp1, temp2)
6: (Y1 − X1, X1 + Y1, Z1, T1)← BLEND(P1, result, AB)

In Algorithm 3, we use functions in Lines 2–5 to perform operations on the SIMD vector.
These are the functions in which we use ARM NEON intrinsics to optimise performance.
They are further explained in Section 4.3.

4.3. Techniques Used for Optimisation

We have optimised functions such as “shuffle”, “negate”, “blend”, and “add” seen in
Algorithm 3 for ARM NEON. These optimisations are based on the adaptation of the the
back-end for the Intel AVX2 SIMD vector instructions such that it can use our ARM NEON
representation and specific instructions. They all happen in the field of the elliptic curve:
e.g., adding two of our representations means adding the sub-vectors pair-wise and not
performing an elliptic curve point addition. Below, we will discuss these field algorithms.

4.3.1. Shuffle

The shuffle function takes an input set of field elements ABCD and returns a new
sequence of lanes according to a control sequence: for example, AAAA or BADC. The
problem with our representation of a two SIMD vector solution is that lanes that are stored
in the first vector might need to be swapped with lanes in the second vector. To account
for this, we give both SIMD vectors of our representation to the shuffle! macro of the
Rust packed-simd crate [24]. We do this shuffle! once for each SIMD vector, so twice in
total. We could use the vqtbx1q_u8 ARM NEON intrinsic, which can also combine two
SIMD vectors by reordering every 8 bits according to a third input vector; however, this
instruction is slow according to the specification. This instruction would only be preferable
if it is necessary to reorder every sub-vector of 8 bits instead of the sub-vectors of 32 bits
we work with. Instead, it is better to use multiple other instructions to get the same result.

This is what the shuffle! macro does. It first lowers to the shufflevector LLVM in-
struction, which becomes a sequence of assembly instructions using ARM NEON intrinsics
such as trn1 and trn2 to get the desired reordering of the vectors. The instructions trn1
and trn2 combine vectors by taking, respectively, the even- or odd-numbered sub-vectors
from the first input vector and vice versa for the second input vector. This, combined with
some instructions to extract and insert sub-vectors from the SIMD vector, gives us our
wanted output.

4.3.2. Blend

Blend behaves in much the same way as shuffle but merges two field elements together
based on an input. For example, given two field elements A1B1C1D1 and A2B2C2D2 and
an input lane C, blend returns A1B1C2D1 as the C input as dictated by the C lane being
taken from the second input field element.

This blend function is performed using the shuffle! macro with some optimisations.
A naive implementation would use shuffle! twice to combine the first SIMD vectors of
the inputs and then again for the second vectors. However, this is not always necessary.
When taking everything from the first SIMD vector from the first input and everything
from the second SIMD vector from the second input or vice versa, we can simply take those
SIMD vectors as our output without having to perform a shuffle. Similarly, when taking
only one lane from the first or second input, only the SIMD vector holding that lane has to
be shuffled, and we can directly take the other vector.



Sensors 2024, 24, 1030 10 of 16

This input that decides how to blend the lanes or how to reorder in the shuffle
function is determined by the formula in which it is used. Thus, it is always known at
compile time and does not raise issues of not being constant time as it does not depend on
the input of which points are used with the algorithm.

4.3.3. Negate

To negate within the finite field, we subtract the field element from a multiple of the
field order. The multiple of the field order is taken to avoid an underflow as −x ≡ k · p− x
mod p for any integer k with field order p. In certain algorithms when we know the bounds
are low, we can perform a lazy negation with 2 · p and without a reduction, ensuring
that the bound stays low. Otherwise, if the bounds are high, we can perform a reduction
with 16 · p and perform a reduction afterwards. This still requires knowing the bounds
beforehand, as we cannot exceed the field size. This implementation is equivalent to the
AVX2 implementation.

4.3.4. Unpack and Repack

In order to multiply a SIMD vector with another SIMD vector or constant, it first has to
be unpacked. This is done by splitting each vector up into two, with each vector taking every
other limb, as seen in Figure 5. Then, after multiplication, the vector has to be repacked,
which combines two vectors into one.

a0 b0 a1 b1
...

...
...

...

c0 d0 c1 d1
...

...
...

...

Figure 5. Splitting of vectors.

There is a key difference here with the AVX2 implementation. AVX2 splits into two
SIMD vectors for multiplication as described in Figure 5. For ARM NEON however, the
multiplication SIMD instructions expect two 64-bit vectors that result in a 128-bit vector.
The SIMD vector is still split in two, with each result vector taking every other limb,
but the result vectors are of length 64 bits. This splitting can be seen in Figure 6, and our
representation using two ARM NEON SIMD vectors results in four SIMD vectors. We create
these four vectors using the vget_low_u32 and vget_high_u32 ARM NEON instructions,
which, respectively, get the lower two and the higher two limbs from a SIMD vector.

a0 b0 a1 b1 c0 d0 c1 d1 →
a0 b0 a1 b1

c0 d0 c1 d1

Figure 6. Split of 128-bit ARM NEON vector into 64-bit vectors in preparation for multiplication.

After multiplication, a reduction always happens. We explain reduction in more detail
in Section 4.3.5. This reduced form will consist of alternating limbs and zeroed sub-vectors,
as described in Figure 5. Repacking the vectors into the default representation involves
extracting the limbs and putting them into new SIMD vectors. We do this by extracting
(a0, 0) with vget_low_u32 and then inserting b0 with vset_lane_u32 to get (a0, b0). The
b0 is first extracted with the vgetq_lane_u32, which can extract an arbitrary limb from a
SIMD vector. In the same way, we obtain (a1, b1) to combine both using vcombine_u32 and
get (a0, b0, a1, b1). This process is repeated again to obtain our second vector (c0, d0, c1, d1).

4.3.5. Reduce and Reduce64

The reduce function is called to reduce an elliptic curve point field element in our
default two SIMD vector representation. A reduction is performed by adding the extra
bound bits of each limb to the next limb, and for the last limb, we add it to the first after
a multiplication with 19 to conform with the modulo operations. The same is done with
reduce64, except the extra bits are now 25 or 26 bits long after a multiplication.



Sensors 2024, 24, 1030 11 of 16

These functions are implemented similarly to the ones in the existing AVX2 imple-
mentation, except that, similar to functions described above, extraction from vectors and
combination of vectors is done with vget_high_u32, vget_low_u32, and vcombine_u32.

4.3.6. Operations on Elliptic Curve Point Representations

The add, multiplication with scalar, and multiplication between field element opera-
tions are again a straightforward reimplementation of the AVX2 functions ported to ARM
NEON intrinsics.

Addition is a straightforward operation, for which we again rely on the packed_simd_2
crate to provide the optimal instructions. When adding two elliptic curve point representa-
tions together vectorwise, we simply add the corresponding vectors of the first point to the
second point.

For multiplication by a scalar, each SIMD vector in our representation is multiplied
by a scalar using the vmull_u32 intrinsic. As these scalars can be large, the representation
is first unpacked, then the multiplication happens, and then the result is reduced with
reduce64 before being repacked.

The same unpacking, multiplication, reduction, and repacking happens for the multi-
plication between the elliptic curve point representation. The algorithm for this is a direct
reimplementation of the formula described in Multiplication mod 2255 on NEON by Bernstein
and Schwabe [9].

5. Performance Analysis Method

Our optimised ARM NEON code was evaluated on several devices, as shown in
Table 3. The same benchmarks were run on all the devices, with code compiled specifically
for the architecture of each device. These benchmarks were compiled targeting either the
non-SIMD back-end, the non-SIMD back-end but using auto-vectorisation, or our new
NEON SIMD back-end. With auto-vectorisation, the compiler will try to automatically use
SIMD instructions to improve performance.

The benchmarks use the criterion crate [25] to measure the time it takes to execute
specific functions. Each function benchmark executes the function under study repeatedly
until a preset time has elapsed: usually 5 s. Performance measurements start after a warm-
up phase, which gives time for the OS and CPU to adapt to the workload. We give the 95%
confidence interval for the median, calculated using linear regression. We also give the
measured median value. Speed-up is given as the difference between median measured
values, with statistical significance calculated using a T-test to always have a p value lower
than 0.001.

The dalek-curve25519 library provides many benchmarks; below, we will discuss the
results for the two most relevant ones. These are: a function that either uses the SIMD or
the serial back-end to multiply a field element by a scalar (constant-time variable-base scalar
multiplication) and a practical use case in the Signal library to decrypt a universally unique
identifier (Decrypt UUID).

Table 3. Devices used for benchmarking. Two single-board computers (SBCs), four smartphones, and
two Intel devices were used.

Device CPU Architecture Identifier

Raspberry Pi 4Model B rev 1.4 Broadcom BCM2711 ARMv8 Cortex-A72 Pi
Jolla Qualcomm Snapdragon 400 MSM8930 ARMv7 Cortex-A9 Jolla
Sony Xperia 10 II Qualcomm Snapdragon 665 ARMv8 Cortex-A73 and A53 X10 II

6. Results

The results of our benchmarks are discussed in this section. For each of our evaluations,
we show a table with the summarised results of the benchmark as well as a figure that
depicts the results of the benchmarks with a violin plot.



Sensors 2024, 24, 1030 12 of 16

6.1. Constant-Time Variable-Base Scalar Multiplication

Table 4 displays the results of the benchmarks of constant-time variable-base scalar
multiplication. This shows little to no improvement from the non-SIMD version to the
auto-vectorised. From non-SIMD to the NEON version, there is an improvement on Jolla,
Pi, and X10 II of, respectively, 53.47%, 24.74%, and 21.22%. Figure 7 displays a violin-plot
of the results.

Figure 7. Constant-time variable-base scalar multiplication benchmarks.

Table 4. Benchmark results for constant-time variable-base scalar multiplication on various devices
for various targets showing speed-up for NEON over base.

Device Target Median (µs) 95% CI (µs) Speed-Up

Jolla base 1017.3 1017.2 to 1017.6 base
Jolla auto 995.6 995.4 to 995.8 *
Jolla NEON 473.3 473.2 to 473.5 53.47%

Pi base 299.3 299.3 to 299.5 base
Pi auto 294.4 294.3 to 294.4 *
Pi NEON 225.3 225.2 to 225.5 24.74%

X10 II base 242.0 241.9 to 242.3 base
X10 II auto 242.4 242.3 to 242.5 *
X10 II NEON 190.7 190.6 to 190.8 21.22%

*: auto-vectorised speed-up results not displayed because they are not statistically significant or are very small.

6.2. Decrypt UUID

Similar to the previous point, the results of the benchmark of the decrypt UUID
function can be found in Table 5, with a violin plot of the results in Figure 8. This function
aims to give a more practical example of the usage of the SIMD back-end in an actual library
(Signal). Auto-vectorised again has little to no speed-up, while NEON SIMD performs
36.67%, 15.52%, and 13.05% faster than baseline on Jolla, Pi, and X10 II, respectively.



Sensors 2024, 24, 1030 13 of 16

Figure 8. Decrypt UUID benchmarks.

Table 5. Benchmark results of decrypt UUID on various devices for various targets, showing speed-up
for NEON over base.

Device Target Median (µs) 95% CI (µs) Speed-Up

Jolla base 3153.1 3153.1 to 3153.1 base
Jolla auto 3120.3 3100.5 to 3122.1 *
Jolla NEON 2028.4 2026.6 to 2044.9 36.67%

Pi base 918.9 918.6 to 920.1 base
Pi auto 922.5 922.1 to 922.9 *
Pi NEON 776.3 775.6 to 777.5 15.52%

X10 II base 747.3 747.1 to 747.4 base
X10 II auto 751.3 751.2 to 751.5 *
X10 II NEON 647.8 647.6 to 647.9 13.05%

*: auto-vectorised speed-up results not displayed because they are not statistically significant or are very small.

6.3. Discussion of Results

The results are completely in line with expectations. Since curve25519-dalek [7]
reports a 40% speed-up for AVX2 and we use roughly twice the number of instructions,
we get the expected speed-up of 20%. It seems that the speed-up is lower on newer
devices, though more extensive testing on a variety of different cores, looking specifically
at clock speeds, boost, architecture, etc. would be necessary to get a clear answer as to
why. The benchmarks demonstrate the efficiency of using the four-way parallel formulae
of Hisil et al. [6], even with smaller SIMD vectors. This indicates that formulae specifically
designed for four-way parallelism, and thus for 256-bit SIMD architectures, can still work
on 128-bit SIMD architectures. The inherent parallelism of SIMD provides a speed-up for
these algorithms, even on smaller SIMD vector sizes.

Small further optimisations might be possible by changing some of the SIMD instruc-
tions used in the proposed implementation. However, given the use of a state-of-the-art
algorithm for extended twisted Edwards curves and the fact that our speed-up already is
in line with the theoretically expected speed-up, large improvements would require more
fundamental changes to the elliptic curve algorithms themselves.



Sensors 2024, 24, 1030 14 of 16

7. Future Work

Adapting the results of this paper to different architectures will still require some work,
as the input and output of the SIMD instructions will differ. However, this adaptation
should be moderately easy for 256-bit SIMD vectors such as the original implementation or
128-bit SIMD vectors such as our newly proposed implementation. Future work will focus
on making our implementation more adaptable to different architectures and should give
similar results.

For different SIMD vector sizes, a new implementation will be more difficult. Changes
in the bounds and other parts of the algorithm, like the sequence of operations, will
necessitate the use of other SIMD vector sizes. Future work should also explore how to
adapt the linear algorithm that was originally used to create the four-way parallelism by
Hisil et al. [6] to create new algorithms for different SIMD vector sizes. The same might
also be done to create SIMD algorithms for other elliptic curve types.

8. Conclusions

As can be seen from Section 6, the possible speed-up from using an ARM NEON
back-end to perform elliptic curve operations for extended twisted Edwards curves using
SIMD is at least 20%. This speed-up varies greatly from device to device, but can be seen
in every device and can reach as high as 50%. It is generally less than the 40% speed-up
generated by the AVX2 version of the SIMD back-end, but that is to be expected, as NEON
SIMD only has vectors of half the size. These results emphasise the possibility of SIMD
to speed-up elliptic curve cryptography, even with relatively small SIMD vector sizes,
by employing the parallel formulae by Hisil et al. [6]. This usage of parallel formulae is
non-trivial and cannot be automated by auto-vectorisation at the moment. This paves the
way to possibly employ similar parallel formulae for other elliptic curve models other than
extended twisted Edwards curves and to generalise the algorithm to work for any SIMD
vector size.

Author Contributions: Conceptualization, R.D.S., R.B. and T.G.; Data curation, R.D.S. and R.B.;
Formal analysis, R.D.S. and R.B.; Funding acquisition, K.S. and A.B.; Investigation, R.D.S. and
R.B.; Methodology, R.D.S. and R.B.; Project administration, K.S. and A.B.; Resources, K.S. and A.B.;
Software, R.D.S. and R.B.; Supervision, K.S. and A.B.; Validation, R.D.S. and R.B.; Visualization, R.D.S.
and R.B.; Writing—original draft, R.D.S. and R.B.; Writing—review and editing, T.G., K.S. and A.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was in part supported by the Vlaio TETRA Project RustIEC (HBC.2021.0066).

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: The authors would like to thank Matti “direc85” Viljanen for running the
benchmarks on the Jolla and Xperia 10 II devices.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

E2EE end-to-end encryption 1
ECC elliptic curve cryptography 1–3, 8
ECDHE elliptic curve Diffie–Hellman key exchange 1
GPU graphical processing unit 2
SBC single-board computer 11
SIMD single instruction, multiple data 1–3, 5–14
TLS transport layer security 1
ZKP zero-knowledge proof 2



Sensors 2024, 24, 1030 15 of 16

References
1. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. Request for Comments RFC 8446, Internet Engineering Task

Force. 2018. Available online: https://datatracker.ietf.org/doc/rfc8446 (accessed on 16 December 2022).
2. Sarafa, R. New Features Coming to Signal Groups. 2020. Available online: https://signal.org/blog/new-groups/ (accessed on

27 April 2021).
3. Lund, J. Technology Preview: Sealed Sender for Signal. 2018. Available online: https://signal.org/blog/sealed-sender/

(accessed on 27 April 2021).
4. Bünz, B.; Bootle, J.; Boneh, D.; Poelstra, A.; Wuille, P.; Maxwell, G. Bulletproofs: Short Proofs for Confidential Transactions and

More. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018;
pp. 315–334. [CrossRef]

5. Bernstein, D.J. Curve25519: New Diffie-Hellman Speed Records. In Proceedings of the International Workshop on Pub-
lic Key Cryptography, New York, NY, USA, 24–26 April 2006; Yung, M., Dodis, Y., Kiayias, A., Malkin, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 207–228.

6. Hisil, H.; Wong, K.K.H.; Carter, G.; Dawson, E. Twisted Edwards Curves Revisited. In Advances in Cryptology—ASIACRYPT 2008;
Pieprzyk, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5350, pp. 326–343. [CrossRef]

7. de Valence, H.; Lovecruft, I. Curve25519-Dalek: A Pure-Rust Implementation of Group Operations on Ristretto and Curve25519.
2016. Available online: https://github.com/dalek-cryptography/curve25519-dalek (accessed on 17 June 2018).

8. Rust Team. Rust Programming Language. Available online: https://www.rust-lang.org/ (accessed on 6 October 2023).
9. Bernstein, D.J.; Schwabe, P. NEON Crypto. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2012,

Leuven, Belgium, 9–12 September 2012; Prouff, E., Schaumont, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Lecture
Notes in Computer Science; pp. 320–339. [CrossRef]

10. Blancquaert, R. Elliptic Curve Field Arithmetic Speed-up Using SIMD Instructions. Master’s Thesis, Vrije Universiteit Brussel,
Brussels, Belgium, 2022.

11. Bos, J.W.; Kleinjung, T.; Page, D. Efficient Modular Multiplication. In Computational Cryptography: Algorithmic Aspects of Cryptology;
London Mathematical Society Lecture Note Series; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021;
pp. 223–250. Available online: www.cambridge.org/9781108795937 (accessed on 30 November 2022).

12. Hamburg, M. Fast and Compact Elliptic-Curve Cryptography. 2012. Available online: https://eprint.iacr.org/2012/309 (accessed on
30 November 2022).

13. Faz-Hernández, A.; López, J.; Dahab, R. High-Performance Implementation of Elliptic Curve Cryptography Using Vector
Instructions. ACM Trans. Math. Softw. 2019, 45, 1–35. [CrossRef]

14. Cheng, H.; Großschädl, J.; Tian, J.; Rønne, P.B.; Ryan, P.Y.A. High-Throughput Elliptic Curve Cryptography Using AVX2 Vector
Instructions. In Proceedings of the Selected Areas in Cryptography, Virtual, 21–23 October 2020; Dunkelman, O., Jacobson, M.J.,
O’Flynn, C., Eds.; Springer: Cham, Switzerland, 2021; Lecture Notes in Computer Science, Volume 12804, pp. 698–719. [CrossRef]

15. Goetschmann, P.; Moser, F.; Streun, F.; Tobler, L. Fast Implementations of Curve25519 on Intel Skylake; Technical Report; Department
of Computer Science, ETH Zürich: Zürich, Switzerland, 2020. Available online: https://www.semanticscholar.org/paper/FAST-
IMPLEMENTATIONS-OF-CURVE25519-ON-INTEL-SKYLAKE-Goetschmann-Moser/6609e99a4164630fd8301a068f06a4b6e5
6ae00b (accessed on 25 September 2023).

16. Dong, J.; Zheng, F.; Lin, J.; Liu, Z.; Xiao, F.; Fan, G. EC-ECC: Accelerating Elliptic Curve Cryptography for Edge Computing on
Embedded GPU TX2. ACM Trans. Embed. Comput. Syst. 2022, 21, 1–25. [CrossRef]

17. Luc, P.V.; Hai, H.D.; Tan, L.D. Improving the Efficiency of Point Arithmetic on Elliptic Curves Using ARM Processors and NEON.
Int. J. Netw. Secur. 2022, 24, 364–376. [CrossRef]

18. Longa, P. FourQNEON: Faster Elliptic Curve Scalar Multiplications on ARM Processors. In Proceedings of the Selected Areas in
Cryptography—SAC 2016, St. John’s, NL, Canada, 10–12 August 2016; Avanzi, R., Heys, H., Eds.; Springer: Cham, Switzerland,
2017; Lecture Notes in Computer Science, pp. 501–519. [CrossRef]

19. Brier, É.; Joye, M. Weierstraß Elliptic Curves and Side-Channel Attacks. In Proceedings of the Public Key Cryptography, Paris,
France, 12–14 February 2002; Naccache, D., Paillier, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Lecture Notes in
Computer Science, pp. 335–345. [CrossRef]

20. Hamburg, M. Decaf: Eliminating Cofactors Through Point Compression. In Advances in Cryptology—CRYPTO 2015; Gennaro, R.,
Robshaw, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9215, pp. 705–723. [CrossRef]

21. Hamburg, M.; de Valence, H.; Lovecruft, I.; Arcieri, T. The Ristretto Group. 2019. Available online: https://ristretto.group
(accessed on 3 May 2019).

22. Fan, J.; Guo, X.; De Mulder, E.; Schaumont, P.; Preneel, B.; Verbauwhede, I. State-of-the-art of secure ECC implementations: A
survey on known side-channel attacks and countermeasures. In Proceedings of the 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), Anaheim, CA, USA, 13–14 June 2010; pp. 76–87. [CrossRef]

23. Abarzúa, R.; Valencia, C.; López, J. Survey for Performance & Security Problems of Passive Side-Channel Attacks Countermeasures
in ECC. Cryptology ePrint Archive, Paper 2019/010. 2019. Available online: https://eprint.iacr.org/2019/010 (accessed on
4 February 2024).

https://datatracker.ietf.org/doc/rfc8446
https://signal.org/blog/new-groups/
https://signal.org/blog/sealed-sender/
http://doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1007/978-3-540-89255-7_20
https://github.com/dalek-cryptography/curve25519-dalek
https://www.rust-lang.org/
http://dx.doi.org/10.1007/978-3-642-33027-8_19
www.cambridge.org/9781108795937
https://eprint.iacr.org/2012/309
http://dx.doi.org/10.1145/3309759
http://dx.doi.org/10.1007/978-3-030-81652-0_27
https://www.semanticscholar.org/paper/FAST-IMPLEMENTATIONS-OF-CURVE25519-ON-INTEL-SKYLAKE-Goetschmann-Moser/6609e99a4164630fd8301a068f06a4b6e56ae00b
https://www.semanticscholar.org/paper/FAST-IMPLEMENTATIONS-OF-CURVE25519-ON-INTEL-SKYLAKE-Goetschmann-Moser/6609e99a4164630fd8301a068f06a4b6e56ae00b
https://www.semanticscholar.org/paper/FAST-IMPLEMENTATIONS-OF-CURVE25519-ON-INTEL-SKYLAKE-Goetschmann-Moser/6609e99a4164630fd8301a068f06a4b6e56ae00b
http://dx.doi.org/10.1145/3492734
http://dx.doi.org/10.6633/IJNS.202203_24(2).19
http://dx.doi.org/10.1007/978-3-319-69453-5_27
http://dx.doi.org/10.1007/3-540-45664-3_24
http://dx.doi.org/10.1007/978-3-662-47989-6_34
https://ristretto.group
http://dx.doi.org/10.1109/HST.2010.5513110
https://eprint.iacr.org/2019/010


Sensors 2024, 24, 1030 16 of 16

24. Rust Foundation. Packed_simd. The Rust Programming Language. 2023. Available online: https://github.com/rust-lang/
packed_simd (accessed on 21 November 2023).

25. Heisler, B. Criterion.Rs: Statistics-Driven Microbenchmarking in Rust. 2023. Available online: https://github.com/bheisler/
criterion.rs (accessed on 21 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/rust-lang/packed_simd
https://github.com/rust-lang/packed_simd
https://github.com/bheisler/criterion.rs
https://github.com/bheisler/criterion.rs

	Introduction
	Related Work
	Preliminaries
	Elliptic Curve Operations
	Elliptic Curve Models and Point Representation
	Curve25519 and Field Polynomials

	Techniques for Speed-Up with SIMD
	SIMD in Curve25519-Dalek
	Implementation on ARM NEON
	Techniques Used for Optimisation
	Shuffle
	Blend
	Negate
	Unpack and Repack
	Reduce and Reduce64
	Operations on Elliptic Curve Point Representations


	Performance Analysis Method
	Results
	Constant-Time Variable-Base Scalar Multiplication
	Decrypt UUID
	Discussion of Results

	Future Work
	Conclusions
	References

