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Abstract: Since the popularity of Machine Learning as a Service (MLaaS) has been increasing signifi-
cantly, users are facing the risk of exposing sensitive information that is not task-related. The reason
is that the data uploaded by users may include some information that is not useful for inference
but can lead to privacy leakage. One straightforward approach to mitigate this issue is to filter out
task-independent information to protect user privacy. However, this method is feasible for structured
data with naturally independent entries, but it is challenging for unstructured data. Therefore, we
propose a novel framework, which employs a spectrum-based encoder to transform unstructured
data into the latent space and a task-specific model to identify the essential information for the target
task. Our system has been comprehensively evaluated on three benchmark visual datasets and
compared to previous works. The results demonstrate that our framework offers superior protection
for task-independent information and maintains the usefulness of task-related information.

Keywords: spectrum-based encoder; latent code; machine learning; privacy preserving

1. Introduction

Machine learning has demonstrated impressive performance in several areas, such as
natural language processing [1] and computer vision [2]. However, training an effective
machine learning model requires proper model design, massive computing resources, and
large datasets that may be beyond the reach of many individuals. In addition, deploying
and running the model requires significant storage and computing resources that are also
unfriendly to edge devices such as smartphones or sensors [3]. One promising approach is
Machine Learning as a Service (MLaaS) [4], which supports the outsourcing of prediction.
Well-trained models can be deployed by vendors in the cloud. This is attractive because
it offloads the user’s local computing and storage requirements and eliminates the cost
of training new models. However, the outsourced data consist of not only task-related
information, but also task-independent information [5], which does not significantly affect
the inference results, but exposes users to unwanted risks of misuse or theft. Recently,
China’s Personal Information Protection Law has prompted information processors to pre-
vent unauthorized access to personal information. Therefore, it is of paramount importance
to protect unauthorized information while ensuring the usefulness of the data.

Previous works addressing privacy concerns have been devoted to balancing the trade-
offs between privacy and utility. An obvious and widely adopted solution is to extract task-
oriented features and upload them to servers instead of raw data, such as Google Now [6]
and Google Cloud [7]. Although the mere transmission of features avoids direct disclosure
of raw data, recent developments in model inversion attacks show that adversaries can
use intermediate features to reconstruct the input and infer privacy attributes [8–10]. Ossia
et al. [11] apply dimensionality reduction and noise injection to defend against adversaries
before uploading features to the servers, but the cost is a non-negligible loss in utility.
Inspired by Generative Adversarial Networks (GANs) [12], PAN [13], DeepObfuscator [3],
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and TIPRDC [14] propose to obtain an encoder through adversarial training to extract
partial privacy-preserving features that keep a subset of the attributes available while
specifying the attributes anonymously. However, these schemes artificially simulate proxy
adversaries during the training phase, leading to dangers from potential attack models. This
suspicion is also supported by the results of the potential adversary detection experiments
in Section 4.2.

Therefore, we propose a partial privacy-preserving framework to preserve data utility
while protecting task-independent attributes. An intuitive phenomenon is that not all data
information is useful for inference. Some of the recent literature shows that the task model
pays more attention to a part of regions [15–18], which becomes evidence that the data can
be regarded as composed of task-related and task-independent information. Inspired by
these works, our framework focuses on selecting the information relevant to the target task.
This is feasible for structured data, but difficult for unstructured data. Taking Figure 1 as
an example, users can flexibly select the attributes necessary for the task in Table (a) due to
the naturally independent entries, while it is impractical for image (b) because different
attributes are entangled and expressed in the same region. An intuitive approach is to
express unstructured data in a structured form. However, naturally occurring data are often
accompanied by redundant information, which hinders structured expression. Therefore,
we introduce Fourier transform as a pre-processing method to reduce data redundancy,
and propose the spectrum-based encoder to disentangle the unstructured data into a latent
space [19]. We then propose a universally interpretable model, called an indicator, which
marks the information necessary for the target task in the latent representation.

Structured Data
Attribute Value
Hair Color Brown

Age 31
Gender Male
Race White
Mood Smile

(a)

Age

Gender

Mood

Hair Color

Race

(b)

Figure 1. (a) Structured data and (b) unstructured data.

As shown in Figure 2, our framework consists of three parts: a spectrum encoder E, an
indicator I, and a decoder D. The encoder E is intended to be used on the user side to extract
the disentangled representation from unstructured data. Indicator I is also used on the user
side, recommending task-related information by marking representation dimensions. The
marked dimensions indicate the information required by the target task model, and the
corresponding anonymized transform is designed. Specifically, the values of the marked
dimensions are retained, while the values of the ignored dimensions are discarded and
reassigned as default values. The decoder D runs on the server to reconstruct the data
based on the transformed representation uploaded by the users. The classifier (green) is
considered the target task model, and the reconstruction data will strive to maintain its
usefulness. At the same time, the reconstruction data are expected to prevent adversaries
(red) from inferring unauthorized attributes.

Discarding task-independent information according to Indicator’s recommendations
has four advantages. First, interpretable indicators provide interpretability for anonymized
transformation. Second, target-task-driven attribute retention avoids unconscious utility
loss and sensitive information leakage. Third, disentangled representation-based informa-
tion selection provides an explicit and controllable balance for privacy–utility trade-offs.
Finally, this allows our framework to withstand potential attack models. Furthermore,
Indicator and encoder–decoder pairs of our framework are trained separately in two phases.
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Compared to existing end-to-end adversarial training methods, our framework can adapt
to the changes in the target tasks and adjust the retained attribute information more flexibly.

In summary, our key contributions are as follows:

• We introduce a novel interpretable model called Indicator, which can effectively indi-
cate the critical information required for a specific target task within unstructured data.

• We present a partial privacy-preserving framework that utilizes the designed Indicator
to restrict the access of undesired task-independent attacks while preserving the utility
of target tasks.

• We fully implement our framework and demonstrate its wide applicability by perform-
ing experiments on several standard datasets. The evaluation results show that our
framework can achieve sweet trade-offs between privacy and utility, and is resistant
to potential attackers.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries
and reviews the related work. Section 3 describes the framework overview and the details
of core modules. Section 4 reports the evaluation results. Section 5 concludes and discusses
this paper.

Figure 2. The VAE-based encoder maps the raw data to the latent space, and the proposed indicator
points out the relevance of the latent code to the target task and removes irrelevant elements. The
subsequent decoder reconstructs the data from the filtered code, with the target attributes being
preserved while the remaining attributes are obfuscated.

2. Preliminaries and Related Work

In this section, we first introduce the work involved in this article. Then, we briefly
review the most relevant work on privacy.

2.1. Disentangled Representation Learning

In general, disentangled representation learning aims to isolate different attributes
into non-overlapping sub-dimensions in the latent space. As shown in Figure 3, different
colours represent different attributes in the raw data, and the ball represents the factor
containing attribute information. In the raw data, these factors are messy and entangled,
and it is difficult to filter all the factors corresponding to a certain attribute in a common
way. At the same time, the latent code obtained by the disentangled representation learning
can express attributes regularly and independently. In other words, different attributes
in the raw data can be determined by the different representation sub-dimensions in the
latent space.

Existing works about disentangled representation can be roughly divided into three
categories: (1) based on Variational Autoencoders (VAE) [19–21], (2) based on GAN [22]
and (3) based on the flow model [23]. Among them, the VAE-based model is attractive due
to its lower cost and stability in the training phase.

VAE is an unsupervised generative network based on variational bayes inference,
consisting of an encoder and a decoder. Given a sample x, VAE determines a distribution
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z in the latent space as the encoding result. The optimization objective of VAE consists
of two parts. The first part is to maximize the Evidence Lower Bound (ELBO) so that the
variational distribution is close to the isotropic Gaussian prior p(z), and the second part is
to minimize the pixel-level metrics of the generated data and the original data:

LVAE = −Eq(z|x)[log(p(x|z)] + DKL(q(z|x)||p(z)) (1)

β-VAE [19] modified the objective function as:

LβVAE = −Eq(z|x)[log(p(x|z)] + βDKL(q(z|x)||p(z)) (2)

Compared to the original VAE, the hyperparameter β > 1 encourages the variational
distribution to be closer to the Gaussian prior, thereby producing a disentangled latent
code. Kim et al. [20] and Chen et al. [21] believed that the total correlation term obtained
by decomposing the KL divergence plays a crucial role and proposed Factor-VAE and
β-TCVAE, respectively.

Figure 3. Different colours represent different attributes in the unstructured data, and the balls
represent the factors that affect the attributes.

2.2. Data Privacy Protection

Several methods have been proposed to protect privacy. k-anonymity [24], l-diversity [25],
and t-closeness [26] have been proposed as desensitization criteria. However, these methods
are only designed for structured data and are difficult to scale to unstructured data. Dif-
ferential privacy [27–29] and random noise injection [30,31] are common methods that are
widely used to protect sensitive information in structured and unstructured data. Although
security guarantees are provided, these methods often significantly reduce the usefulness
of the data. Homomorphic encryption (HE) [32,33] and Secure Multi-Party Computation
(MPC) [34–36] support the manipulation of encrypted data, but the computation of non-
linear functions is always accompanied by unrealistic computational and communication
complexity, leading to much lower efficiency than plaintext inference. iPrivacy [37] focuses
on visual tasks by constructing a multi-task learning model to detect and blur objects that
may leak sensitive information in the image. The types of these objects are preset. RAE [38]
follows the same idea but is time-series-oriented. This scheme proposes to replace the
features of each section corresponding to sensitive inferences with the values corresponding
to non-sensitive inferences. Using GAN, RAE provides the security guarantee that it is
almost impossible to detect the nature of sensitive inferences.

2.3. Representation Privacy–Utility Trade-Offs

Aloufi et al. [39] focused on the disentanglement of voice for the Voice User Interfaces
(VUIs). VQ-VAE [40] was introduced to construct independent representations of emotion,
identity, and semantics, while WaveRNN [41] was employed to reconstruct voice informa-
tion. Gong et al. [42] are concerned about attributes preserving face de-identification and
propose R2VAEs to obfuscate identity-related information so as to achieve a balance be-
tween facial privacy protection and data utilities. Wu et al. [43] jointly proposed a securely
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recoverable visual information transformation and steganography PECAM based on deep
learning. They used this technology to design a more general VSA privacy enhancement
architecture and system implementation. PECAM can effectively transform the original
data to other domains to hide sensitive information. At the same time, authorized users
can inversely transform and restore the original data to complete detailed investigations.
This secure reversible transformation relies on a security-enhanced generative adversarial
network. Also, it introduces a key mechanism to ensure that attackers cannot restore the
data protected by PECAM. The adversary and the defender are given the conflicting utility–
privacy optimization goal, and the game between them is simulated. AttriGuard [44]
proposed a two-phase practical framework to resist private attribute inference attacks.
In phase I, existing evasion attacks in adversarial learning are adopted to find the min-
imum noise for each attribute value. In phase II, the attribute values are sampled with
a certain probability distribution, and the minimum noise found in phase I is added to
the dataset. Therefore, finding the probability distribution is formulated as a constrained
convex optimization problem. Liu et al. proposed PAN to protect the privacy of a specific
attribute while maintaining the data utility for a certain task. The representation obtained
by PAN will remain anonymous, and the adversaries cannot launch reconstruction attacks
or privacy attributes inference attacks. Wu et al. [45] designed an adversarial training
framework to obtain the degradation transform of video inputs to resist privacy attribute
attacks. Considering the diversity of attack models, and that it is impossible to enumerate
all adversary models to enhance the features privacy, Budget Model Restarting and Budget
Model Ensemble are enabled to enrich potential adversaries. TIPRDC is a task-independent
privacy-respecting data crowdsourcing framework but following the same idea. Unlike the
above works, the data utility maintained by TIPRDC does not limit to specific tasks but
is effective for arbitrary tasks by maximizing mutual information. In a sense, our work is
diametrically opposed to the idea of TIPRDC: TIPRDC struggles to retain all information
in the data, except for privacy attributes, while our framework is expected to remove all
information, except for the target task required.

3. Design of Framework

In this section, we introduce the VAE-based disentanglement method and propose the
model called Indicator for filtering the factors related to the target task.

3.1. Overview

Because models do not need all the information in the uploaded data to make credible
inferences, users tend to share only task-relevant details in a controlled manner. This is
practical for structured data with naturally independent attribute records but is difficult
for unstructured data. Thus, our framework is proposed to sift task-related information
from the unstructured data while confusing task-independent information. Figure 2 shows
that our framework addresses this problem in three stages. In the first stage, the encoder
in the VAE family model is used to obtain the disentangled representation, from which
different attribute information can be independently selected. Although the disentangled
representation is similar in form to the structured data, users are still confused about which
dimensions are necessary due to the lack of semantic interpretation. Therefore, in the
second step, we propose a model called Indicator that provides suggestions for explicit user
control over the information. In the representation, the dimensions marked by Indicator
are frozen, while the values of the remaining dimensions are discarded and refilled. In
the third stage, the transformed representation is fed to the decoder that corresponds to
the encoder in the first stage for data reconstruction. The task-related information in the
reconstructed data is preserved, while the task-independent information is unreliable.

3.2. Unstructured Data Disentanglement

The information of different attributes in unstructured data is often intertwined and
almost impractical to select independently. By disentangling different attributes, it is
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possible to preserve the task-related factors of unstructured data while obfuscating the
task-independent factors. As shown in Figure 4, we employ the VAE family models
(β-VAE, Factor-VAE, and β-TCVAE) in the training phase to obtain an encoder–decoder
pair. The encoder is used to extract the disentangled representation, and the decoder is
used to reconstruct the data. However, the common problem is that the data generated by
VAEs is always ambiguous. One view is that the pixel-wise reconstruction error metric
causes the generated data to be too smooth [46]. In contrast, the main idea of GAN
is to provide a game between the generator and the discriminator. During this game,
the discriminator judges the original data as true and the generated data as false at each
iteration. Meanwhile, the generator tries to fool the discriminator into judging the generated
data as true in the same iteration. Therefore, the decoder can be considered as the generator
and a discriminator is introduced to improve the quality of the generated data. To avoid
affecting the disentanglement of the representation, in each iteration, the training of the
GAN is carried out after the training of the VAEs, which means that the encoder and the
discriminator are not end-to-end. Formally, the loss function can be defined as:

LVAEs(θEnd, θDec) = LVAEs (3)

LGAN(θDec) = Ex[log(Dis(x)) + log(1− Dis(x′))] (4)

LGAN(θDis) = −Ex[log(log(Dis(x′))] (5)

where LVAEs represents different loss functions in the VAE family and θ∗ indicate the
parameters to be updated.

Figure 4. The workflow of our framework. The top line is the training stage, including the training of
the encoder–decoder pair and Indicator. The bottom line is the test stage. An indicator is introduced
to recommend the indexes of the representation dimensions that need to be retained. At the same
time, an arbitrary sample is used as a carrier to supplement the remaining dimensions.

In the testing phase, the encoder is deployed on the user side while the corresponding
decoder runs on the cloud server.

3.3. Representation Oriented Indicator

After the encoder and decoder training, the encoder can standard express different
attributes in the latent space. Such a disentangled representation allows us to obfuscate
the task-independent factors without changing task-related factors. However, data contain
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many factors, and it is impractical to enumerate all task-independent attributes. In addition,
whether a factor is related to the task depends on the specific task model. Different
classifiers may focus on different associated attributes for the same classification task. For
example, one classifier will concentrate on hair when judging the gender of a face image,
while another classifier may focus on beards. The tendency of the classifier depends on
the training set and model structure, which is uncontrollable for the user. If the factors to
be obfuscated are rashly determined based on human perception, it will inevitably affect
the effectiveness of the primary task. For this consideration, the task-adaptive Indicator is
proposed to mark the attributes that the specific task model focuses on.

Different dimensions in the disentangled representation are considered disjoint, and
a set of sub-dimensions can only express a particular data attribute. Meanwhile, the
task model does not view all the information to make credible inferences but pays more
attention to specific attributes. This is equivalent to that only one set of sub-dimensions in
the disentangled representation contributes to the task model inference while discarding
the values of the remaining dimensions has almost no effect. Following the idea, the
proposed Indicator is designed to search this set of sub-dimensions. Indicator is expected
to have both fidelity and interpretability. Fidelity means that Indicator can accurately mark
the representation dimensions necessary for the task model. The interpretability signifies
that the decision-making process is consistent with the human perspective.

Figure 5 reviews the paradigm of the VAE family. Each original datapoint x(i) is
encoded into a multivariate gaussian distribution N (µ(i), (σ(i))2), and the decoding re-
sults x′(i) of all samples in N (µ(i), (σ(i))2) are similar to the original data x(i). Given
an original datapoint x(i), its disentangled representation z(i) can be represented by
z(i) ∼ N (µ(i), (σ(i))2), and z(i) ∈ RB. For the inference of a certain task model, there
are m necessary dimensions in z(i), whose value fluctuation will significantly affect the
result of the inference, while the change in the remaining B−m dimensions can hardly
have impacts. This demonstrates that under the premise of not affecting the inference
confidence, the larger variance is not tolerated by the m dimensions, but is acceptable for
the B−m dimensions. Therefore, the ultimate goal of Indicator can be expressed as finding
a variance bias ξ as large as possible and encoding the data x(i) into the new distribution
N (µ(i), (σ(i) + ξ)2), as shown in Figure 5. Among them, the decoding result x̃′(i) of the
sample onN (µ(i), (σ(i)+ ξ)2) and the decoding result x′(i) of the sample onN (µ(i), (σ(i))2)
show the same confidence in the task model. In general, the optimization goal of ξ can be
formulated as:

minL(ξ) = minEp(x)[Eq(z|x), q̃(z̃|x)[L2(TM(Dec(z)), TM(Dec(z̃)))]]− λ
B

∑
i=1

ξ i,

q(z|x) = N (µ,σ2), q̃(z̃|x) = N (µ, (σ + ξ)2)

(6)

where TM represents the target task model.
After training, the representation dimensions corresponding to the smaller ξ i cannot

support the larger sampling ranges while maintaining effectiveness for the task model,
which means that the task model will pay more attention to these dimensions. Conversely,
the dimensions corresponding to a larger ξ i contribute less to the task model inference.
To determine ξ, an intuitive method is to set ξ as trainable parameters. However, there
are two problems with this method. First, since Indicator aims to explore the tolerance
of different dimensions to the larger variance, ξ i is expected to be non-negative. Also,
too large a variance σ + ξ, which leads to meaningless sampling, can cause training to
collapse. Therefore, ξ i should be restricted to the interval [0, δ). Second, ξ is the variable in
the distribution N (µ, (σ + ξ)2) and the sampling process is not differentiable.

For the first problem, we design a function ξ i = f (βi), βi ∈ R, ξ i ∈ [0, δ) to eliminate
the constraint on ξ, where β is Indicator parameters. Considering the λ ∑B

i=1 ξ i term in
Equation (6), f () should also satisfy monotonicity. If ξ i can take the minimum value of 0
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when βi = 0, the training of Indicator will benefit from the sparse parameters. Formally,
f () can be defined as:

ξ i = f (βi) = δ · (1− e−β2
i

e−β2
i + 1

) (7)

Among them, f () is monotonically increasing in [0,+∞), monotonically decreasing in
(−∞, 0], and the minimum value is 0 at βi = 0. In order to solve the second prob-
lem, we borrow the reparameterization trick to convert z̃(i) ∼ N (µ(i), (σ + ξ)2(i)) to
z̃(i) = µ(i) + (σ + ξ)(i)ϵ, ϵ ∼ N (0, I) to make ξ differentiable. In summary, the formal loss
function LIndicator is expressed as follows:

Lindicator(β) =Ep(x)[Eq(z|x), q̃(z̃|x)[L2(TM(Dec(z)), TM(Dec(z̃)))]]− λ
B

∑
i=1

f (βi) + ∥β∥2,

q(z|x) = N (µ,σ2), q̃(z̃|x) = N (µ, (σ + f (β))2)

(8)

Finally, the representation dimensions corresponding to the parameters satisfying
|βi| < ψ are considered more relevant by the task model and their indices are recorded,
where ψ is the threshold. The entire training process of the proposed Indicator is shown in
Algorithm 1.

Algorithm 1 Indicator Training

1: Input: Encoder Enc(), Conversion function f (), Decoder Dec(), task model Tm(),
disentangled representation size B, threshold ψ.

2: Output: Dimension index to be retained Index.
3: β← random initialize Indicator parameters
4: for epochs do
5: Random mini-batch X = {x(1), x(2), . . . , x(n)},
6: µ, σ = Enc(X), µ, σ ∈ Rn×B

7: z = µ + σ × ϵ, ϵ ∼ N (0, I)
8: z̃ = µ + (σ + f (β))× ϵ, ϵ ∼ N (0, I)
9: l = Tm(Dec(z)), l̃ = Tm(Dec(z̃))

10: β
update←− min(L2(l, l̃)−

B
∑

i=1
f (βi)) + ∥β∥2

11: end for
12: Index = {}
13: for βi ∈ β do
14: if |βi| < ψ then
15: Index.append(i)
16: end if
17: end for

Figure 5. Illustration of how the indicator works. Indicator searches for the maximum allowable
oscillation range that remains utility for the task model in the B representation dimensions.
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3.4. Data Reconstruction

The disentangled representation encoded by the encoder allows obfuscation of the task-
independent features without changing the task-related features. It is necessary to preserve
the m dimensions marked by Indicator because the task model pays more attention to them.
At the same time, the remaining B−m dimensions, which contribute less to task inference
but contain excessive task-independent information, should be discarded. Theoretically, it
is possible to replace the original values of the B− m dimensions with arbitrary values.
In practice, however, completely random values will make it easier for the transformed
representation to decode ambiguous data, resulting in task-relevant information not
being correctly expressed. Even though the B−m dimensions have nothing to do with
the task model, it is still necessary to be careful when choosing their replacement values.
As shown in the test phase of Figure 4, our method uses an arbitrary sample as a carrier.
It concatenates the B−m dimensions in the carrier representation with the m dimensions
in the original data representation. By reconstructing the data from such a representation,
only the factors that the task model focuses on are credible, while others are confusing.

4. Experimental Study

In this section, we first qualitatively evaluate the proposed Indicator and report the
experimental results. Then, we quantify the privacy–utility trade-offs of our framework
and present a comparison with other popular methods. The following experiments involve
three datasets: dSprites [47], MNIST [48], and CelebA [49]. dSprites contains 737, 280 2D
synthesis samples with 6 attributes. We randomly divide 589, 824 samples for training
VAE family models and Indicators and 147, 456 samples for testing. MNIST contains
grayscale images of 10 classes of handwritten digits, including 60, 000 training samples
and 10, 000 testing samples. CelebA includes 202, 599 face images labeled with 40 binary
attributes, of which 162, 770 images are divided for training and 39, 829 images for testing.
The experiments are conducted on Nvidia GTX 3080Ti GPU in Pytorch.

4.1. Indicator Evaluation

To qualitatively demonstrate the effectiveness of the proposed Indicator, we conduct
experiments on dSprites and MNIST from three perspectives. (a) Versatility: whether the
proposed Indicator can be effectively combined with the various VAEs models. (b) Reliabil-
ity: whether the task model considers the dimensions marked by Indicator. (c) Stability:
whether the Indicator can make the same decision under different initial conditions and
training subsets.

4.1.1. Versatility

To illustrate the versatility, the following experiments are performed on β-VAE, Factor-
VAE, and β-TCVAE, respectively.

4.1.2. Reliability

The verification of the reliability is studied by two experiments. For dSprites and
MNIST, the dimension B of the disentangled representation is set to 10, and the threshold δ
is set to 0.5. For dSprites, a classifier focusing on the X-position is used as the target task
model. For β-VAE, Factor-VAE, and β-TCVAE, Indicator finds 3, 4, and 2 dimensions on
which the target task model focuses. For MNIST, a classifier that distinguishes digits is the
target task model. In the above three VAE models, Indicator finds 3, 4, and 3 task-related
dimensions in the representation.

The first experiment is to interpolate the dimensions marked by Indicator while
freezing the remaining dimensions. Figure 6 visualizes the reconstructed image traversing
the marked dimensions. The first line is the original data, and the second to fifth lines are the
reconstruction of the interpolated representation. On the one hand, the “X-position” that the
task model focuses on changes with the change in the marked representation dimension. On
the other hand, the experimental results show the difference in disentangling performance
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of different VAE schemes. In the second experiment, we fix the dimensions marked by
Indicator and replace the values of the remaining dimensions with 0. Figure 7 shows the
reconstruction of the processed representation. The attribute focused by the target task
model is preserved, while the others become irrelevant to the original data. The above two
experiments show that the task-related dimensions determined by the proposed Indicator
are consistent with the human view, which confirms the reliability of Indicator to a certain
extent. The quantitative measure of reliability can be decomposed into target task accuracy
and the availability of task-independent attributes. Target task accuracy reflects whether the
task-related dimensions are fully selected. The availability of task-independent attributes
is directly proportional to the redundancy of the selected dimensions. Therefore, reliability
is equivalent to the privacy–utility trade-offs of our framework, which will be discussed on
the CelebA dataset in Section 4.2.

(a) dSprites (b) MNIST

Figure 6. Reconstructed image visualization of traversing the representation dimensions marked by
the indicator.



Sensors 2024, 24, 1015 11 of 20

(a) dSprites (b) MNIST

Figure 7. The representation dimensions marked by Indicator are fixed, while the values of the
remaining dimensions are replaced with 0. The above illustrations are reconstructed images based on
these processed representations.

4.1.3. Stability

To illustrate the stability of the proposed Indicator, we perform experiments on
dSprites and MNIST with the same settings as in Section 4.1.2. The train sets of dSprites
and MNIST are divided into 3 subsets, and then Indicator searches for task-related dimen-
sions on each subset with random initial parameters. Figure 8 provides a visualization
of Indicator parameters changing with epochs. In Figure 8, the dimensions that fall into
the yellow area are considered more concerned by the task model. In rows 1 and 2, the
indicators mark the disentangled representations generated from β-VAE. The Indicators in
lines 3 and 4 mark the disentangled representations generated using Factor-VAE. Lines 5
and 6 are Indicator marking the disentangled representations generated using β-TCVAE.
Taking the three subfigures in the first row as an example, the parameters corresponding to
dimensions 4, 8, and 10 in the Indicator eventually converge to the yellow region, while
the rest diverge. This represents that Indicator considers dimensions 4, 8 and 10 as being
attended to by the target task. Under different dataset slices and random initial parameters,
the tendency of Indicators to represent dimensions shows the same trend. This demon-
strates the stability of the Indicator, where the marking process is not affected by the initial
parameters and the division of the dataset. Moreover, the experimental results also support
the conclusion that the same dimensions of the latent code of different samples correspond
to the same information.

Figure 8. Cont.
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Figure 8. The training sets of dSprites and MNIST are divided into 3 subsets, respectively. The above
illustration is the parameter curve obtained by Indicator training on these subsets. In the illustration,
the dimensions that fall into the yellow area are considered more concerned by the task model. In
rows 1 and 2, the indicators mark the disentangled representations generated from β-VAE. Indicators
in lines 3 and 4 mark the disentangled representations generated using Factor-VAE. Lines 5 and 6 are
Indicator marking the disentangled representations generated using β-TCVAE.
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4.2. Privacy–Utility Trade-Offs Evaluation and Comparison
4.2.1. Setup

We design experiments to verify the effectiveness of our framework’s utility–privacy
trade-offs on the real-world dataset CelebA. The images are normalized and resized to
3× 64× 64 for preprocessing. Due to the better disentanglement of β-TCVAE, the β-TCVAE
optimized by GAN is chosen to construct our partial privacy-preserving framework. The
encoder and decoder are optimized using RmSprop, with alpha and eps set to 0.9 and
1× 10−8, respectively. The discriminator is trained using an SGD optimizer, with momentum
and weight_decay set to 0.9 and 1× 10−4, respectively. We train these three components
for 40 epochs with a fixed learning rate of 3× 10−4, and the batch_size is set to 128. The
dimension size of the disentangled representation is set to 128, which represents the output
of the encoder, including 128 means and 128 variances. Indicator is trained using the SGD
optimizer with 0.9 momentum and 1× 10−4 weight_decay for 20 epochs with batch_size
256. The learning rate is set to 1× 10−4. Empirically, we set the hyperparameter λ to 2 and
δ to 1. The classifier trained on the original data with the standard ResNet18 architecture is
considered the task model.

In our experiments, the accuracy of the task model is used to quantify utility. Several
attack models designed to infer privacy attributes are introduced, and we propose two
new metrics as privacy measures. The data processed by the task model and the attack
models come from the reconstruction of the decoder. Despite the introduction of GAN, the
reconstructed data still inevitably loses details. In order to avoid exaggerating the protective
effect of our privacy attribute framework due to the fuzziness of the reconstruction, we
set the easily recognizable attributes as the platform for the privacy utility measurement.
Specifically, we set “Eyeglasses” and “Gender” as the target attributes of the task model,
while enumerating “Wearing_Hat” and “Bald” as the target for the attack models.

4.2.2. Baselines

We choose three classical privacy-preserving schemes that are widely used in the
literature as a baseline against which to compare our framework. A brief description of
these schemes is given below. Gaussian noise obfuscates the raw data by adding Gaussian
noiseN (0, σ2), where σ is set to 0.5 and 1, respectively. Because Gaussian noise can provide
rigorous differential privacy guarantees with less local noise, it is widely used in federated
learning scenarios [30,50]. Laplacian noise is also a classic differential privacy method that
injects Laplacian noise into the raw data according to the privacy budget {0.3, 0.9}. PAN is
a representative framework for adversarial training methods [13]. In the training phase,
PAN simulates adversaries interested in private information to obtain an encoder that can
extract the representation with good utility–privacy trade-offs. In the comparison phase,
the objective function adopts two sets of coefficients {0.1, 0.7, 0.2}, {0.5, 0.3, 0.2} to show its
performance under different privacy budgets.

4.2.3. Evaluation and Comparison

To quantify the data utility maintained by different schemes, the classification accuracy
of the target attribute is measured. Specifically, the two noise injection methods and
our framework use classifiers trained on the raw dataset, while PAN uses the utility
discriminator generated in the adversarial training. In terms of privacy measurement,
the accuracy of the adversarial model’s inference of privacy attributes is not convincing.
This is because the model’s decision is biased and the test set samples may be uneven,
which means that lower accuracy does not necessarily mean better privacy protection.
Taking the “bald” attribute as an example, the uniform random noise with a value in
the range [0, 1] will be 100% judged as not bald by the adversary model with an average
confidence of 0.99. Although these noises are unrelated to the raw data, they will still
achieve 97.88% inference accuracy when considered as a processed private image. In
addition, the confidence difference in the attack models in inferring private images will
reveal additional information compared to inferring random noise. Therefore, we propose
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the average confidence difference Con-Diff and the distribution shift Dis-Shift as the privacy
quantification. The two formulas are defined as follows:

Con_Di f f =
1
N

N

∑
i=1

(AMl(x′(i))(0) − AMl(noise(i))(0)) (9)

Dis_Shi f t =
1
N

N

∑
i=1
|AM(x′(i))− AM(noise(i))| (10)

Among them, AM is the attack model with l layers, x′ represents private images generated
by different methods, and N is the total number of samples in the test set. AMl(·)(0)
indicates the first element output by the AM, and AM(·) represents class 0 or 1. The lower
Con-Diff and Dis-Shift represent that the attack model’s inference on the processed data
privacy attributes is closer to a non-priority guess, which demonstrates better privacy
considerations.

In Figure 9, we use t-SNE [51] to visualize the features learned by the attack model at
layer l-1 to analyze the effectiveness of our framework. The first column is the t-SNE plot of
the original image facing the attack model. The second and third columns show the t-SNE
plot for anonymously transformed reconstruction with “Eyeglasses” and “Gender” as the
task-related attributes. The original data features show significant clustering for the two
task-independent attributes, while the features of anonymously transformed reconstruction
are indistinguishable.

Figure 9. The t-SNE visualization of the AMl−1 output. The first column represents the performance
of the original data in the face of the attack model. The second and third columns are the anonymously
transformed reconstruction performance facing the attack model, with “Eyeglasses” and “Gender” as
the task-related attributes, respectively.

Table 1 shows the evaluation and comparison of different methods on the utility–
privacy trade-offs. It also includes L2 distance to measure the similarity between the
processed image and the original data. “Target Attribute #1” and “Target Attribute #2”
represent “Eyeglasses” and “Gender”, while “Privacy Attribute #1” and “Privacy Attribute
#2” represent “Wearing_Hat” and “Bald”. Injecting Gaussian noise and Laplacian noise
are general methods that will affect all attributes indiscriminately. Therefore, the privacy
protection of these methods will significantly sacrifice its utility. In addition, L2-DIS in-
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dicate that the processed image still has a high similarity to the original data, which will
also lead to the risk of privacy leakage. For the evaluation of PAN, we follow its recom-
mendation on the encoder structure and design 4 convolutional layers, 4 normalization
layers, 2 Maxpooling, and 2 upsampling layers. After 15 epochs of training, PAN achieves
the ideal utility, but more discussion about privacy is necessary. In our experiment, the
attack model for privacy attribute #1 will classify uniform random noise as class “1” with
100% probability, and 3.3% of the samples in the test set are class “1”. At the same time,
the attack model for privacy attribute #2 will infer uniform random noise as class “0” with
100% probability, and 97.9% of the test set are “0” samples. Under different experimental
settings, some samples fool the attack model’s judgment on privacy attribute #1, but have
little effect on privacy attribute #2. Similarly, for these two privacy attributes, the attack
model’s judgments on the encrypted data are closer to its judgments on random noise.
The mechanism of classifiers based on neural networks can be simply described as being
oriented to data distribution. The nonlinear transformation of the original data by the
encoder in PAN essentially causes a distribution shift. From our point of view, this is the
privacy guarantee of PAN. However, there are still a large number of samples that reveal
the privacy attributes. The evaluation of our framework uses the inference results of the
attack model on the carrier as a benchmark. While the reconstructed image retains utility,
there is almost no difference in confidence and distribution shift compared to the carrier.
This shows that the reconstructed image produces a low-level information gain for the
attack model, demonstrating the privacy of our framework. In order to compare different
frameworks more intuitively, we further describe the evaluation results in Figure 10. The
visualization of the reconstructed images shown in Figure 11 supports the evaluation
results. The upper part of each sub-region in Figure 9 are the original images, and the
lower part are the reconstructed images, which retain the target attribute while others still
belong to the carrier. Since the reconstructed images are also facial images, the structure is
similar to the original image. Another advantage of our framework is its flexibility. When
the target or privacy attributes change, our framework needs to retrain 128 parameters, but
PAN needs to retrain 22.44 M.

(a) Comparison on Target Attribute #1 (b) Comparison on Target Attribute #1

Figure 10. Privacy–utility comparison on CelebA. Among them, the y-axis takes the exp(·) of the
evaluation result.

Using the privacy attribute #1 as a platform, we further explore potential attackers
against the baseline methods and our framework. More powerful attack models are trained
using the privacy-edited data as input and combining the ground truth. It should be
noted that these attacks may not be feasible in real-world scenarios, and we aim to explore
whether the above methods can effectively confuse the original data. The experimental
results are reported in Table 2. The new attack models do not perform more effective
attacks against the two noise injection methods and our framework, which shows that the
topological space of the original data is broken. On the contrary, PAN is vulnerable to new
attacks, supporting the suspicion mentioned in Section 1.
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Table 1. Privacy–utility comparison on CelebA.

Methods Target Attribute #1
Privacy Attribute #1 Privacy Attribute #2

L2-DIS
Dis-Shift Con-Diff Dis-Shift Con-Diff

Gaussian noise (σ2 = 0.5) 87.3% 2.45% 6.11× 10−2 0.01% 1.90× 10−2 6.19× 10−4

Gaussian noise (σ2 = 1) 85.5% 0.31% 5.05× 10−2 0.02% 1.85× 10−2 8.04× 10−4

Laplacian noise (λ = 0.3) 87.8% 12.8% 5.51× 10−2 0.03% 1.91× 10−2 5.82× 10−4

Laplacian noise (λ = 0.9) 85.0% 3.53% 3.49× 10−2 0.01% 1.80× 10−2 8.06× 10−4

PAN (#1, (0.1, 0.7, 0.2)) 99.1% 50.7% 4.72× 10−1 0.05% 1.33× 10−4 1.52× 10−3

PAN (#1, (0.5, 0.3, 0.2)) 99.3% 37.3% 3.53× 10−1 0.02% 1.89× 10−4 1.95× 10−3

PAN (#2, (0.1, 0.7, 0.2)) 99.4% 41.4% 4.12× 10−1 0.02% 3.49× 10−4 1.26× 10−3

PAN (#2, (0.5, 0.3, 0.2)) 99.5% 16.1% 2.73× 10−1 0.05% 3.18× 10−4 1.69× 10−3

Our framework (ψ = 0.3) 93.1% 0% 1.32 × 10−6 0% 0 9.86 × 10−4

Our framework (ψ = 0.5) 95.0% 0% 1.81 × 10−6 0% 0 8.96 × 10−4

Our framework (ψ = 0.7) 94.6% 0% 1.44 × 10−6 0% 0 8.44 × 10−4

Our framework (ψ = 1) 94.6% 0% 3.15 × 10−6 0% 2.60 × 10−10 7.52 × 10−4

Methods Target Attribute #2
Privacy Attribute #1 Privacy Attribute #2

L2-DIS
Dis-Shift Con-Diff Dis-Shift Con-Diff

Gaussian noise (σ2 = 0.5) 64.0% 2.45% 6.11× 10−2 0.01% 1.90× 10−2 6.19× 10−2

Gaussian noise (σ2 = 1) 55.8% 0.31% 5.05× 10−2 0.02% 1.85× 10−2 8.04× 10−4

Laplacian noise (λ = 0.3) 65.4% 12.8% 5.51× 10−2 0.03% 1.91× 10−2 5.82× 10−4

Laplacian noise (λ = 0.9) 53.7% 3.53% 3.49× 10−2 0.01% 1.80× 10−2 8.06× 10−4

PAN (#1, (0.1, 0.7, 0.2)) 96.1% 46.9% 4.47× 10−1 0.15% 2.20× 10−4 1.05× 10−3

PAN (#1, (0.5, 0.3, 0.2)) 97.0% 43.3% 3.34× 10−1 0.22% 3.69× 10−4 1.05× 10−3

PAN (#2, (0.1, 0.7, 0.2)) 96.8% 28.5% 3.45× 10−1 0.27% 2.28× 10−4 1.06× 10−3

PAN (#2, (0.5, 0.3, 0.2)) 97.0% 35.6% 3.93× 10−1 0.15% 2.45× 10−4 1.05× 10−3

Our framework (ψ = 0.3) 84.0% 0.02% 1.65 × 10−6 0% 0 7.41 × 10−4

Our framework (ψ = 0.5) 86.9% 0.03% 1.60 × 10−6 0% 0 5.56 × 10−4

Our framework (ψ = 0.7) 88.6% 0.05% 4.09 × 10−6 0.12% 1.03 × 10−7 3.29 × 10−4

Our framework (ψ = 1) 89.5% 0.78% 1.61 × 10−4 0.40% 2.92 × 10−5 2.21 × 10−4

Figure 11. The above illustrations are facial images whose task-independent attributes are confused.
The upper part takes “Eyeglasses” as the task-related attribute, and the bottom part, “Gender” is
regarded as the task-related attribute.

To further show the effectiveness of our framework, we also use SVM for experiments.
We choose the RBF kernel function, use libsvm to set the hyperparameters and let the latent
code be the input. Evaluation results are shown in Table 3.
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Table 2. Search for potential attacker.

Methods
Dis-Shift

(Original Attacker)
Dis-Shift

(Potential Attacker)

Gaussian noise (σ2 = 0.5) 2.45% 3.76%
Gaussian noise (σ2 = 1) 0.31% 3.51%
Laplacian noise (λ = 0.3) 12.8% 4.44%
Laplacian noise (λ = 0.9) 3.53% 3.14%
PAN (0.5, 0.3, 0.2) 43.3% 95.52%
PAN (0.1, 0.7, 0.2) 46.9% 96.74%
Our framework (ψ = 0.5) 0.03% 0.05%
Our framework (ψ = 1) 0.78% 0.91%

Table 3. Evaluating privacy–utility on CelebA via SVM.

Method Target Attribute #1 Privacy Attribute #1 Privacy Attribute #2

Our framework (ψ = 0.3) 84.3% 43.1% 54.2%
Our framework (ψ = 0.5) 85.9% 46.3% 55.6%
Our framework (ψ = 0.7) 87.2% 48.4% 56.9%
Our framework (ψ = 1) 87.5% 50.3% 58.4%

Method Target Attribute #1 Privacy Attribute #1 Privacy Attribute #2

Our framework (ψ = 0.3) 72.5% 44.5% 54.6%
Our framework (ψ = 0.5) 73.2% 47.8% 55.8%
Our framework (ψ = 0.7) 73.7% 47.7% 57.2%
Our framework (ψ = 1) 74.1% 48.4% 59.1%

Based on the above experimental results, on the one hand, it can be observed that
our framework can be more effective against potential attackers compared to adversarial
training based PAN. On the other hand, our framework maintains better data availability
as well as privacy of task-independent attributes compared to the noise adding approach.

5. Discussion and Conclusions

In this work, we design an Indicator to indicate the region of interest of the target
task model on the disentangled representation. By retaining the information necessary
for the target task through Indicator, we further construct a privacy-preserving prediction
framework that respects the task-independent attributes. Evaluations on multiple standard
datasets show that our framework achieves competitive utility–privacy trade-offs.

However, our framework has not yet reached the ideal situation of preserving all
utility and protecting all privacy. On the one hand, our framework partially loses accuracy
in the target task. On the other hand, the attacker’s accuracy in inferring privacy attributes
is higher than the guess without prior knowledge. We speculate that there are two reasons:
(a) the quality of the reconstructed image limits the utility; (b) there is information overlap
between the different representation dimensions, leading to sensitive information leakage.
These are also problems that we hope to solve in the future.
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