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Abstract: Accurately extracting pixel-level buildings from high-resolution remote sensing images is
significant for various geographical information applications. Influenced by different natural, cultural,
and social development levels, buildings may vary in shape and distribution, making it difficult for
the network to maintain a stable segmentation effect of buildings in different areas of the image. In
addition, the complex spectra of features in remote sensing images can affect the extracted details of
multi-scale buildings in different ways. To this end, this study selects parts of Xi’an City, Shaanxi
Province, China, as the study area. A parallel encoded building extraction network (MARS-Net)
incorporating multiple attention mechanisms is proposed. MARS-Net builds its parallel encoder
through DCNN and transformer to take advantage of their extraction of local and global features.
According to the different depth positions of the network, coordinate attention (CA) and convolutional
block attention module (CBAM) are introduced to bridge the encoder and decoder to retain richer
spatial and semantic information during the encoding process, and adding the dense atrous spatial
pyramid pooling (DenseASPP) captures multi-scale contextual information during the upsampling
of the layers of the decoder. In addition, a spectral information enhancement module (SIEM) is
designed in this study. SIEM further enhances building segmentation by blending and enhancing
multi-band building information with relationships between bands. The experimental results show
that MARS-Net performs better extraction results and obtains more effective enhancement after
adding SIEM. The IoU on the self-built Xi’an and WHU building datasets are 87.53% and 89.62%,
respectively, while the respective F1 scores are 93.34% and 94.52%.

Keywords: high-resolution remote sensing imagery; building extraction; deep convolutional neural
network (DCNN); transformer; spectral enhancement

1. Introduction

Buildings, as essential places for daily life and production for people, are crucial
carriers for showcasing urban culture, history, and modernization levels. It is also an
integral component of urban basic geographic information construction. At the same
time, the reasonable layout of buildings has a crucial impact on urban development,
environmental construction, and people’s lives. The construction, demolition, renovation,
expansion, and other activities also reflect the potential for growth in a particular area [1–3].
Therefore, extracting accurate building data plays a crucial role in urban planning and
development [4,5], land use change detection [6], national defense construction [7], disaster
prevention and mitigation [8], environmental protection [9], and other aspects.

With the rapid development of high-resolution sensor technology and equipment, the
acquisition of remote sensing images (RSIs) has become more flexible and efficient, and the
spectral and spatial resolutions have been further improved. These mean richer information,
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sharper detail in the imagery, and a high-quality data source for more accurate building
extractions [10]. However, extracting building information from high-resolution RSIs also
brings more challenges to image interpretation. Due to the large amount of information and
comprehensive coverage of high-resolution RSIs, as well as the diversity in building spectral
characteristics, scale, morphology, etc., accurately and efficiently extracting buildings from
high-resolution RSIs remains a vital research direction [11,12]. As a result, there is a need
for more automated, accurate, and efficient image interpretation methods to match this,
and the significant emergence of high-resolution remote sensing image data also leads to a
shift towards a data-intensive scientific paradigm in earth observation research.

Deep learning can automatically extract the required features and uncover more
in-depth information about objects. It is an inheritance and development of traditional
machine learning techniques, bringing new solutions to the semantic segmentation tasks for
building extraction in remote sensing images [13]. It is worth noting that classic deep learn-
ing networks, the U-shaped network (U-Net) [14] and the residual network (ResNet) [15],
have achieved significant segmentation results. Inspired by their structures, many scholars
have made network improvements based on them or simultaneously deepened the network
structure to construct deep convolutional neural networks (DCNNs) for extracting deeper
features of buildings. Jin et al. [16] combined the dense atrous spatial pyramid pooling
(DenseASPP) [17] with the U-Net structure to build the bilateral attention refinement net-
work (BARNet), which can refine the perception of building boundaries. Xu et al. [18]
used ResNeXt101 to replace the encoder part of U-Net and combine it with a feature
pyramid to fuse multi-scale features to improve the building segmentation accuracy for
small sample datasets. Yu et al. [19] added a recurrent, residual deformable convolution
unit based on the U-Net structure and blended in enhanced multi-head self-attention dur-
ing the jump connection process to improve the network’s extraction details for complex
buildings. Aryal et al. [20] incorporated multi-scale feature maps with a partial feature
pyramid network into the U-Net framework to achieve higher precision and robustness in
building extraction. DCNN has become the mainstream method for automatic building
extraction [21]. Still, its small and fixed field of view, which focuses more on local context
information, limits the deep learning network from extracting building features in complex
backgrounds of high-resolution remote sensing images.

In recent years, the transformer architecture can capture global context information
and long-range dependencies between pixels, providing new technical support for building
extraction. Swin transformer [22] achieves attention operation and information sharing in a
single window. Networks such as the segmentation transformer (SETR) [23], the semantic
segmentation with transformers (SegFormer) [24], and the Unet-like pure transformer
(Swin-Unet) [25] adopt a pure transformer structure and have achieved good segmentation
results. However, while the transformer can capture global information, the advantage
of local feature extraction via convolutional neural networks (CNNs) cannot be replaced
entirely [26]. UNet-like transformer (UNetFormer) [27] uses a lightweight ResNet18 as the
encoder, combined with a transformer-based decoder to extract global and local features.
Zhang et al. [28] used the Swin transformer as the encoding structure. They constructed
DCNN as the decoding structure to improve the segmentation effectiveness of the building
boundaries in very high-resolution RSIs. Wang et al. [29] proposed a multiscale transformer
with the convolutional block attention module (MTCNet), which combined the convo-
lutional block attention module (CBAM) [30] and transformer to improve the network’s
segmentation performance for buildings in RSIs. He et al. [31] proposed utilizing the Swin
transformer to assist UNet (ST-UNet) for feature extraction in RSIs, which uses U-Net
as the primary encoder and the Swin transformer as an auxiliary encoder. The network
also uses a designed relational aggregation module (RAM) to guide the primary encoder
with channel relationships, thereby improving the network’s global modeling capabilities.
Li et al. [32] added multiple transposed convolution sampling modules in SegFormer to
enhance the local and long-range detail on building information. Xia et al. [33] constructed a
dual-stream feature extraction encoder based on ResNet34 [15] and Swin transformer. They
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performed feature aggregation at each network stage, effectively enhancing the network’s
capability for building extraction. However, despite the many advantages of transformers
in building extraction, their complexity still needs to be improved. Their performance may
not be ideal in cases where the training dataset is small. Additionally, due to the complex
background information in high-resolution RSIs, extracted buildings may be similar to and
adjacent to surrounding roads, leading to the need for mitigation of false positives and
false negatives. Therefore, further research on leveraging the advantages of DCNNs in
local feature extraction and the global information-capturing capabilities of transformers is
of significant importance for building extraction in high-resolution remote sensing images.

The effectiveness of deep learning networks largely depends on the diversity and
quality of the dataset for effective building extraction. The differences in building forms
and distributions across different regions further increase the difficulty of semantic seg-
mentation tasks for buildings. Currently used open-source building datasets include the
aerial image segmentation dataset [34], WHU building dataset [35], INRIA aerial image
dataset [36], Massachusetts buildings dataset [37], etc. These building datasets were ob-
tained through aerial photography and have high resolution, such as the 0.075 m resolution
of the aerial image segmentation dataset and the 0.3 m resolution of the WHU building
dataset. They have diverse architectural styles covering Europe, East Asia, the United
States, and New Zealand. However, the current building dataset contains few images
of architectural styles within China, and most are three-band images (red (R), green (G),
and blue (B) datasets). Further exploration of the spectral information of the images is
still needed to complement semantic segmentation networks for more accurate building
extraction work.

To address the abovementioned issues further and improve the extraction perfor-
mance of multi-scale buildings under different data sources, this paper explores combining
transformer with DCNN and further mining the spectral information of high-resolution
RSIs. Based on the U-Net architecture, we employed a parallel encoder of Swin transformer
and ResNet to extract building feature information at various scales simultaneously using
advantageous local and global extraction methods. To enhance the recognition capability
of local blurry features in remote sensing images, we introduced the DenseASPP module
in the decoding process and combined it with the feature information obtained from skip
connections. Various attention mechanisms were also introduced in the skip connection
process at different stages of the network to capture and retain the positional and semantic
feature information of the downsampled feature maps. In addition, this study also con-
structed the SIEM module to enhance the spectral information of RSIs and further improve
the accuracy of building extraction. We selected part of Xi’an City, Shaanxi Province, China,
as the study area and used Gaofen-2 satellite (GF-2) images for the Xi’an building dataset.
The study area contains buildings of various forms, distributions, and scales, providing a
dataset of buildings with the characteristic architectural style of Xi’an. The dataset includes
images with R, G, B, and near-infrared (NIR) bands, which can provide data support for
various spectral processing methods.

The contributions of this paper mainly include the following aspects:

(1) We used high-resolution satellite images from GF-2 to construct the Xi’an building
dataset, which includes complex background information and features various build-
ing forms, distributions, and scales. This dataset enriches the diversity of datasets used
for building extraction and presents more challenges for building extraction networks.

(2) We designed an effective building extraction network, MARS-Net, to improve the
extraction performance of buildings with different architectural characteristics in
different regions. We compared MARS-Net with other building extraction methods
on our self-built Xi’an building dataset and the WHU building dataset, and con-
ducted ablation experiments, demonstrating the effectiveness and generalization of
the proposed network in this study.

(3) Using the Xi’an building dataset, we propose a spectral information enhancement
module to enhance the relationships between bands of high-resolution remote sensing
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images and provide them with reinforced building shape information. Through
experiments, it is demonstrated that this module can effectively enhance the extraction
of buildings in complex backgrounds by semantic segmentation models.

The rest of this paper is organized as follows: Section 2 mainly introduces the design
of the proposed method. Section 3 presents the building dataset constructed for this study,
the comparative datasets used in the experiments, the primary parameter settings, and
the selection of evaluation metrics. It reports the results of the network’s comparative
and ablation experiments and conducts experimental analysis of the SIEM module after
validating the effectiveness of the network. Section 4 discusses the work carried out in this
paper. Section 5 summarizes the entire paper and looks forward to future work.

2. Materials and Methods
2.1. Network Architecture Overview

Multi-scale fusion analysis refers to the high-level network acquiring detailed infor-
mation in the image and the low-level network obtaining deep-layer information [38].
Therefore, when constructing the network, considering different perspectives in the struc-
ture to integrate multi-scale details of the image can enable better recognition of target
information in remote sensing images. Based on this, we propose MARS-Net, as shown in
Figure 1.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 23 
 

 

different regions. We compared MARS-Net with other building extraction methods 
on our self-built Xi’an building dataset and the WHU building dataset, and con-
ducted ablation experiments, demonstrating the effectiveness and generalization of 
the proposed network in this study. 

(3) Using the Xi’an building dataset, we propose a spectral information enhancement 
module to enhance the relationships between bands of high-resolution remote sens-
ing images and provide them with reinforced building shape information. Through 
experiments, it is demonstrated that this module can effectively enhance the extrac-
tion of buildings in complex backgrounds by semantic segmentation models. 
The rest of this paper is organized as follows: Section 2 mainly introduces the design 

of the proposed method. Section 3 presents the building dataset constructed for this study, 
the comparative datasets used in the experiments, the primary parameter settings, and the 
selection of evaluation metrics. It reports the results of the network’s comparative and 
ablation experiments and conducts experimental analysis of the SIEM module after vali-
dating the effectiveness of the network. Section 4 discusses the work carried out in this 
paper. Section 5 summarizes the entire paper and looks forward to future work. 

2. Materials and Methods 
2.1. Network Architecture Overview 

Multi-scale fusion analysis refers to the high-level network acquiring detailed infor-
mation in the image and the low-level network obtaining deep-layer information [38]. 
Therefore, when constructing the network, considering different perspectives in the struc-
ture to integrate multi-scale details of the image can enable better recognition of target 
information in remote sensing images. Based on this, we propose MARS-Net, as shown in 
Figure 1. 

 
Figure 1. The architecture of MARS-Net overview architecture. 

The network comprises an encoder, decoder, and skip-connection parts, combined 
with DCNN, transformer, and attention mechanism to collect context information of dif-
ferent scales in various network parts, enhancing the ability to learn building features. The 
encoder part consists of a parallel backbone structure of ResNet50 [15] and Swin-T (Tiny) 
[22], which collectively extract shallow features of buildings. The introduction of the 
DenseASPP module in the decoder obtained a larger receptive field, allowing the network 
to acquire semantic feature information densely over a more extensive scale range. 

Figure 1. The architecture of MARS-Net overview architecture.

The network comprises an encoder, decoder, and skip-connection parts, combined
with DCNN, transformer, and attention mechanism to collect context information of dif-
ferent scales in various network parts, enhancing the ability to learn building features.
The encoder part consists of a parallel backbone structure of ResNet50 [15] and Swin-T
(Tiny) [22], which collectively extract shallow features of buildings. The introduction of the
DenseASPP module in the decoder obtained a larger receptive field, allowing the network
to acquire semantic feature information densely over a more extensive scale range. Adding
skip connections between the encoder and decoder. Incorporating coordinate attention
(CA) [39] in shallow-level skip connections to capture more spatial location features. Us-
ing the CBAM module in deep-level skip connections to capture more semantic features
achieves a balance between feature channel and spatial dimensions.
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2.1.1. Parallel Encoding Architecture

The encoding part of MARS-Net consists of a parallel encoder with ResNet50 and
Swin-T backbone networks. The ResNet50 backbone leverages the advantages of DCNN
for extracting features of small and dense buildings. In contrast, the Swin-T backbone uses
its capability to capture global contextual features to enhance the network’s ability to obtain
building feature information in different backgrounds.

The ResNet50 backbone network in MARS-Net is shown on the left in Figure 1. First,
the feature maps will pass through a 7 × 7 convolutional layer and a 3 × 3 max pooling layer.
The 7 × 7 kernel size is set to increase the receptive field, preserving global information and
semantic associations with neighboring features at the input layer to the network, as well as
establishing complex spatial relationships, thereby improving network performance. The
following four stages are each composed of residual blocks, as depicted by the structure
of submodules shown in Figure 2. The ResNet50 uses residual blocks with the following
structure numbers: 3, 4, 6, and 3, respectively. It also uses multiple convolutional kernels for
feature extraction, providing high flexibility [15]. The direct flow of information between
layers enhances the network’s representative capability, enabling the construction of deeper
DCNN networks that can better extract local architectural details.
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Figure 2. Residual blocks. On the left is the identity block structure, and on the right is the con-
volutional block structure. They utilize batch normalization (BN) to expedite training and employ
the ReLU activation function. The dashed line connections were dimensionally processed using
1 × 1 convolutional kernels. The solid arrow is the standard feature information transfer process. The
dashed arrows indicate that the transfer process is the shortcut connection process, which enables the
cross-layer transfer of feature information.

The Swin-T encoder in MARS-Net is shown on the left side in Figure 1. The input
feature map is first divided into adjacent pixels and flattened in the channel direction
by the patch partition layer. Then, each pixel’s channel data are linearly transformed by
the linear embedding layer, followed by obtaining new feature representations through
a fully connected layer. In the following three parts, the patch merging layer is used for
down-sampling and preventing loss of feature information by concatenating pixels. The
Swin transformer block is shown in Figure 3a. Under the Swin-T configuration, there are
six sets in Stage 3 and two sets in the other Stages.
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The computational process of the window multi-head self-attention (W-MSA) and
shifted window multi-head self-attention (SW-MSA) introduced in the Swin transformer
block is shown in Figure 3b. In W-MSA, the feature map in Figure 3b is divided into
2 × 2 windows, and independent self-attention calculations are performed in each patch.
SW-MSA shifts the window of W-MSA to the bottom right corner by two units to obtain
nine new windows. Then, the orange window block A, the green window block B, and the
blue window block C in Figure 3b are moved to the bottom right corner of the dashed box
to obtain new 2 × 2 windows. To avoid the issue of feature information disorder caused by
window shifting, a masked MSA is used for masking operations, as shown in the purple
area in Figure 3b, to isolate information from different areas and enhance the ability of
blocks to extract global features within the image.

2.1.2. Dense Atrous Spatial Pyramid Pooling Module

Due to the more complex background information in high-resolution RSIs and the
increased depth of feature extraction in the network encoder, the original U-Net decoder
cannot effectively meet the requirements for feature information upsampling and concate-
nation. Also, it fails to capture the detailed boundary information of the buildings fully.
This study incorporates a DenseASPP structure into the feature decoding part to capture
and integrate multi-scale contextual information during upsampling. This improves the
network’s multi-scale building edge feature extraction.

Atrous spatial pyramid pooling (ASPP) gathers pixel-level feature information through
different grid scales and sampling rates [40]. Significant dilation rates are needed to achieve
a larger receptive field in ASPP. However, as the dilation rates increase, the convolution will
gradually become ineffective, weakening the recovery effect of building feature informa-
tion [41]. In this study, the DenseASPP is used as the pooling structure before concatenating
with the skip-connected feature information, aiming to restore and generate dense building
features over a larger area during the upsampling process, as shown in the decoding section
on the right side of Figure 1. The final output feature map of DenseASPP covers semantic
feature information not only over a large scale, but also in a very dense manner. Due to the
varying degrees of spatial and semantic information loss at different depths in the feature
maps generated by the decoder, this study selects dilation rates (d) of 3, 6, 12, 18, and 24
for the five different atrous convolutional layers. The output features of each convolution
layer are spliced together in parallel and cascade to recover the lost spatial and semantic
information of the building, as shown in Figure 4.
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2.1.3. Coordinate Attention

Coordinate attention (CA) uses two one-dimensional global pooling operations to ag-
gregate the input features in the vertical and horizontal directions independently, resulting
in two separate direction-aware feature maps. These two feature maps embedding specific
directional information are encoded as two attention maps. Each captures long-range
dependencies along a spatial direction of the input feature maps. As a result, the location
information is held in the generated attention map. The two attention maps are combined
into the input feature map to enhance the symbolic power of the feature map [39]. Figure 5
shows the structure of CA.
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Figure 5. The architecture of coordinate attention. The input feature maps are first average-pooled
along the X and Y directions separately, then concatenated. The resulting feature map undergoes
batch normalization (BN) and non-linear regression and is then split. Finally, the attention vector
is obtained by combining it with a sigmoid activation function. The symbol “C” represents the
concatenation operation of the feature map.

As the network layers deepen, the semantic feature information of the feature maps
will continuously increase, while the spatial positional feature information of the feature
maps will gradually diminish. Therefore, we designed this module as skip connections
in the first layer, which has more spatial data, to collect more spatial feature information
during the downsampling process and apply it to the upsampling process to reduce the
loss of local semantic feature details in the image.

2.1.4. Convolutional Block Attention Module

The CBAM module comprises two sub-attention modules: the channel attention mod-
ule (CAM) and the spatial attention module (SAM), which pay attention to the channel and
spatial dimensions, respectively. Since the middle and deeper layers of the network contain
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rich spatial information and semantic feature information, we designed skip connections in
the form of the network at the second and third layers, as shown in Figure 1. Such a struc-
ture enables CBAM to compute weights with the help of assignments in the channel and
spatial dimensions sequentially, thus placing more emphasis on building target features [30].
While weakening the influence of background data, it improves the building prediction
ability of the network and guarantees the stability of the model operation. CBAM first
applies global max pooling and global average pooling operations to the surface feature
data in the channel dimension. Then, using a fully connected layer, it assigns weight to the
feature vector, enhancing the feature information in the channel dimension. Afterward, in
the spatial dimension, the feature vector obtained from the channel domain is subjected to
max pooling and average pooling compression to obtain a two-dimensional feature vector.
Finally, convolution is used to assign weights to enhance the feature information of the
building. Figure 6 shows the architecture of CBAM.
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Figure 6. The architecture of the convolutional block attention module. The symbol “C” represents
the concatenation operation of the feature map.

2.1.5. Loss Function

This paper uses the Dice loss [42] as the network’s loss function. It measures the
accuracy of the prediction by calculating the overlap between the segmented pixels and the
labeled pixels, thus assisting the model in coping with the imbalance between the number
of buildings and background pixels in the image. The formula of Dice loss is defined as:

Ldice = 1 − 2|Pred ∩ GroundTruth|
|Pred|+ |GroundTruth| , (1)

where Pred represents the predicted set of building pixels, and Ground Truth represents the
set of pixels for building labels.

2.2. Spectral Information Enhancement Module
2.2.1. Module Architecture Overview

High-resolution RSIs have a large amount of information and possess high spectral
and spatial resolution. To further explore the spectral information and improve the segmen-
tation effect of buildings in the network, we propose SIEM inspired by [43], as shown in
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Figure 7. This module uses the R, G, B, and NIR bands of high-resolution RSIs to calculate
the morphological building index (MBI) and band ratios. Then, it performs the ReliefF
operation on the band ratios, R, G, B, and NIR, to select the six bands with the highest
weights. SIEM stacks the screening results with MBI, and the stacked images are then fused
using maximum noise fraction (MNF) operation for dimensionality reduction. In the end,
we can obtain an enhanced image with more emphasis on the band relationship and the
morphological information of the buildings.
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2.2.2. Spectral Information Expansion Combined with Near-Infrared Band Ratios

The imagery typically input into a deep learning network is divided into the R, G, and
B bands, and convolution operates using the pixels and surrounding information within
the same band. It is only after addition that information from other bands is involved.
Therefore, only single-band information is sensed during the convolution process without
emphasizing the interrelationships between bands. In response to this issue, [43] proposed
a red–blue band ratio enhancement operation based on normalized vegetation index to
enhance the computer’s understanding of relationships between bands. However, this
method only involves the relationship between red and blue bands. To further emphasize
the inter-band relationships and improve the network’s recognition of semantic features
of buildings, we propose a ratio-weighted method for R, G, B, and NIR based on our self-
built Xi’an dataset and its characteristics in the near-infrared band. This method involves
pairwise ratio operations among these four bands, followed by using the ReliefF [44]
feature selection algorithm to assign different weights to the features and select six bands
with higher weight coefficients for synthesizing spectral information between multi-band
images. The calculation for the inter-band ratio is as follows:

Gmn(i, j) = 0.5 × (
bm(i, j)− bn(i, j)
bm(i, j) + bn(i, j)

) + 0.5, (2)

where (i, j) represents the coordinates of the pixel point in the image, mn represents the
combination of two different bands, Gmn(i, j) represents the ratio of band m and band n at
point (i, j), and bm(i, j) represents the value at point (i, j) on band m. The coefficients and
constant term are set to 0.5 to ensure that the range of values is between 0 and 1.

2.2.3. Spectral Information Enhancement Based on Morphological Building Index

Using morphological building index (MBI) with R, G, B, and NIR image data results
in better performance than using only R, G, and B band image data [45]. Accordingly,
we calculated the MBI on our self-built Xi’an building dataset and concatenated it with
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several ratio bands with larger weights selected by ReliefF. Then, we used the MNF
algorithm to fuse and reduce the dimensionality of the concatenated image. This allows
each band to have rich spectral information while having more robust building morphology
characteristics, thereby enhancing the spectral information of the image and improving the
effectiveness of network segmentation of buildings.

The calculation method of MBI is typically based on the grayscale levels or color
information in the image, combined with morphological operations (such as erosion,
dilation, opening, closing, etc.) to extract the morphological features of buildings. First,
calculate the brightness value of the image. The spectral band’s maximum value represents
the feature’s high reflectance characteristics. So, the brightness value is taken as the
maximum value of each pixel in all bands, which is defined as follows:

b(x) = max
1≤i≤K

(bandi(x)), (3)

where bandi(x) represents the spectral value of pixel x in the i band, b(x) is the brightness,
and K is the total number of bands. Then, morphological white top-hat reconstruction is
performed, which first uses the structuring element s to perform opening operation on the
image b, which is expressed as follows:

γs(b) = δs(εs(b)), (4)

where γS(b) represents the result of the opening operation, ε denotes the erosion operation,
δ indicates the dilation operation, and s represents the size of the structuring element (i.e.,
the size of the convolutional kernel). The white top-hat transformation is performed on the
result of the opening operation, which is defined as follows:

THRs(b) = b − γs
RE(b), (5)

where THR stands for top-hat by reconstruction, and γRE represents opening by recon-
struction. THR reflects the brightness differences within the structural element region
and between adjacent objects, so the features related to structural contrast are included
in the THR feature. In directional aspects, MBI distinguishes from the road by detecting
objects’ anisotropy and linear structural elements in multiple directions. It focuses on
extracting buildings through multi-directional morphological scale reconstruction with the
following formula:

THRs
(b) = mean(THRs.dir(b))

dir
, (6)

where dir represents the directional nature of the structuring element, and the average value
represents the multi-directional information of THR. Multi-scale information of the image
is extracted using the granulometry determination method of the white-top reconstruction,
with the following formula:

THRDMP =
{

THRSmin

DMP, · · ·, THRS
DMP, · · ·, THRSmax

DMP

}
THRS

DMP =
∣∣∣THRS+∆S

(b)− THRS
(b)

∣∣∣
Smin ≤ S ≤ Smax

, (7)

where ∆S represents the interval of particle determination, THRDMP stands for multi-scale
THR (i.e., a collection of differential morphological profiles (DMP)), and THRS

DMP repre-
sents the differential morphological profile with parameter S. With the above calculations,
the brightness, contrast, directionality, and size characteristics of the image are processed
separately. Thus, the MBI value can be obtained by averaging the four implicit features of
buildings contained in THRDMP, which is defined as follows:

MBI =mean
s

(THRDMP) (8)
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3. Experiments and Results
3.1. Dataset Details
3.1.1. Study Area

Based on the high-resolution RSIs from China’s GF-2 within the third ring road of
Xi’an, Shaanxi Province, China, as shown in Figure 8, we delineated seven areas in sequence
based on the density of buildings (areas a–g in Figure 8) for the study. Xi’an is located in
the Guanzhong Basin in the central part of the Yellow River basin in China, and it has a
warm temperate, semi-humid continental monsoon climate. Due to its large population
and rapid development, Xi’an exhibits a higher density of buildings in the study area
than the WHU building dataset. The buildings vary in scale, have complex forms, and
are primarily long rectangles or squares. Similarities and adjacency between roads and
buildings are also common, as shown in Figure 9. The complex background information,
multi-scale building morphology, and dense building distribution characteristics in the
study area have placed higher demands on the extraction accuracy and generalization of
building extraction algorithms.
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Figure 8. Study area. The red, orange, and green boxes on the right image indicate that the distribution
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building areas; d and e are mid-density building areas; f and g are sparse building areas.

The images in the Xi’an building dataset have a cloud coverage of 0 with a spatial
resolution of 0.8 m panchromatic and 3.2 m multispectral, obtaining an image with a
spatial resolution of 1 m after image preprocessing, stitching, cropping, mosaicing, and
fusion operations. We processed the images into the R, G, and B three-band images
while also generating four-band images containing R, G, B, and NIR for the subsequent
testing experiments with the SIME module. The Xi’an building dataset covers an area
of approximately 163 km2 and includes labels for over 35,000 buildings. We used the
sliding window method; images and labels were cropped at a 0.35 overlap rate and a size
of 512 × 512, resulting in 1662 images and labels. They will also expand to 8310 sheets
through data enhancement operations such as pretzel noise, left–right flip, up–down flip,
and diagonal mirroring. The Xi’an building dataset consists of 5567 images for training,
1413 images for validation, and 1330 images for testing. The training, validation, and test
sets all contain urban buildings of varying densities in study areas a–g.

3.1.2. WHU Building Datasets

To further analyze the network’s performance and validate the building dataset’s
quality and reliability. We also used the WHU Aerial Building Imagery dataset. The
WHU building dataset was proposed in 2018, which is more recent in time, and the WHU
dataset with high image resolution and labeling accuracy has been used by many teams in
building segmentation experiments in recent years [46–48]. Therefore, this study chose the
WHU building dataset as the public dataset. This dataset consists of aerial imagery from
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Christchurch, New Zealand, with an original spatial resolution of 0.3 m, including R, G,
and B channels. It covers an area of 450 km2 and contains approximately 22,000 individual
buildings. It has 8189 images of 512 × 512 pixels, of which 4736 images are for the training
set, 2417 images for the test set, and 1036 images for the validation set.
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Figure 9. Examples of building forms, scales, and distributions in the Xi’an building dataset and the
WHU building dataset: (a) buildings with different scales, forms, and spectral characteristics in the
study area; (b) multi-scale buildings densely distributed in the study area, similar to the complex
streets around them; (c) typical buildings in the WHU dataset.

3.2. Experimental Settings and Evaluation Indicators

All experiments in this research were conducted on a Linux operating system, using
an NVIDIA GeForce RTX 3090 GPU with 24 GB of memory, programmed in Python 3.7.
The deep learning framework used was PyTorch 1.8.1, and the GPU computing platform
was CUDA 11.1. The network used the Adam optimizer [49] with an initial learning rate of
0.0001. The models were trained with six images per batch and 100 epochs.

To test the effectiveness and accuracy of the various networks, the experiment selected
six metrics, including the overall accuracy (OA), Kappa coefficient (Kappa), intersection
over union (IoU), recall, precision, and F1 score, to evaluate the networks‘ classification
performance. OA reflects the proportion of correctly classified pixels to the total pixels.
At the same time, the Kappa coefficient, which is further calculated based on OA, is used
to examine the consistency between the network‘s predicted results and the actual label
results. IoU is the ratio of the intersection area of the predicted result and the ground
truth annotation to the union area. Recall measures whether there are any omissions in
the results. Precision measures whether there are any false positives in the results. The F1
score can consider the classification results’ precision and recall. The calculations for each
indicator are defined as follows:

OA =
TP + TN

TP + TN + FP + FN
, (9)

Kappa =
OA − Pe

1 − Pe
, (10)

Pe =
(TP + FP)× (TP + FN) + (TN + FN)× (TN + FP)

(TP + TN + FN + FP)2 , (11)
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IoU =
TP

TP + FP + FN
, (12)

Recall =
TP

TP + FN
, (13)

Precision =
TP

TP + FP
, (14)

F1 =
2(Precision × Recall)

Precision + Recall
, (15)

where TP represents the number of correctly classified building pixels, FP represents the
number of falsely detected building pixels, TN represents the number of correctly classified
background pixels, and FN represents the number of missed building pixels.

3.3. Network Experimental Results and Analysis

To evaluate the performance of the MARS-Net proposed by us in the building semantic
segmentation task, we conducted comparative experiments and ablation experiments on
the WHU building dataset, which, like our Xi’an building dataset, consists of images with
R, G, and B three bands. The comparative experiments compared MARS-Net with several
mainstream DCNN and transformer networks, including U-Net, ResUNet++ [50], Deeplab
v3+ [51], Swin-Unet, and UNetFormer.

3.3.1. Comparative Experiments on the Xi’an Building

Figure 10 presents the visualized prediction results of different networks on the Xi’an
building dataset, including various distribution densities and different sizes of buildings.
Figure 10 shows that U-Net, ResUNet++, Deeplab v3+, and Swin-Unet have extracted
most of the buildings. However, there are still occurrences of both false positives and false
negatives (indicated in blue and red, respectively). On the other hand, UNetFormer and
our proposed MARS-Net achieved more satisfactory results, and our network performs
better in extracting buildings’ boundary and internal information. In the first and second
rows, due to the similar spectral characteristics between buildings and the background, the
recognition performance of the U-Net, ResUNet++, Deeplab v3+, and Swin-Unet DCNN
networks is not ideal, with significant misclassification. UNetFormer can extract the shape
information of buildings well, but the extraction results occasionally show noise and blurry
boundary information. In the third row, the significant difference in spectral characteristics
between buildings and the background allows each network to have good segmentation
results. However, due to the small and dense nature of the buildings, there are certain
missing or sticking issues with the extracted building boundaries.

Overall, the extraction results of the MARS-Net network are closest to the ground truth,
and it performs better in extracting building targets of multiple scales and distribution
forms. From the results in the fourth to sixth rows, U-Net, ResUNet++, and Deeplab v3+
perform relatively well in classifying small-sized buildings, but their performance is not
ideal for classifying large and long-bordered buildings. On the other hand, Swin-Unet,
UNetFormer, and MARS-Net all perform well in the extraction results. In addition, the
issue of missing internal information in the extraction of buildings by MARS-Net has been
further improved, and the boundary information is smoother. This is because our network
combines the advantages of DCNN and transformer, which enhances the network‘s ability
to capture long-distance boundary information of large buildings. Additionally, through
the CA, CBAM, and DenseASPP modules carefully introduced at multiple stages of the
network, MARS-Net effectively connects cross-layer information while retaining multi-
scale contextual feature maps from different stages of the network. It allows MARS-Net to
capture complete interior information of small buildings, improve boundary adhesion and
false detection phenomena, and better overcome interference from similar spectral features.
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Figure 10. Visual comparison of results on the Xi’an building dataset: (a) original images; (b) ground
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Quantitative evaluation of the segmentation results for the Xi’an building dataset by
different networks is presented in Table 1. In Table 1, the proposed MARS-Net network
has 97.97% OA, 92.15% Kappa, 87.52% IoU, 93.67% recall, 93.02% precision, and 93.34% F1
score on the Xi’an building dataset. All evaluation metrics of this network show excellent
performance. The first to fifth rows show the semantic segmentation accuracy evaluation
results of the U-Net, ResUNet++, Deeplab v3+, Swin-Unet, and UNetFormer comparative
networks. Compared to the U-Net, ResUNet++, Deeplab v3+, Swin-Unet, and UNetFormer
algorithms, the OA respectively increased by 0.94%, 1.19%, 2.05%, 0.86%, and 0.61%; the
Kappa respectively increased by 3.66%, 4.59%, 7.77%, 3.37%, and 2.36%; the IoU respectively
increased by 5.32%, 6.59%, 10.86%, 4.90%, and 3.46%; the Recall respectively increased
by 3.67%, 3.82%, 5.74%, 3.31%, and 2.23%; the Precision respectively increased by 2.55%,
3.95%, 7.35%, 2.42%, and 1.78%; the F1 score respectively increased by 3.11%, 3.88%, 6.56%,
2.86%, and 2.01%.

Table 1. Quantitative evaluation results of comparison networks on Xi’an building dataset (unit: %).

Method OA Kappa IoU Recall Precision F1 Score

U-Net 97.03 88.48 82.20 90.00 90.47 90.23
ResUnet++ 96.78 87.56 80.93 89.85 89.07 89.46

Deeplab v3+ 95.92 84.38 76.66 87.93 85.67 86.79
Swin-Unet 97.10 88.77 82.62 90.36 90.60 90.48

UNetFormer 97.36 89.78 84.06 91.43 91.24 91.34
MARS-Net 97.97 92.15 87.52 93.67 93.02 93.34
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3.3.2. Comparative Experiments on the WHU Building

To verify the generalization of MARS-Net, we conducted the same comparative experi-
ment on the WHU building dataset, as shown in Figure 11. Figure 11 shows that, compared
with other advanced networks, the proposed MARS-Net further improves predicting re-
sults on various distributions and building sizes, significantly reducing misclassification
and misses detections.
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Specifically, in the predicted results of small buildings with different density levels 
from the first to the second row in Figure 11, U-Net, ResUNet++, Deeplab v3+, and Swin-
Unet show poor edge integrity in their predictions. Although both UNetFormer and 
MARS-Net achieved good prediction results, MARS-Net retained more edge information 
on the buildings and improved in reducing false detections of small buildings. In addition, 
due to insufficient feature extraction capability and inadequate receptive field size of the 
encoder part of U-Net, ResUNet++, Deeplab v3+, and Swin-Unet networks, there are many 
holes in the extraction results when predicting large buildings, as shown in rows three to 
six of Figure 11. The phenomenon of holes in the extraction of large buildings by UNet-
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Colors assigned: TP in white, TN in black, FP in red, and FN in green.

Specifically, in the predicted results of small buildings with different density levels
from the first to the second row in Figure 11, U-Net, ResUNet++, Deeplab v3+, and Swin-
Unet show poor edge integrity in their predictions. Although both UNetFormer and
MARS-Net achieved good prediction results, MARS-Net retained more edge information
on the buildings and improved in reducing false detections of small buildings. In addition,
due to insufficient feature extraction capability and inadequate receptive field size of the
encoder part of U-Net, ResUNet++, Deeplab v3+, and Swin-Unet networks, there are many
holes in the extraction results when predicting large buildings, as shown in rows three to six
of Figure 11. The phenomenon of holes in the extraction of large buildings by UNetFormer
has been significantly improved. However, some misclassification of boundary information
for large buildings still exists, and the extraction results for surrounding small buildings
are less than ideal. The proposed network benefits from constructing a dual encoder
comprising DCNN and transformer. And the introduction of CA and CBAM at different
stages of the encoder to bridge the gap between the encoder and decoder. Thus, the
two advantageous extraction methods preserve more building feature information. Adding
the DenseASPP module can capture more contextual semantic details of buildings, thereby
enhancing the network’s ability to resist interference from complex background information.
Therefore, MARS-Net can extract buildings of different distributions and scales in complex
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backgrounds, making the internal information of large buildings more complete and the
boundaries smoother. Meanwhile, it can also predict many small buildings with more
precise outlines. While it enhances the extraction of large buildings, it also has good
segmentation capabilities for small buildings.

The quantitative evaluation of the segmentation results of the WHU building dataset
by different networks is shown in Table 2. As shown in Table 2, the proposed MARS-Net
network has 98.78% OA, 93.84% Kappa, 89.62% IoU, 94.64% Recall, 94.41% Precision, and
94.52% F1 score on the WHU building dataset. All the evaluation metrics of this network
show good performance. The first to fifth rows show the semantic segmentation accuracy
evaluation results of the U-Net, ResUNet++, Deeplab v3+, Swin-Unet, and UNetFormer
comparative networks. Compared to the U-Net, ResUNet++, Deeplab v3+, Swin-Unet,
and UNetFormer algorithms, the OA has improved by 1.12%, 0.86%, 0.85%, 0.56%, and
0.49%; the Kappa has been enhanced by 5.60%, 4.25%, 4.34%, 2.87%, and 2.32%; the IoU
has improved by 8.52%, 6.53%, 6.69%, 4.49%, and 3.61%; the recall has improved by
4.25%, 2.74%, 4.39%, 3.12%, and 1.47%; the precision has improved by 5.66%, 4.77%, 3.32%,
1.99%, and 2.61%; and the F1 score has increased by 4.96%, 3.76%, 3.86%, 2.56%, and
2.04%, respectively.

Table 2. Quantitative evaluation results of comparison networks on WHU building dataset (unit: %).

Method OA Kappa IoU Recall Precision F1 Score

U-Net 97.66 88.24 81.09 90.39 88.75 89.56
ResUnet++ 97.92 89.59 83.08 91.91 89.64 90.76

Deeplab v3+ 97.93 89.50 82.92 90.25 91.08 90.66
Swin-Unet 98.22 90.97 85.13 91.52 92.41 91.97

UNetFormer 98.29 91.51 86.01 93.17 91.80 92.48
MARS-Net 98.78 93.84 89.62 94.64 94.41 94.52

3.3.3. Ablation Study

In this section, we conducted ablation experiments on the Xi’an building dataset and
the WHU building dataset to explore the effect of each module on the parallel coding
structure of DCNN and transformer in MARS-Net. We used MARS-Net with only DCNN
and transformer dual coding structure as the baseline network (Baseline). We separately
added CA, CBAM, and DenseASPP to the Baseline, and the visualization results of the
segmentation are shown in Figure 12. The quantitative evaluation results are shown in
Tables 3 and 4.

Table 3. Quantitative evaluation results of ablation experiments on Xi’an building dataset (unit: %).

Method OA Kappa IoU Recall Precision F1 Score

Baseline 96.95 89.03 83.26 93.41 88.46 90.86
Baseline + CA 97.71 91.14 86.02 93.27 91.72 92.49

Baseline + CBAM 97.92 91.95 87.23 93.46 92.90 93.18
Baseline + DenseASPP 97.95 92.09 87.44 93.83 92.77 93.30

MARS-Net 97.97 92.15 87.52 93.67 93.02 93.34

Table 4. Quantitative evaluation results of ablation experiments on WHU building dataset (unit: %).

Method OA Kappa IoU Recall Precision F1 Score

Baseline 98.39 91.73 86.27 91.72 93.55 92.63
Baseline + CA 98.65 93.18 88.57 94.12 93.77 93.94

Baseline + CBAM 98.68 93.30 88.76 94.01 94.08 94.04
Baseline + DenseASPP 98.70 93.45 89.00 94.51 93.85 94.18

MARS-Net 98.78 93.84 89.62 94.64 94.41 94.52
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Figure 12. Results of ablation study on building dataset: (a) original images; (b) ground truth;
(c) Baseline; (d) Baseline + CA; (e) Baseline + CBAM; (f) Baseline + DenseASPP; (g) MARS-Net.
Colors assigned: TP in white, TN in black, FP in red, and FN in green. Segmentation results of the
Xi’an building dataset for rows 1~2. Segmentation results of the WHU building dataset for rows 3~4.

As shown in Figure 12, adding each module has improved the segmentation results
compared to the baseline network. There is a significant improvement in the misidentifi-
cation and missed detection of building boundaries, and it has reduced the occurrence of
voids in the extraction results of large buildings. The spectral characteristics of buildings in
the third and fourth rows are more similar to land cover features. However, introducing the
three modules has improved the smoothness of boundary prediction for buildings based
on the baseline network. The overall prediction results of MARS-Net have been further
enhanced, with the internal information of buildings of different distributions and scales
being complete. The boundaries are smoother and better at suppressing interference from
similar background information.

As shown in Table 3, compared to the baseline network, the introduction of the CA
module resulted in improvements of 0.77%, 2.11%, 2.76%, 3.26%, and 1.62% in OA, Kappa,
IoU, recall, precision, and F1 score, respectively. The addition of the CBAM module resulted
in improvements of 0.97%, 2.92%, 3.97%, 0.05%, 4.44%, and 2.31% in OA, Kappa, IoU, recall,
precision, and F1 score, respectively. Meanwhile, adding the DenseASPP module led to
respective improvements of 1.01%, 3.06%, 4.18%, 0.42%, 4.31%, and 2.43%. In the accuracy
evaluation metrics of the WHU building dataset in Table 4, compared to the baseline
network, adding the CA module led to improvements of 0.25%, 1.45%, 2.31%, 2.39%, 0.21%,
and 1.31% in OA, Kappa, IoU, recall, precision, and F1 score, respectively, while adding the
CBAM module led to respective improvements of 0.28%, 1.57%, 2.49%, 2.29%, 0.53%, and
1.42%, and the addition of the DenseASPP module resulted in respective improvements of
0.31%, 1.72%, 2.73%, 2.79%, 0.30%, and 1.55%, respectively. The performance of the baseline
network can be improved overall when using the CA, CBAM, and DenseASPP modules
on both datasets. Moreover, when combining all three modules, the network’s various
accuracy evaluation metrics showed the largest overall improvement.

3.4. SIEM Experimental Results and Analysis

The effectiveness and generalization of MARS-Net have been validated through the
experiments above, which further enhance the semantic segmentation performance of the
network by exploring the spectral information of images. In this section, experimental
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validation of the proposed SIEM is conducted based on the MARS-Net network. SIEM
uses the spectral information of images’ R, G, B, and NIR bands. Therefore, we used the
Xi’an building dataset images for spectral enhancement with SIEM and conducted semantic
segmentation experiments with MARS-Net. The visualized results of the prediction are
shown in Figure 13e. Table 5 shows the accuracy evaluation results.
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Table 5. Quantitative evaluation results of SIEM module on Xi’an building dataset (unit: %).

Method OA Kappa IoU Recall Precision F1 Score

MARS-Net 97.97 92.15 87.52 93.67 93.02 93.34
MARS-Net + SIEM 98.20 93.04 88.86 94.21 93.99 94.10

In Figure 13, a comparison is made between the MARS-Net network that performed
better in the previous experiments and the MARS-Net with the added SIEM module. It
can be observed that MARS-Net performs better in predicting sparse small buildings in
the first and second rows, but misclassification still occurs occasionally. However, after
introducing SIEM, the network can extract building boundary information that closely
aligns with the ground truth. In addition, the images in the third and fourth rows contain
similar spectral information, complex background details, and dense mixed multi-scale
clusters of buildings, leading to less satisfactory extraction results from MARS-Net, with
frequent misclassifications and omissions. However, through further processing with SIEM,
the misclassifications and omissions in the predicted results are alleviated, and the building
information extracted using the network segmentation more closely matches the building
forms in the ground truth.

Table 5 shows the evaluation results of the networks. The MARS-Net network with
the addition of SIEM achieved improved accuracy evaluation results, with OA, Kappa, IoU,
recall, precision, and F1 score reaching 98.20%, 93.04%, 88.86%, 94.21%, 93.99%, and 94.10%,
respectively. Compared to MARS-Net, there were improvements of 0.23%, 0.89%, 1.34%,
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0.54%, 0.97%, and 0.76% in Kappa, IoU, recall, precision, and F1 score, respectively. It is,
therefore, evident that SIEM can effectively enhance the network’s performance.

4. Discussion

The scale and morphology of buildings vary due to natural, cultural, and social
development. At the same time, the segmentation of buildings is also affected by the
different image resolutions and label quality of the dataset, leading to a certain degree of
fluctuation in the segmentation results.

By analyzing the characteristics of the two experimental datasets, the WHU aerial
buildings dataset has a relatively higher image resolution than the Xi’an satellite buildings
dataset. There is a rather large proportion of small buildings in both datasets. However, due
to geographic variation, small buildings in the WHU dataset tend to be irregularly shaped
like squares, as shown in the first three images in Figure 11. In contrast, small buildings in
the Xi’an dataset tend to be long strips and more densely distributed, as shown in the first
three images in Figure 10. Influenced by the characteristics of the dataset itself above, in the
accuracy evaluation results of the comparison experiments, the training accuracy of each
model on the WHU dataset is generally better than that on the Xi’an dataset. As shown in
Tables 1 and 2, ResUNet++, which has a deeper structure, performs lower than U-Net on the
Xi’an dataset with poor stability compared to other DCNN networks, although it has higher
accuracy. On the two experimental datasets in this paper, the accuracy of transformer class
networks is evaluated more elevated than that of DCNN networks, and the performance is
more stable. Among them, the MARS-Net accuracy proposed in this paper performs better.
Based on the characteristics of the two experimental datasets analyzed in the previous
section, this may result from the fact that the building patterns in the Xi’an dataset are
mostly long strips. This building morphology gives better play to the transformer’s long-
distance extraction advantage. It also enables the transformer-like network to maintain a
better extraction effect on the Xi’an dataset, which has a slightly lower image resolution.

In addition, compared with the networks in the other experiments, MARS-Net also has
a better segmentation effect on the densely distributed buildings in the two experimental
data, as shown in Figures 10 and 11. From the perspective of multi-scale analysis, the
richness of spatial and semantic information varies between deep and shallow layers in
the feature learning process of the networks. Shallow features often contain more spatial
information, but due to their limited depth of learning, they need more semantic feature
information. On the other hand, due to multiple rounds of object feature learning, deep
features have more accurate semantic feature information. However, after numerous down-
samplings, there is some loss of spatial location information, leading to misclassification
and omission of detailed information, such as boundaries, corners, and interiors, for small
buildings and dense complexes. The MARS-Net proposed in this paper combines the
advantages of local extraction from DCNN and global learning from the transformer. It
bridges the encoder and decoder at different positions using the CA and CBAM modules
to reconcile the contradiction between deep and shallow feature information acquisition. It
effectively collects spatial features from the superficial layers and semantic features from
the deep layers. At the same time, DenseASPP is used to increase the receptive field during
the feature map restoration process in the decoder to obtain semantic feature information
at a larger scale. These structures play an essential role in the network and make the
network in this paper more effective in segmenting buildings of various scales, forms,
and distributions.

The land cover information in high-resolution RSIs is intricate, containing redundant
object details. And the similarity in appearance between roads and rooftops significantly
affects the interpretation of buildings. However, high-resolution RSIs also have a high
spectral resolution. By mining their spectral information, this paper proposes the SIEM to
process the maximum weight ratio results of each image band with MBI to enhance the
spectral information of the image and further improve the network’s segmentation effect
on buildings. We also considered fusing the high-weight ratio bands with MNF at the final
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stage of SIEM and then stacking the result with MBI to assess accuracy in MARS-Net, as
shown in the last row of Table 6. In Table 6, the SIEM in this paper offers a more significant
performance improvement than the test results in the previous row. This enhancement may
be because the SIEM in this paper fuses the building morphological feature information
from the MBI in all bands.

Table 6. Quantitative evaluation results of test experiments on Xi’an building dataset (unit: %).

Method OA Kappa IoU Recall Precision F1 Score

MARS-Net 97.97 92.15 87.52 93.67 93.02 93.34
MARS-Net + SIEM 98.20 93.04 88.86 94.21 93.99 94.10

Test 98.06 92.48 88.02 94.05 93.21 93.63

While the proposed method in this paper has achieved good results in building
segmentation, there are still some limitations. For example, influenced by geographi-
cal location, culture, and the level of social development, the land object information in
high-resolution RSIs varies to different extents in different regions. Therefore, spectral infor-
mation enhancement methods may also need to be adjusted accordingly. We quantitatively
compared the performance parameters FLOPs and Params of the experimental network in
this paper. As shown in Table 7, the two parameters of MARS-Net are generally better than
those of U-Net and ResUnet++, but higher than those of Swin-Unet and UNetFormer. A
further comparison of Table 7 reveals that the two performance parameters of the Baseline
network structure are very close to the network we proposed. It is speculated that this may
be due to our simultaneous use of ResNet and Swin transformer structures to construct a
parallel encoder, leading to MARS-Net having higher performance parameters in terms
of FLOPs and Params. In future research, we will further adjust and lighten the parallel
encoding structure used in the proposed network, continuing to explore universal spectral
enhancement methods to adapt to the application scenarios of various high-resolution RSIs.
At the same time, according to the spectrally enhanced image features, we will carry out
targeted model improvement and design. For example, by better combining the seman-
tic segmentation model and image spectral enhancement method, we may improve the
model’s anti-interference ability against phenomena such as shadows and similar spectral
features of ground objects and enhance the building segmentation capability of the network
more comprehensively.

Table 7. Comparative results of performance parameters for the networks.

Method FLOPs (G) Params (M)

U-Net 3593.30 65.85
ResUnet++ 8186.80 352.72

DeepLabV3+ 590.83 22.18
Swin-Unet 691.16 103.55

UNetFormer 262.36 44.56
MARS-Net 1002.46 203.22

Baseline 999.69 202.96

5. Conclusions

The existing building extraction methods often suffer from the complexity of land cover
information and the diverse shapes and distributions of buildings, leading to segmentation
results that exhibit similarities and adjacency between buildings and surrounding roads.
Moreover, incomplete and inaccurate internal and boundary information extraction within
buildings is also an issue. First, we constructed the Xi’an building dataset based on the
imagery within the third ring road of Xi’an, Shaanxi Province, China, which possesses the
characteristic features of local buildings. Due to variations in building shapes, distributions,
and image resolutions, this dataset presents more challenges for semantic segmentation
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networks. Secondly, we propose a deep learning network called MARS-Net, which uses
ResNet50 and Swin-T to construct parallel encoders, leveraging the local profound feature
extraction advantages of DCNN and the transformer’s global contextual feature extraction
advantages. CA and CBAM modules were introduced at different network depths to bridge
the encoder and decoder, thus preserving richer spatial and semantic feature information
of the building. The DenseASPP module was added during the decoding process to en-
hance the network’s ability to extract multi-scale building edge features. Beyond that, we
designed the SIEM module, which enhances the spectral information of the images by
processing the MBI and band ratio results calculated from the R, G, B, and NIR bands in
the RSIs, further improving the network’s segmentation accuracy of buildings. Ultimately,
we conducted performance analysis experiments on MARS-Net and SIEM. Through com-
parative experiments and ablation experiments with U-Net, ResUNet++, Deeplab v3+,
Swin-Unet, and UNetFormer on the Xi’an building dataset and the WHU building dataset,
the results show that our MARS-Net achieves better multi-scale building segmentation
performance with different distribution characteristics, stronger resistance to interference
from similar spectral features, and higher accuracy evaluation metrics. By processing the
Xi’an building dataset images with the SIEM module and continuing the experiments with
MARS-Net, the results show that the MARS-Net with the SIEM module is more effective
in extracting multi-scale building cluster information with various phenomena, such as
similar spectral information and complex background, resulting in clearer boundaries and
further improvement in different accuracy evaluation metrics.

Author Contributions: Conceptualization, Z.P. and R.H.; methodology, Z.P.; software, Z.P.; validation,
Z.P. and W.Z.; formal analysis, Z.P.; investigation, Z.P. and R.Z.; resources, R.Z. and X.H.; data curation,
Z.P. and R.H.; writing—original draft preparation, Z.P.; writing—review and editing, Z.P., W.Z. and
Y.L.; visualization, Z.P. and Y.L.; supervision, W.Z.; project administration, R.H.; funding acquisition,
X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China: 42171394;
the National Natural Science Foundation of China: 52079103; and the Natural Science Basic Research
Plan in Shaanxi Province of China (2023-JC-JQ-24).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors appreciate Wuhan University for sharing the building datasets
for free.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Claassens, J.; Koomen, E.; Rouwendal, J. Urban Density and Spatial Planning: The Unforeseen Impacts of Dutch Devolution.

PLoS ONE 2020, 15, e0240738. [CrossRef]
2. Li, X.; Ying, Y.; Xu, X.; Wang, Y.; Hussain, S.A.; Hong, T.; Wang, W. Identifying Key Determinants for Building Energy Analysis

from Urban Building Datasets. Build. Environ. 2020, 181, 107114. [CrossRef]
3. Yuan, P.; Zhao, Q.; Zhao, X.; Wang, X.; Long, X.; Zheng, Y. A Transformer-Based Siamese Network and an Open Optical Dataset

for Semantic Change Detection of Remote Sensing Images. Int. J. Digit. Earth 2022, 15, 1506–1525. [CrossRef]
4. Li, D.; Lu, X.; Walling, D.E. High Mountain Asia Hydropower Systems Threatened by Climate-Driven Landscape Instability. Nat.

Geosci. 2022, 15, 520–530. [CrossRef]
5. Pang, L.; Sun, J.; Chi, Y.; Yang, Y.; Zhang, F.; Zhang, L. CD-TransUNet: A Hybrid Transformer Network for the Change Detection

of Urban Buildings Using L-Band SAR Images. Sustainability 2022, 14, 9847. [CrossRef]
6. Liu, M.; Chai, Z.; Deng, H.; Liu, R. A CNN-transformer network with multiscale context aggregation for fine-grained cropland

change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4297–4306. [CrossRef]
7. Wang, T.; Shi, Q.; Nikkhoo, M.; Wei, S.; Barbot, S.; Dreger, D.; Bürgmann, R.; Motagh, M.; Chen, Q.-F. The rise, collapse, and

compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test. Science 2018, 361, 166–170. [CrossRef] [PubMed]

https://doi.org/10.1371/journal.pone.0240738
https://doi.org/10.1016/j.buildenv.2020.107114
https://doi.org/10.1080/17538947.2022.2111470
https://doi.org/10.1038/s41561-022-00953-y
https://doi.org/10.3390/su14169847
https://doi.org/10.1109/JSTARS.2022.3177235
https://doi.org/10.1126/science.aar7230
https://www.ncbi.nlm.nih.gov/pubmed/29748323


Sensors 2024, 24, 1006 22 of 23

8. Cao, S.; Weng, Q.; Du, M.; Li, B.; Zhong, R.; Mo, Y. Multi-scale three-dimensional detection of urban buildings using aerial LiDAR
data. GISci. Remote Sens. 2020, 57, 1125–1143. [CrossRef]

9. Zhu, Q.; Guo, X.; Li, Z.; Li, D. A review of multi-class change detection for satellite remote sensing imagery. Geo Spat. Inf. Sci.
2022, 1–15. [CrossRef]

10. Zheng, H.; Gong, M.; Liu, T.; Jiang, F.; Zhan, T.; Lu, D.; Zhang, M. HFA-Net: High frequency attention siamese network for
building change detection in VHR remote sensing images. Pattern Recognit. 2022, 129, 108717. [CrossRef]

11. Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A fully convolutional neural network for automatic
building extraction from high-resolution remote sensing images. Remote Sens. 2020, 12, 1050. [CrossRef]

12. Ran, S.; Gao, X.; Yang, Y.; Li, S.; Zhang, G.; Wang, P. Building multi-feature fusion refined network for building extraction from
high-resolution remote sensing images. Remote Sens. 2021, 13, 2794. [CrossRef]

13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
14. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of

the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich,
Germany, 5–9 October 2015; pp. 234–241.

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition–CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

16. Jin, Y.; Xu, W.; Zhang, C.; Luo, X.; Jia, H. Boundary-aware refined network for automatic building extraction in very high-
resolution urban aerial images. Remote Sens. 2021, 13, 692. [CrossRef]

17. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for Semantic Segmentation in Street Scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition–CVPR, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3684–3692.

18. Xu, X.; Zhang, H.; Ran, Y.; Tan, Z. High-Precision Segmentation of Buildings with Small Sample Sizes Based on Transfer Learning
and Multi-Scale Fusion. Remote. Sens. 2023, 15, 2436. [CrossRef]

19. Yu, W.; Liu, B.; Liu, H.; Gou, G. Recurrent Residual Deformable Conv Unit and Multi-Head with Channel Self-Attention Based on
U-Net for Building Extraction from Remote Sensing Images. Remote. Sens. 2023, 15, 5048. [CrossRef]

20. Aryal, J.; Neupane, B. Multi-Scale Feature Map Aggregation and Supervised Domain Adaptation of Fully Convolutional Networks
for Urban Building Footprint Extraction. Remote Sens. 2023, 15, 488. [CrossRef]

21. Wang, L.; Fang, S.; Meng, X.; Li, R. Building extraction with vision transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11.
[CrossRef]

22. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 10012–10022.

23. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xi’ang, T.; Torr, P.H. Rethinking Semantic Segmentation
from a Sequence-to-Sequence Perspective with Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition–CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

24. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090.

25. Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image
segmentation. arXiv 2021, arXiv:2105.05537.

26. Gao, G.; Wang, Z.; Li, J.; Li, W.; Yu, Y.; Zeng, T. Lightweight bimodal network for single-image super-resolution via symmetric
cnn and recursive transformer. arXiv 2022, arXiv:2204.13286.

27. Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient
semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [CrossRef]

28. Zhang, C.; Jiang, W.; Zhang, Y.; Wang, W.; Zhao, Q.; Wang, C. Transformer and CNN hybrid deep neural network for semantic
segmentation of very-high-resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [CrossRef]

29. Wang, W.; Tan, X.; Zhang, P.; Wang, X. A CBAM Based Multiscale Transformer Fusion Approach for Remote Sensing Image
Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6817–6825. [CrossRef]

30. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the 15th European
Conference on Computer Vision–ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 3–19.

31. He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin transformer embedding UNet for remote sensing image semantic
segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]

32. Li, M.; Rui, J.; Yang, S.; Liu, Z.; Ren, L.; Ma, L.; Li, Q.; Su, X.; Zuo, X. Method of Building Detection in Optical Remote Sensing
Images Based on SegFormer. Sensors 2023, 23, 1258. [CrossRef]

33. Xia, L.; Mi, S.; Zhang, J.; Luo, J.; Shen, Z.; Cheng, Y. Dual-Stream Feature Extraction Network Based on CNN and Transformer for
Building Extraction. Remote Sens. 2023, 15, 2689. [CrossRef]

34. Bradbury, K.; Brigman, B.; Collins, L.; Johnson, T.; Lin, S.; Newell, R.; Park, S.; Suresh, S.; Wiesner, H.; Xi, Y. Aerial Imagery
Object Identification Dataset for Building and Road Detection, and Building Height Estimation. Figshare. 2016. Available
online: https://figshare.com/collections/Aerial_imagery_object_identification_dataset_for_building_and_road_detection_and_
building_height_estimation/3290519 (accessed on 2 September 2023).

https://doi.org/10.1080/15481603.2020.1847453
https://doi.org/10.1080/10095020.2022.2128902
https://doi.org/10.1016/j.patcog.2022.108717
https://doi.org/10.3390/rs12061050
https://doi.org/10.3390/rs13142794
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/rs13040692
https://doi.org/10.3390/rs15092436
https://doi.org/10.3390/rs15205048
https://doi.org/10.3390/rs15020488
https://doi.org/10.1109/TGRS.2022.3186634
https://doi.org/10.1016/j.isprsjprs.2022.06.008
https://doi.org/10.1109/TGRS.2022.3144894
https://doi.org/10.1109/JSTARS.2022.3198517
https://doi.org/10.1109/TGRS.2022.3144165
https://doi.org/10.3390/s23031258
https://doi.org/10.3390/rs15102689
https://figshare.com/collections/Aerial_imagery_object_identification_dataset_for_building_and_road_detection_and_building_height_estimation/3290519
https://figshare.com/collections/Aerial_imagery_object_identification_dataset_for_building_and_road_detection_and_building_height_estimation/3290519


Sensors 2024, 24, 1006 23 of 23

35. Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery
data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [CrossRef]

36. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial
image Labeling Benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium–IGARSS,
Fort Worth, TX, USA, 23–28 July 2017; pp. 3226–3229.

37. Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013; ISBN 0-494-96184-8.
38. Hao, H.; Shuyang, W.; Shicheng, W.; Dongfang, Y.; Xing, L. A road extraction method for remote sensing image based on

encoder-decoder network. J. Geod. Geoinf. Sci. 2020, 3, 16–25.
39. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition–CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.
40. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]
41. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
42. Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmenta-

tion. In Proceedings of the 2016 Fourth International Conference on 3D Vision–3DV, Stanford, CA, USA, 25–28 October 2016;
pp. 565–571.

43. He, Z.; Ding, H.; An, B. E-Unet: An atrous convolution-based neural network for building extraction from high-resolution remote
sensing images. Acta Geod. Et Cartogr. Sin. 2022, 51, 457.

44. Sun, L.; Yin, T.; Ding, W.; Qian, Y.; Xu, J. Multilabel feature selection using ML-ReliefF and neighborhood mutual information for
multilabel neighborhood decision systems. Inf. Sci. 2020, 537, 401–424. [CrossRef]

45. Wang, Z.; Zhou, Y.; Wang, S.; Wang, F.; Xu, Z. House building extraction from high resolution remote sensing image based on
IEU-Net. J. Remote Sens. 2021, 25, 2245–2254. [CrossRef]

46. Wang, Y.; Wang, S.; Dou, A. A Dual-Branch Fusion Network Based on Reconstructed Transformer for Building Extraction in
Remote Sensing Imagery. Sensors 2024, 24, 365. [CrossRef]

47. Wang, Y.; Zhao, Q.; Wu, Y.; Tian, W.; Zhang, G. SCA-Net: Multiscale Contextual Information Network for Building Extraction
Based on High-Resolution Remote Sensing Images. Remote. Sens. 2023, 15, 4466. [CrossRef]

48. Jung, H.; Choi, H.S.; Kang, M. Boundary Enhancement Semantic Segmentation for Building Extraction from Remote Sensed
Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

49. Kinga, D.; Adam, J.B. A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations–ICLR, San Diego, CA, USA, 7–9 May 2015; Volume 5, p. 6.

50. Jha, D.; Smedsrud, P.H.; Riegler, M.A.; Johansen, D.; De Lange, T.; Halvorsen, P.; Johansen, H.D. Resunet++: An Advanced
Architecture for Medical Image Segmentation. In Proceedings of the 2019 IEEE International Symposium on Multimedia–ISM,
San Diego, CA, USA, 9–11 December 2019; pp. 225–2255.

51. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the European Conference on Computer Vision–ECCV, Munich, Germany, 8–14 September
2018; pp. 801–818.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2018.2858817
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186
https://doi.org/10.1016/j.ins.2020.05.102
https://doi.org/10.11834/jrs.20210042
https://doi.org/10.3390/s24020365
https://doi.org/10.3390/rs15184466
https://doi.org/10.1109/TGRS.2021.3108781

	Introduction 
	Materials and Methods 
	Network Architecture Overview 
	Parallel Encoding Architecture 
	Dense Atrous Spatial Pyramid Pooling Module 
	Coordinate Attention 
	Convolutional Block Attention Module 
	Loss Function 

	Spectral Information Enhancement Module 
	Module Architecture Overview 
	Spectral Information Expansion Combined with Near-Infrared Band Ratios 
	Spectral Information Enhancement Based on Morphological Building Index 


	Experiments and Results 
	Dataset Details 
	Study Area 
	WHU Building Datasets 

	Experimental Settings and Evaluation Indicators 
	Network Experimental Results and Analysis 
	Comparative Experiments on the Xi’an Building 
	Comparative Experiments on the WHU Building 
	Ablation Study 

	SIEM Experimental Results and Analysis 

	Discussion 
	Conclusions 
	References

